The JMU-SalVac-System: A Novel, Versatile Approach to Oral Live Vaccine Development
Abstract
:1. Introduction
2. Methods and Materials
2.1. Rational Design
2.2. Standard Microbial and Molecular Methods Used for Generation of JMU-SalVac Strains
2.3. Construction of the BLS-Recipient Strain S. enterica Typhi Ty21a ∆tyrS(tyrS CmR)+
2.4. Design and Construction of the pSalVac Antigen Delivery Plasmids
2.5. Generation of BLS-Stabilized Vaccine Strains
2.6. Plasmid Stability Assay
2.7. Bacterial Growth Assay
2.8. Western Blot Analysis
2.9. Differentiation of Human-Monocyte-Derived Macrophages (hMDMs)
2.10. Infection of RAW 246.7 Cells
2.11. Flow Cytometry Analysis
2.12. Immunofluorescence
3. Results
4. Discussion
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clark-Curtiss, J.E.; Curtiss, R. Salmonella Vaccines: Conduits for Protective Antigens. J. Immunol. 2018, 200, 39–48. [Google Scholar] [CrossRef]
- Bumann, D. Regulated antigen expression in live recombinant Salmonella enterica serovar Typhimurium strongly affects colonization capabilities and specific CD4(+)-T-cell responses. Infect. Immun. 2001, 69, 7493–7500. [Google Scholar] [CrossRef]
- Galen, J.E.; Curtiss, R. The delicate balance in genetically engineering live vaccines. Vaccine 2014, 32, 4376–4385. [Google Scholar] [CrossRef]
- Kang, H.Y.; Curtiss, R. Immune responses dependent on antigen location in recombinant attenuated Salmonella typhimurium vaccines following oral immunization. FEMS Immunol. Med. Microbiol. 2003, 37, 99–104. [Google Scholar] [CrossRef]
- Galen, J.E.; Zhao, L.; Chinchilla, M.; Wang, J.Y.; Pasetti, M.F.; Green, J.; Levine, M.M. Adaptation of the endogenous Salmonella enterica serovar Typhi clyA-encoded hemolysin for antigen export enhances the immunogenicity of anthrax protective antigen domain 4 expressed by the attenuated live-vector vaccine strain CVD 908-htrA. Infect. Immun. 2004, 72, 7096–7106. [Google Scholar] [CrossRef]
- Gentschev, I.; Dietrich, G.; Spreng, S.; Neuhaus, B.; Maier, E.; Benz, R.; Goebel, W.; Fensterle, J.; Rapp, U.R. Use of the alpha-hemolysin secretion system of Escherichia coli for antigen delivery in the Salmonella typhi Ty21a vaccine strain. Int. J. Med. Microbiol. IJMM 2004, 294, 363–371. [Google Scholar] [CrossRef]
- Hotz, C.; Fensterle, J.; Goebel, W.; Meyer, S.R.; Kirchgraber, G.; Heisig, M.; Fürer, A.; Dietrich, G.; Rapp, U.R.; Gentschev, I. Improvement of the live vaccine strain Salmonella enterica serovar Typhi Ty21a for antigen delivery via the hemolysin secretion system of Escherichia coli. Int. J. Med. Microbiol. IJMM 2009, 299, 109–119. [Google Scholar] [CrossRef]
- Gentschev, I.; Dietrich, G.; Goebel, W. The E. coli alpha-hemolysin secretion system and its use in vaccine development. Trends Microbiol. 2002, 10, 39–45. [Google Scholar] [CrossRef]
- Gentschev, I.; Mollenkopf, H.; Sokolovic, Z.; Hess, J.; Kaufmann, S.H.; Goebel, W. Development of antigen-delivery systems, based on the Escherichia coli hemolysin secretion pathway. Gene 1996, 179, 133–140. [Google Scholar] [CrossRef]
- Fensterle, J.; Bergmann, B.; Yone, C.L.R.P.; Hotz, C.; Meyer, S.R.; Spreng, S.; Goebel, W.; Rapp, U.R.; Gentschev, I. Cancer immunotherapy based on recombinant Salmonella enterica serovar Typhimurium aroA strains secreting prostate-specific antigen and cholera toxin subunit B. Cancer Gene Ther. 2008, 15, 85–93. [Google Scholar] [CrossRef]
- Stratmann, T. Cholera Toxin Subunit B as Adjuvant--An Accelerator in Protective Immunity and a Break in Autoimmunity. Vaccines 2015, 3, 579–596. [Google Scholar] [CrossRef]
- Liljeqvist, S.; Ståhl, S.; Andréoni, C.; Binz, H.; Uhlén, M.; Murby, M. Fusions to the cholera toxin B subunit: Influence on pentamerization and GM1 binding. J. Immunol. Methods 1997, 210, 125–135. [Google Scholar] [CrossRef]
- Lee, J.; Yoo, J.-K.; Sohn, H.-J.; Kang, H.; Kim, D.; Shin, H.-J.; Kim, J.-H. Protective immunity against Naegleria fowleri infection on mice immunized with the rNfa1 protein using mucosal adjuvants. Parasitol. Res. 2015, 114, 1377–1385. [Google Scholar] [CrossRef]
- Jafari, D.; Malih, S.; Gomari, M.M.; Safari, M.; Jafari, R.; Farajollahi, M.M. Designing a chimeric subunit vaccine for influenza virus, based on HA2, M2e and CTxB: A bioinformatics study. BMC Mol. Cell Biol. 2020, 21, 89. [Google Scholar] [CrossRef]
- Wu-Wu, J.W.F.; Guadamuz-Mayorga, C.; Oviedo-Cerdas, D.; Zamora, W.J. Antibiotic Resistance and Food Safety: Perspectives on New Technologies and Molecules for Microbial Control in the Food Industry. Antibiotics 2023, 12, 550. [Google Scholar] [CrossRef]
- Food and Drug Administration (USA) FDA. Recommendations for Microbial Vectors Used for Gene Therapy. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/recommendations-microbial-vectors-used-gene-therapy (accessed on 11 March 2024).
- EMA. Guideline on the Non-Clinical Studies Required before First Clinical Use of Gene Therapy Medicinal Products; European Medicines Agency: London, UK, 2008. [Google Scholar]
- Curtiss, R.; Galan, J.E.; Nakayama, K.; Kelly, S.M. Stabilization of recombinant avirulent vaccine strains in vivo. Res. Microbiol. 1990, 141, 797–805. [Google Scholar] [CrossRef]
- Sizemore, D.R.; Warner, E.A.; Lawrence, J.A.; Thomas, L.J.; Roland, K.L.; Killeen, K.P. Construction and screening of attenuated ΔphoP/Q Salmonella typhimurium vectored plague vaccine candidates. Hum. Vaccin. Immunother. 2012, 8, 371–383. [Google Scholar] [CrossRef]
- Xin, W.; Wanda, S.-Y.; Zhang, X.; Santander, J.; Scarpellini, G.; Ellis, K.; Alamuri, P.; Curtiss, R. The Asd(+)-DadB(+) dual-plasmid system offers a novel means to deliver multiple protective antigens by a recombinant attenuated Salmonella vaccine. Infect. Immun. 2012, 80, 3621–3633. [Google Scholar] [CrossRef]
- Schödel, F.; Kelly, S.M.; Peterson, D.L.; Milich, D.R.; Curtiss, R. Hybrid hepatitis B virus core-pre-S proteins synthesized in avirulent Salmonella typhimurium and Salmonella typhi for oral vaccination. Infect. Immun. 1994, 62, 1669–1676. [Google Scholar] [CrossRef]
- Galen, J.E.; Wahid, R.; Buskirk, A.D. Strategies for Enhancement of Live-Attenuated Salmonella-Based Carrier Vaccine Immunogenicity. Vaccines 2021, 9, 162. [Google Scholar] [CrossRef]
- Spreng, S.; Viret, J.-F. Plasmid maintenance systems suitable for GMO-based bacterial vaccines. Vaccine 2005, 23, 2060–2065. [Google Scholar] [CrossRef]
- Galen, J.E.; Wang, J.Y.; Chinchilla, M.; Vindurampulle, C.; Vogel, J.E.; Levy, H.; Blackwelder, W.C.; Pasetti, M.F.; Levine, M.M. A new generation of stable, nonantibiotic, low-copy-number plasmids improves immune responses to foreign antigens in Salmonella enterica serovar Typhi live vectors. Infect. Immun. 2010, 78, 337–347. [Google Scholar] [CrossRef]
- Morona, R.; Yeadon, J.; Considine, A.; Morona, J.K.; Manning, P.A. Construction of plasmid vectors with a non-antibiotic selection system based on the Escherichia coli thyA+ gene: Application to cholera vaccine development. Gene 1991, 107, 139–144. [Google Scholar] [CrossRef]
- Wakasugi, K.; Quinn, C.L.; Tao, N.; Schimmel, P. Genetic code in evolution: Switching species-specific aminoacylation with a peptide transplant. EMBO J. 1998, 17, 297–305. [Google Scholar] [CrossRef]
- Lam, H.M.; Winkler, M.E. Characterization of the complex pdxH-tyrS operon of Escherichia coli K-12 and pleiotropic phenotypes caused by pdxH insertion mutations. J. Bacteriol. 1992, 174, 6033–6045. [Google Scholar] [CrossRef]
- Yang, Y.; Tsui, H.C.; Man, T.K.; Winkler, M.E. Identification and function of the pdxY gene, which encodes a novel pyridoxal kinase involved in the salvage pathway of pyridoxal 5’-phosphate biosynthesis in Escherichia coli K-12. J. Bacteriol. 1998, 180, 1814–1821. [Google Scholar] [CrossRef]
- Lewis, M. The lac repressor. C. R. Biol. 2005, 328, 521–548. [Google Scholar] [CrossRef]
- Müller-Hill, B.; Crapo, L.; Gilbert, W. Mutants that make more lac repressor. Proc. Natl. Acad. Sci. USA 1968, 59, 1259–1264. [Google Scholar] [CrossRef]
- Gilbert, W.; Müller-Hill, B. Isolation of the lac repressor. Proc. Natl. Acad. Sci. USA 1966, 56, 1891–1898. [Google Scholar] [CrossRef]
- Sambrook, J.; Russell, D.W. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2001; ISBN 0879695765. [Google Scholar]
- Datsenko, K.A.; Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 2000, 97, 6640–6645. [Google Scholar] [CrossRef]
- Figueira, R.; Watson, K.G.; Holden, D.W.; Helaine, S. Identification of salmonella pathogenicity island-2 type III secretion system effectors involved in intramacrophage replication of S. enterica serovar typhimurium: Implications for rational vaccine design. mBio 2013, 4, e00065. [Google Scholar] [CrossRef]
- Cherepanov, P.P.; Wackernagel, W. Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 1995, 158, 9–14. [Google Scholar] [CrossRef]
- Herrero, M.; de Lorenzo, V.; Timmis, K.N. Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J. Bacteriol. 1990, 172, 6557–6567. [Google Scholar] [CrossRef]
- Germanier, R.; Füer, E. Isolation and characterization of Gal E mutant Ty 21a of Salmonella typhi: A candidate strain for a live, oral typhoid vaccine. J. Infect. Dis. 1975, 131, 553–558. [Google Scholar] [CrossRef]
- Xu, D.; Cisar, J.O.; Poly, F.; Yang, J.; Albanese, J.; Dharmasena, M.; Wai, T.; Guerry, P.; Kopecko, D.J. Genome Sequence of Salmonella enterica Serovar Typhi Oral Vaccine Strain Ty21a. Genome Announc. 2013, 1, 10–1128. [Google Scholar] [CrossRef]
- Bauer, H.; Darji, A.; Chakraborty, T.; Weiss, S. Salmonella-mediated oral DNA vaccination using stabilized eukaryotic expression plasmids. Gene Ther. 2005, 12, 364–372. [Google Scholar] [CrossRef]
- Vogel, M.; Hess, J.; Then, I.; Juarez, A.; Goebel, W. Characterization of a sequence (hlyR) which enhances synthesis and secretion of hemolysin in Escherichia coli. Mol. Gen. Genet. 1988, 212, 76–84. [Google Scholar] [CrossRef]
- Chen, X.; Zaro, J.L.; Shen, W.-C. Fusion protein linkers: Property, design and functionality. Adv. Drug Deliv. Rev. 2013, 65, 1357–1369. [Google Scholar] [CrossRef]
- Grote, A.; Hiller, K.; Scheer, M.; Münch, R.; Nörtemann, B.; Hempel, D.C.; Jahn, D. JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. 2005, 33, W526-31. [Google Scholar] [CrossRef]
- Stojanov, M.; Besançon, H.; Snäkä, T.; Nardelli-Haefliger, D.; Curtiss, R.; Baud, D. Differentially regulated promoters for antigen expression in Salmonella vaccine strains. Vaccine 2020, 38, 4154–4161. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Shi, H.; Sun, W.; Roland, K.L.; Curtiss, R. Comparison of a regulated delayed antigen synthesis system with in vivo-inducible promoters for antigen delivery by live attenuated Salmonella vaccines. Infect. Immun. 2011, 79, 937–949. [Google Scholar] [CrossRef]
- Seo, S.W.; Yang, J.-S.; Kim, I.; Yang, J.; Min, B.E.; Kim, S.; Jung, G.Y. Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency. Metab. Eng. 2013, 15, 67–74. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Scarpellini, G.; Kong, W.; Shi, H.; Baek, C.-H.; Gunn, B.; Wanda, S.-Y.; Roland, K.L.; Zhang, X.; et al. Salmonella vaccine vectors displaying delayed antigen synthesis in vivo to enhance immunogenicity. Infect. Immun. 2010, 78, 3969–3980. [Google Scholar] [CrossRef]
- Kopecko, D.J.; Sieber, H.; Ures, J.A.; Fürer, A.; Schlup, J.; Knof, U.; Collioud, A.; Xu, D.; Colburn, K.; Dietrich, G. Genetic stability of vaccine strain Salmonella Typhi Ty21a over 25 years. Int. J. Med. Microbiol. IJMM 2009, 299, 233–246. [Google Scholar] [CrossRef]
- Kohler, J.J.; Pathangey, L.; Hasona, A.; Progulske-Fox, A.; Brown, T.A. Long-term immunological memory induced by recombinant oral Salmonella vaccine vectors. Infect. Immun. 2000, 68, 4370–4373. [Google Scholar] [CrossRef]
- Metzger, W.G.; Mansouri, E.; Kronawitter, M.; Diescher, S.; Soerensen, M.; Hurwitz, R.; Bumann, D.; Aebischer, T.; von Specht, B.-U.; Meyer, T.F. Impact of vector-priming on the immunogenicity of a live recombinant Salmonella enterica serovar typhi Ty21a vaccine expressing urease A and B from Helicobacter pylori in human volunteers. Vaccine 2004, 22, 2273–2277. [Google Scholar] [CrossRef]
- Saxena, M.; Coloe, P.J.; Smooker, P.M. Influence of promoter, gene copy number, and preexisting immunity on humoral and cellular responses to a vectored antigen delivered by a Salmonella enterica vaccine. Clin. Vaccine Immunol. 2009, 16, 78–87. [Google Scholar] [CrossRef]
- Gahan, M.E.; Webster, D.E.; Wijburg, O.L.C.; Wesselingh, S.L.; Strugnell, R.A. Impact of prior immunological exposure on vaccine delivery by Salmonella enterica serovar Typhimurium. Vaccine 2008, 26, 6212–6220. [Google Scholar] [CrossRef]
- Sevil Domènech, V.E.; Panthel, K.; Meinel, K.M.; Winter, S.E.; Rüssmann, H. Pre-existing anti-Salmonella vector immunity prevents the development of protective antigen-specific CD8 T-cell frequencies against murine listeriosis. Microbes Infect. 2007, 9, 1447–1453. [Google Scholar] [CrossRef]
- Saxena, M.; Van, T.T.H.; Baird, F.J.; Coloe, P.J.; Smooker, P.M. Pre-existing immunity against vaccine vectors—Friend or foe? Microbiology 2013, 159, 1–11. [Google Scholar] [CrossRef]
- Dearlove, C.E.; Forrest, B.D.; van den Bosch, L.; La Brooy, J.T. The antibody response to an oral Ty21a-based typhoid-cholera hybrid is unaffected by prior oral vaccination with Ty21a. J. Infect. Dis. 1992, 165, 182–183. [Google Scholar] [CrossRef]
- Dietrich, G.; Griot-Wenk, M.; Metcalfe, I.C.; Lang, A.B.; Viret, J.-F. Experience with registered mucosal vaccines. Vaccine 2003, 21, 678–683. [Google Scholar] [CrossRef]
- Galán, J.E.; Nakayama, K.; Curtiss, R. Cloning and characterization of the asd gene of Salmonella typhimurium: Use in stable maintenance of recombinant plasmids in Salmonella vaccine strains. Gene 1990, 94, 29–35. [Google Scholar] [CrossRef]
- Kwon, N.H.; Fox, P.L.; Kim, S. Aminoacyl-tRNA synthetases as therapeutic targets. Nat. Rev. Drug Discov. 2019, 18, 629–650. [Google Scholar] [CrossRef]
- Holmgren, J.; Adamsson, J.; Anjuère, F.; Clemens, J.; Czerkinsky, C.; Eriksson, K.; Flach, C.-F.; George-Chandy, A.; Harandi, A.M.; Lebens, M.; et al. Mucosal adjuvants and anti-infection and anti-immunopathology vaccines based on cholera toxin, cholera toxin B subunit and CpG DNA. Immunol. Lett. 2005, 97, 181–188. [Google Scholar] [CrossRef]
- Lycke, N. Targeted vaccine adjuvants based on modified cholera toxin. Curr. Mol. Med. 2005, 5, 591–597. [Google Scholar] [CrossRef]
- Dougan, G.; Baker, S. Salmonella enterica serovar Typhi and the pathogenesis of typhoid fever. Annu. Rev. Microbiol. 2014, 68, 317–336. [Google Scholar] [CrossRef]
- Sim, B.K.L.; Li, M.; Osorio, M.; Wu, Y.; Wai, T.T.; Peterson, J.W.; James, E.R.; Chakravarty, S.; Gao, L.; Xu, R.; et al. Protection against inhalation anthrax by immunization with Salmonella enterica serovar Typhi Ty21a stably producing protective antigen of Bacillus anthracis. NPJ Vaccines 2017, 2, 17. [Google Scholar] [CrossRef]
- Bumann, D.; Metzger, W.G.; Mansouri, E.; Palme, O.; Wendland, M.; Hurwitz, R.; Haas, G.; Aebischer, T.; von Specht, B.U.; Meyer, T.F. Safety and immunogenicity of live recombinant Salmonella enterica serovar Typhi Ty21a expressing urease A and B from Helicobacter pylori in human volunteers. Vaccine 2001, 20, 845–852. [Google Scholar] [CrossRef]
- Tacket, C.O.; Forrest, B.; Morona, R.; Attridge, S.R.; LaBrooy, J.; Tall, B.D.; Reymann, M.; Rowley, D.; Levine, M.M. Safety, immunogenicity, and efficacy against cholera challenge in humans of a typhoid-cholera hybrid vaccine derived from Salmonella typhi Ty21a. Infect. Immun. 1990, 58, 1620–1627. [Google Scholar] [CrossRef]
Plasmids/Bacteria | Relevant Characteristics | Expression Cassettes | Antibioitic Resistance Genes | Source or Reference |
---|---|---|---|---|
Plasmids | ||||
pKD46 | Helper plasmid, Red recombinase, g, b and exo from ParaB promoter | AmpR | [33] | |
pKD3 | bla FRT cat FRT PS1 PS2 oriR6K | CmR | [33] | |
pKD3-SpeI | bla FRT BcuI-site cat FRT PS1 PS2 oriR6K | CmR | This study | |
pKD3-SpeI tyrS HisTag-s | bla FRT PWT tyrSx6His, cat FRT PS1 PS2 oriR6K | CmR | This study | |
pMKhly1 | FRT KanR FRT, hlyR, hlyC, hlyAs, hlyB, hlyD | KanR | [10] | |
pMKhly-CtxB | derivate of pMKhly1 | ctxB-hlyAs-fusion | KanR | [10] |
pSalVac 001 A0_B0 KanR | FRT KanR FRT, pMB1-origin, ΔIS2:PlacI-liketyrS-HisTag | A-Site: hlyR, hlyC, hlyA-secretion signal, hlyB, hlyD B-site: SalI site for integration | KanR | Patent No. WO 2022/034221 A1 |
pSalVac 006 A0_B0 KanR | derivate of pSalVac 001 A0_B0 KanR: deletion of residual Promotor region of AmpR, terminator downstream of hlyD, MCS in B-site | KanR | This study | |
pSalVac ActxB_B0 KanR | Derivate of pSalVac 006 A0_B0 KanR | A: ctxB-hlyAs fusion | KanR | This study |
pSalVac ActxB_B0 KanR ∆FRT | Derivate of pSalVac ActxB_B0 KanR, downstream FRT site deleted | A: ctxB-hlyAs fusion | KanR | This study |
pSalVac ActxB_B0 KanR Pwt-TyrS | Derivate of pSalVac ActxB_B0 KanR, wildtype TyrS promotor | A: ctxB-hlyAs fusion | KanR | |
pSalVac A0_BPasr-mRFP KanR | Derivate of pSalVac 006 A0_B0 KanR | B: Pasr-mRFP (low pH) | KanR | This study |
pSalVac A0_BPpagC-mRFP KanR | Derivate of pSalVac 006 A0_B0 KanR | B: PagC-mRFP (low Mg2+) | KanR | This study |
pFCcGi | Inducible expression of GFP and constitutive expression of mCherry | AmpR | [34] | |
pSalVac ActxB_BDR KanR | Derivate of pSalVac ActxB_B0 KanR, | A: ctxB-hlyAs fusion B: mRFP and GFP expression cassettes (dual reporter, DR) of pFCcGi | KanR | This study |
pCP20 | helper plasmid, CmR bla cat cI857 lPR flp pSC101 oriTS | AmpR, CmR | [35] | |
E. coli | ||||
DH5α | F−, ø80dlacZ M15, (lacZYA-argF)U169 deoR, recA1, endA1, hsdR17(rk−, mk+), phoA, supE44, λ−, thi-1, gyrA96, relA1 | - | Invitrogen | |
CC118 (λpir) | Δ(ara-leu), araD, ΔlacX74, galE, galK, phoA20, thi-1, rpsE, rpoB, argE(Am), recA, λpir phage lysogen | - | [36] | |
S.typhi | ||||
Ty21a | S. Typhi Ty2, galE, rpoS, viaB | - | [37,38] | |
Ty21a ΔtyrS (tyrS CmR)+ | Ty21a derivate, tyrS gene replacement by a (FRT tyrS CmR FRT)+-knock-in-Fragment | CmR | This study | |
Ty21a ΔtyrS | Complemented by one of the BLS-stabilized pSalVac plasmids described above | - | This study | |
Strain name | Host/plasmid combination | |||
BLS-A0_B0 | Ty21a ΔtyrS pSalVac 006 A0_B0 ΔKanR | - | This study | |
BLS-ActxB_B0 | Ty21a ΔtyrS pSalVac ActxB_B0 ΔKanR | A: ctxB-hlyAs fusion | - | This study |
BLS-ActxB_B0 KanR | Ty21a ΔtyrS pSalVac ActxB_B0 KanR ∆FRT | A: ctxB-hlyAs fusion | KanR | This study |
BLS-ActxB_B0 Pwt-TyrS | Ty21a ΔtyrS pSalVac ActxB_B0 Pwt-TyrS | A: ctxB-hlyAs fusion | - | This study |
BLS-A0_BPasr-mRFP | Ty21a ΔtyrS pSalVac A0_BPasr-mRFP ΔKanR | B: Pasr-mRFP (low pH) | - | This study |
BLS-A0_BPpagC-mRFP | Ty21a ΔtyrS pSalVac A0_BPpagC-mRFP ΔKanR | B: PpagC-mRFP (low Mg2+) | - | This study |
BLS-ActxB_BDR | Ty21a ΔtyrS pSalVac ActxB_BDR ΔKanR | A: ctxB-hlyAs fusion | - | This study |
Ty21a-ActxB_B0 KanR | Ty21a pSalVac ActxB_B0 KanR | KanR | This study | |
Ty21a-pMKhly-ctxB | Ty21a pMKhly1-CtxB | KanR | [10] | |
Ty21a-pMKhly | Ty21a pMKhly1 | KanR | [10] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwanowitsch, A.; Diessner, J.; Bergmann, B.; Rudel, T. The JMU-SalVac-System: A Novel, Versatile Approach to Oral Live Vaccine Development. Vaccines 2024, 12, 687. https://doi.org/10.3390/vaccines12060687
Iwanowitsch A, Diessner J, Bergmann B, Rudel T. The JMU-SalVac-System: A Novel, Versatile Approach to Oral Live Vaccine Development. Vaccines. 2024; 12(6):687. https://doi.org/10.3390/vaccines12060687
Chicago/Turabian StyleIwanowitsch, Andreas, Joachim Diessner, Birgit Bergmann, and Thomas Rudel. 2024. "The JMU-SalVac-System: A Novel, Versatile Approach to Oral Live Vaccine Development" Vaccines 12, no. 6: 687. https://doi.org/10.3390/vaccines12060687
APA StyleIwanowitsch, A., Diessner, J., Bergmann, B., & Rudel, T. (2024). The JMU-SalVac-System: A Novel, Versatile Approach to Oral Live Vaccine Development. Vaccines, 12(6), 687. https://doi.org/10.3390/vaccines12060687