Determinants of Systemic SARS-CoV-2-Specific Antibody Responses to Infection and to Vaccination: A Secondary Analysis of Randomised Controlled Trial Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection and Seroconversion Periods
2.3. COVID-19 Vaccinations
2.4. Antibody Measurements
2.5. Definitions of Antibody Concentration Determinants
2.6. Statistical Analyses
3. Results
3.1. Participant Characteristics
3.2. M12 Anti-S1 and Anti-N IgG GMCs by Immune Events
3.3. M12 Anti-S1 and Anti-N IgG GMCs by COVID-19 Vaccinations
3.4. M12 Anti-S1 and Anti-N IgG GMCs by SARS-CoV-2 Infections
3.5. Linear Regression Models of M12 Anti-S1 and Anti-N Concentrations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Munitz, A.; Edry-Botzer, L.; Itan, M.; Tur-Kaspa, R.; Dicker, D.; Marcoviciu, D.; Goren, M.G.; Mor, M.; Lev, S.; Gottesman, T.; et al. Rapid Seroconversion and Persistent Functional IgG Antibodies in Severe COVID-19 Patients Correlates with an IL-12p70 and IL-33 Signature. Sci. Rep. 2021, 11, 3461. [Google Scholar] [CrossRef]
- McAndrews, K.M.; Dowlatshahi, D.P.; Dai, J.; Becker, L.M.; Hensel, J.; Snowden, L.M.; Leveille, J.M.; Brunner, M.R.; Holden, K.W.; Hopkins, N.S.; et al. Heterogeneous Antibodies against SARS-CoV-2 Spike Receptor Binding Domain and Nucleocapsid with Implications for COVID-19 Immunity. JCI Insight 2020, 5, e142386. [Google Scholar] [CrossRef]
- Yang, H.; Rao, Z. Structural Biology of SARS-CoV-2 and Implications for Therapeutic Development. Nat. Rev. Microbiol. 2021, 19, 685–700. [Google Scholar] [CrossRef]
- Seow, J.; Graham, C.; Merrick, B.; Acors, S.; Pickering, S.; Steel, K.J.A.; Hemmings, O.; O’Bryne, A.; Kouphou, N.; Galao, R.P.; et al. Longitudinal Evaluation and Decline of Antibody Responses in SARS-CoV-2 Infection. Nat. Microbiol. 2020, 5, 1598–1607. [Google Scholar] [CrossRef]
- Walsh, E.E.; Frenck, R.W.; Falsey, A.R.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Mulligan, M.J.; Bailey, R.; et al. Safety and Immunogenicity of Two RNA-Based COVID-19 Vaccine Candidates. N. Engl. J. Med. 2020, 383, 2439–2450. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Sadoff, J.; Gray, G.; Vandebosch, A.; Cárdenas, V.; Shukarev, G.; Grinsztejn, B.; Goepfert, P.A.; Truyers, C.; Fennema, H.; Spiessens, B.; et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against COVID-19. N. Engl. J. Med. 2021, 384, 2187–2201. [Google Scholar] [CrossRef]
- Barrett, J.R.; Belij-Rammerstorfer, S.; Dold, C.; Ewer, K.J.; Folegatti, P.M.; Gilbride, C.; Halkerston, R.; Hill, J.; Jenkin, D.; Stockdale, L.; et al. Phase 1/2 Trial of SARS-CoV-2 Vaccine ChAdOx1 nCoV-19 with a Booster Dose Induces Multifunctional Antibody Responses. Nat. Med. 2021, 27, 279–288. [Google Scholar] [CrossRef]
- Sternberg, A.; Naujokat, C. Structural Features of Coronavirus SARS-CoV-2 Spike Protein: Targets for Vaccination. Life Sci. 2020, 257, 118056. [Google Scholar] [CrossRef]
- Solastie, A.; Virta, C.; Haveri, A.; Ekström, N.; Kantele, A.; Miettinen, S.; Lempainen, J.; Jalkanen, P.; Kakkola, L.; Dub, T.; et al. A Highly Sensitive and Specific SARS-CoV-2 Spike- and Nucleoprotein-Based Fluorescent Multiplex Immunoassay (FMIA) to Measure IgG, IgA, and IgM Class Antibodies. Microbiol. Spectr. 2021, 9, e01131-21. [Google Scholar] [CrossRef]
- Kontou, P.I.; Braliou, G.G.; Dimou, N.L.; Nikolopoulos, G.; Bagos, P.G. Antibody Tests in Detecting SARS-CoV-2 Infection: A Meta-Analysis. Diagnostics 2020, 10, 319. [Google Scholar] [CrossRef]
- den Hartog, G.; Schepp, R.M.; Kuijer, M.; GeurtsvanKessel, C.; van Beek, J.; Rots, N.; Koopmans, M.P.G.; van der Klis, F.R.M.; van Binnendijk, R.S. SARS-CoV-2–Specific Antibody Detection for Seroepidemiology: A Multiplex Analysis Approach Accounting for Accurate Seroprevalence. J. Infect. Dis. 2020, 222, 1452–1461. [Google Scholar] [CrossRef]
- van den Hoogen, L.L.; Smits, G.; van Hagen, C.C.E.; Wong, D.; Vos, E.R.A.; van Boven, M.; de Melker, H.E.; van Vliet, J.; Kuijer, M.; Woudstra, L.; et al. Seropositivity to Nucleoprotein to Detect Mild and Asymptomatic SARS-CoV-2 Infections: A Complementary Tool to Detect Breakthrough Infections after COVID-19 Vaccination? Vaccine 2022, 40, 2251–2257. [Google Scholar] [CrossRef]
- Tilocca, B.; Soggiu, A.; Sanguinetti, M.; Musella, V.; Britti, D.; Bonizzi, L.; Urbani, A.; Roncada, P. Comparative Computational Analysis of SARS-CoV-2 Nucleocapsid Protein Epitopes in Taxonomically Related Coronaviruses. Microbes Infect. 2020, 22, 188–194. [Google Scholar] [CrossRef]
- Tan, Y.-J.; Goh, P.-Y.; Fielding, B.C.; Shen, S.; Chou, C.-F.; Fu, J.-L.; Leong, H.N.; Leo, Y.S.; Ooi, E.E.; Ling, A.E.; et al. Profiles of Antibody Responses against Severe Acute Respiratory Syndrome Coronavirus Recombinant Proteins and Their Potential Use as Diagnostic Markers. Clin. Diagn. Lab. Immunol. 2004, 11, 362–371. [Google Scholar] [CrossRef]
- Cervia, C.; Nilsson, J.; Zurbuchen, Y.; Valaperti, A.; Schreiner, J.; Wolfensberger, A.; Raeber, M.E.; Adamo, S.; Weigang, S.; Emmenegger, M.; et al. Systemic and Mucosal Antibody Responses Specific to SARS-CoV-2 during Mild versus Severe COVID-19. J. Allergy Clin. Immunol. 2021, 147, 545–557.e9. [Google Scholar] [CrossRef]
- Lou, B.; Li, T.-D.; Zheng, S.-F.; Su, Y.-Y.; Li, Z.-Y.; Liu, W.; Yu, F.; Ge, S.-X.; Zou, Q.-D.; Yuan, Q.; et al. Serology Characteristics of SARS-CoV-2 Infection since Exposure and Post Symptom Onset. Eur. Respir. J. 2020, 56, 2000763. [Google Scholar] [CrossRef]
- Zervou, F.N.; Louie, P.; Stachel, A.; Zacharioudakis, I.M.; Ortiz-Mendez, Y.; Thomas, K.; Aguero-Rosenfeld, M.E. SARS-CoV-2 Antibodies: IgA Correlates with Severity of Disease in Early COVID-19 Infection. J. Med. Virol. 2021, 93, 5409–5415. [Google Scholar] [CrossRef]
- Wölfel, R.; Corman, V.M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M.A.; Niemeyer, D.; Jones, T.C.; Vollmar, P.; Rothe, C.; et al. Virological Assessment of Hospitalized Patients with COVID-2019. Nature 2020, 581, 465–469. [Google Scholar] [CrossRef]
- WHO Working Group on the Clinical Characterisation and Management of COVID-19 infection. A Minimal Common Outcome Measure Set for COVID-19 Clinical Research. Lancet Infect. Dis. 2020, 20, e192–e197. [Google Scholar] [CrossRef]
- Claus, J.; ten Doesschate, T.; Gumbs, C.; van Werkhoven, C.H.; van der Vaart, T.W.; Janssen, A.B.; Smits, G.; van Binnendijk, R.; van der Klis, F.; van Baarle, D.; et al. BCG Vaccination of Health Care Workers Does Not Reduce SARS-CoV-2 Infections nor Infection Severity or Duration: A Randomized Placebo-Controlled Trial. mBio 2023, 14, e00356-23. [Google Scholar] [CrossRef]
- World Health Organization. First WHO International Standard for Anti-SARS-CoV-2 Immunoglobulin (Human); World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Vos, E.R.A.; van Boven, M.; den Hartog, G.; Backer, J.A.; Klinkenberg, D.; van Hagen, C.C.E.; Boshuizen, H.; van Binnendijk, R.S.; Mollema, L.; van der Klis, F.R.M.; et al. Associations between Measures of Social Distancing and Severe Acute Respiratory Syndrome Coronavirus 2 Seropositivity: A Nationwide Population-Based Study in the Netherlands. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2021, 73, 2318–2321. [Google Scholar] [CrossRef]
- van den Hoogen, L.L.; Verheul, M.K.; Vos, E.R.A.; van Hagen, C.C.E.; van Boven, M.; Wong, D.; Wijmenga-Monsuur, A.J.; Smits, G.; Kuijer, M.; van Rooijen, D.; et al. SARS-CoV-2 Spike S1-Specific IgG Kinetic Profiles Following mRNA or Vector-Based Vaccination in the General Dutch Population Show Distinct Kinetics. Sci. Rep. 2022, 12, 5935. [Google Scholar] [CrossRef]
- Wei, J.; Stoesser, N.; Matthews, P.C.; Ayoubkhani, D.; Studley, R.; Bell, I.; Bell, J.I.; Newton, J.N.; Farrar, J.; Diamond, I.; et al. Antibody Responses to SARS-CoV-2 Vaccines in 45,965 Adults from the General Population of the United Kingdom. Nat. Microbiol. 2021, 6, 1140–1149. [Google Scholar] [CrossRef]
- Eyre, D.W.; Lumley, S.F.; Wei, J.; Cox, S.; James, T.; Justice, A.; Jesuthasan, G.; O’Donnell, D.; Howarth, A.; Hatch, S.B.; et al. Quantitative SARS-CoV-2 Anti-Spike Responses to Pfizer–BioNTech and Oxford–AstraZeneca Vaccines by Previous Infection Status. Clin. Microbiol. Infect. 2021, 27, 1516.e7–1516.e14. [Google Scholar] [CrossRef]
- Pooley, N.; Abdool Karim, S.S.; Combadière, B.; Ooi, E.E.; Harris, R.C.; El Guerche Seblain, C.; Kisomi, M.; Shaikh, N. Durability of Vaccine-Induced and Natural Immunity against COVID-19: A Narrative Review. Infect. Dis. Ther. 2023, 12, 367–387. [Google Scholar] [CrossRef]
- Hall, V.; Foulkes, S.; Insalata, F.; Kirwan, P.; Saei, A.; Atti, A.; Wellington, E.; Khawam, J.; Munro, K.; Cole, M.; et al. Protection against SARS-CoV-2 after COVID-19 Vaccination and Previous Infection. N. Engl. J. Med. 2022, 386, 1207–1220. [Google Scholar] [CrossRef]
- Bobrovitz, N.; Ware, H.; Ma, X.; Li, Z.; Hosseini, R.; Cao, C.; Selemon, A.; Whelan, M.; Premji, Z.; Issa, H.; et al. Protective Effectiveness of Previous SARS-CoV-2 Infection and Hybrid Immunity against the Omicron Variant and Severe Disease: A Systematic Review and Meta-Regression. Lancet Infect. Dis. 2023, 23, 556–567. [Google Scholar] [CrossRef]
- Legros, V.; Denolly, S.; Vogrig, M.; Boson, B.; Siret, E.; Rigaill, J.; Pillet, S.; Grattard, F.; Gonzalo, S.; Verhoeven, P.; et al. A Longitudinal Study of SARS-CoV-2-Infected Patients Reveals a High Correlation between Neutralizing Antibodies and COVID-19 Severity. Cell. Mol. Immunol. 2021, 18, 318–327. [Google Scholar] [CrossRef]
- Shrotri, M.; Navaratnam, A.M.D.; Nguyen, V.; Byrne, T.; Geismar, C.; Fragaszy, E.; Beale, S.; Fong, W.L.E.; Patel, P.; Kovar, J.; et al. Spike-Antibody Waning after Second Dose of BNT162b2 or ChAdOx1. Lancet 2021, 398, 385–387. [Google Scholar] [CrossRef]
- Koekenbier, E.L.; Fohse, K.; van de Maat, J.S.; Oosterheert, J.J.; van Nieuwkoop, C.; Hoogerwerf, J.J.; Grobusch, M.P.; van den Bosch, M.A.A.J.; van de Wijgert, J.H.H.; Netea, M.G.; et al. Bacillus Calmette-Guérin Vaccine for Prevention of COVID-19 and Other Respiratory Tract Infections in Older Adults with Comorbidities: A Randomized Controlled Trial. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2023, 29, 781–788. [Google Scholar] [CrossRef]
- Moorlag, S.J.C.F.M.; Taks, E.; Ten Doesschate, T.; van der Vaart, T.W.; Janssen, A.B.; Müller, L.; Ostermann, P.; Dijkstra, H.; Lemmers, H.; Simonetti, E.; et al. Efficacy of BCG Vaccination against Respiratory Tract Infections in Older Adults during the Coronavirus Disease 2019 Pandemic. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2022, 75, e938–e946. [Google Scholar] [CrossRef]
- Patil, H.P.; Rane, P.S.; Shrivastava, S.; Palkar, S.; Lalwani, S.; Mishra, A.C.; Arankalle, V.A. Antibody (IgA, IgG, and IgG Subtype) Responses to SARS-CoV-2 in Severe and Nonsevere COVID-19 Patients. Viral Immunol. 2021, 34, 201–209. [Google Scholar] [CrossRef]
- To, K.K.-W.; Tsang, O.T.-Y.; Leung, W.-S.; Tam, A.R.; Wu, T.-C.; Lung, D.C.; Yip, C.C.-Y.; Cai, J.-P.; Chan, J.M.-C.; Chik, T.S.-H.; et al. Temporal Profiles of Viral Load in Posterior Oropharyngeal Saliva Samples and Serum Antibody Responses during Infection by SARS-CoV-2: An Observational Cohort Study. Lancet Infect. Dis. 2020, 20, 565–574. [Google Scholar] [CrossRef]
- Takita, M.; Yoshida, T.; Tsuchida, T.; Nakagama, Y.; Kido, Y.; Suzuki, S.; Imamura, M.; Kawahata, K.; Shimizu, G.; Yoshida, H.; et al. Low SARS-CoV-2 Antibody Titers May Be Associated with Poor Clinical Outcomes for Patients with Severe COVID-19. Sci. Rep. 2022, 12, 9147. [Google Scholar] [CrossRef]
- García-Abellán, J.; Padilla, S.; Fernández-González, M.; García, J.A.; Agulló, V.; Andreo, M.; Ruiz, S.; Galiana, A.; Gutiérrez, F.; Masiá, M. Antibody Response to SARS-CoV-2 Is Associated with Long-Term Clinical Outcome in Patients with COVID-19: A Longitudinal Study. J. Clin. Immunol. 2021, 41, 1490–1501. [Google Scholar] [CrossRef]
- Cervia, C.; Zurbuchen, Y.; Taeschler, P.; Ballouz, T.; Menges, D.; Hasler, S.; Adamo, S.; Raeber, M.E.; Bächli, E.; Rudiger, A.; et al. Immunoglobulin Signature Predicts Risk of Post-Acute COVID-19 Syndrome. Nat. Commun. 2022, 13, 446. [Google Scholar] [CrossRef]
- Augustin, M.; Schommers, P.; Stecher, M.; Dewald, F.; Gieselmann, L.; Gruell, H.; Horn, C.; Vanshylla, K.; Cristanziano, V.D.; Osebold, L.; et al. Post-COVID Syndrome in Non-Hospitalised Patients with COVID-19: A Longitudinal Prospective Cohort Study. Lancet Reg. Health Eur. 2021, 6, 100122. [Google Scholar] [CrossRef]
- Joung, S.; Weber, B.; Wu, M.; Liu, Y.; Tang, A.B.; Driver, M.; Sternbach, S.; Wynter, T.; Hoang, A.; Barajas, D.; et al. Serological Response to Vaccination in Post-Acute Sequelae of COVID. BMC Infect. Dis. 2023, 23, 97. [Google Scholar] [CrossRef]
- Zhao, J.; Yuan, Q.; Wang, H.; Liu, W.; Liao, X.; Su, Y.; Wang, X.; Yuan, J.; Li, T.; Li, J.; et al. Antibody Responses to SARS-CoV-2 in Patients with Novel Coronavirus Disease 2019. Clin. Infect. Dis. 2020, 71, 2027–2034. [Google Scholar] [CrossRef]
- Long, Q.-X.; Liu, B.-Z.; Deng, H.-J.; Wu, G.-C.; Deng, K.; Chen, Y.-K.; Liao, P.; Qiu, J.-F.; Lin, Y.; Cai, X.-F.; et al. Antibody Responses to SARS-CoV-2 in Patients with COVID-19. Nat. Med. 2020, 26, 845–848. [Google Scholar] [CrossRef]
- Soriano, J.B.; Murthy, S.; Marshall, J.C.; Relan, P.; Diaz, J.V.; WHO Clinical Case Definition Working Group on Post-COVID-19 Condition. A Clinical Case Definition of Post-COVID-19 Condition by a Delphi Consensus. Lancet Infect. Dis. 2022, 22, e102–e107. [Google Scholar] [CrossRef]
- Úri, K.; Fagyas, M.; Kertész, A.; Borbély, A.; Jenei, C.; Bene, O.; Csanádi, Z.; Paulus, W.J.; Édes, I.; Papp, Z.; et al. Circulating ACE2 Activity Correlates with Cardiovascular Disease Development. J. Renin-Angiotensin-Aldosterone Syst. JRAAS 2016, 17, 1470320316668435. [Google Scholar] [CrossRef]
- Li, X.C.; Zhang, J.; Zhuo, J.L. The Vasoprotective Axes of the Renin-Angiotensin System: Physiological Relevance and Therapeutic Implications in Cardiovascular, Hypertensive and Kidney Diseases. Pharmacol. Res. 2017, 125, 21–38. [Google Scholar] [CrossRef]
Baseline Characteristics Cells contain n (% of N) unless stated otherwise | Total-analysis population | Randomised population | ||||
Placebo N = 480 | BCG N = 490 | p 1,2 | Overall N = 970 | Overall N = 1511 | p 1,3 | |
Age in years, mean (SD) | 43.0 (12.6) | 42.0 (12.6) | 0.208 | 42.5 (12.6) | 42.0 (12.7) | 0.366 |
Female | 355 (74.0) | 369 (72.3) | 0.683 | 724 (74.7) | 1122 (74.3) | 0.868 |
Smoking status | 0.143 | 0.258 | ||||
Current | 31 (6.5) | 34 (6.9) | 65 (6.7) | 123 (8.1) | ||
Former | 136 (28.3) | 166 (33.9) | 302 (31.1) | 436 (28.9) | ||
Never | 313 (65.2) | 290 (59.2) | 603 (62.2) | 952 (63.0) | ||
Work-related exposure 4 | 0.936 | 0.492 | ||||
Low | 72 (15.0) | 76 (15.5) | 148 (15.3) | 213 (14.1) | ||
Medium | 121 (25.2) | 119 (24.3) | 240 (24.7) | 356 (23.6) | ||
High | 287 (59.8) | 295 (60.2) | 582 (60.0) | 942 (62.3) | ||
History of BCG vaccination | 83 (17.3) | 91 (18.6) | 0.663 | 174 (17.9) | 256 (16.9) | 0.559 |
Past TB test results 5 | 0.135 | 0.491 | ||||
Tested negative | 320 (66.7) | 320 (66.7) | 640 (66.0) | 1016 (67.2) | ||
Tested positive | 49 (10.2) | 45 (9.2) | 94 (9.7) | 136 (9.0) | ||
Never tested | 109 (22.7) | 115 (23.5) | 224 (23.1) | 347 (23.0) | ||
Unknown | 2 (0.4) | 10 (2.0) | 12 (1.2) | 12 (0.8) | ||
Respiratory infection in winter 2019–2020 | 0.310 | 0.748 | ||||
No | 349 (72.7) | 364 (74.3) | 713 (73.5) | 1090 (72.1) | ||
Yes, with fever | 35 (7.3) | 44 (9.0) | 79 (8.1) | 127 (8.4) | ||
Yes, without fever | 96 (20.0) | 82 (16.7) | 178 (18.3) | 294 (19.5) | ||
Influenza vaccination in winter 2020–2021 6 | 0.239 | <0.001 | ||||
Yes | 273 (56.9) | 255 (52.0) | 528 (54.4) | 697 (46.1) | ||
No | 142 (29.6) | 169 (34.5) | 311 (32.1) | 428 (28.3) | ||
Missing | 65 (13.5) | 66 (13.5) | 131 (13.5) | 386 (25.5) | ||
Influenza vaccination prior to follow-up | 278 (57.9) | 282 (57.6) | 0.960 | 560 (57.7) | 872 (57.7) | 1.000 |
Any other vaccination in past year 7 | 51 (10.6) | 54 (11.0) | 0.924 | 105 (10.8) | 162 (10.7) | 0.988 |
Current use of anti-hypertensive medication | 33 (6.9) | 28 (5.7) | 0.540 | 61 (6.3) | 99 (6.6) | 0.860 |
History of cardiovascular disease | 14 (2.9) | 9 (1.8) | 0.371 | 23 (2.4) | 34 (2.3) | 0.953 |
Current use of anti-diabetic medication | 2 (0.4) | 3 (0.6) | 1.000 | 5 (0.5) | 9 (0.6) | 1.000 |
History of asthma | 35 (7.3) | 34 (6.9) | 0.929 | 69 (7.1) | 101 (6.7) | 0.740 |
History of hay fever | 130 (27.1) | 158 (32.2) | 0.091 | 288 (29.7) | 441 (29.2) | 0.823 |
History of other pulmonary disease | 12 (2.5) | 11 (2.2) | 0.960 | 23 (2.4) | 32 (2.1) | 0.781 |
Any lung disease (previous three combined) | 154 (32.1) | 175 (35.7) | 0.260 | 329 (33.9) | 497 (32.9) | 0.628 |
Immune Events Cells contain n (% of N) unless stated otherwise | Total-analysis population | Randomised population | ||||
Placebo N = 480 | BCG N = 490 | p 1,2 | Overall N = 970 | Overall N = 1511 | p 1,3 | |
Number of immune events 8 | 0.323 | <0.001 | ||||
0 | 218 (45.4) | 235 (48.0) | 453 (46.7) | 679 (46.0) | ||
1 | 93 (19.4) | 94 (19.2) | 187 (19.3) | 487 (33.0) | ||
2 | 127 (26.5) | 133 (27.1) | 260 (26.8) | 216 (14.6) | ||
3 | 42 (8.8) | 28 (5.7) | 70 (7.2) | 94 (6.4) | ||
Immune event type | 0.614 | <0.001 | ||||
None | 218 (45.4) | 235 (48.0) | 453 (46.7) | 680 (45.0) | ||
Infection 9 | 62 (12.9) | 61 (12.4) | 123 (12.7) | 158 (10.5) | ||
Vaccine 1 dose | 31 (6.5) | 33 (6.7) | 64 (6.6) | 177 (11.7) | ||
Vaccine 2 doses | 112 (23.3) | 118 (24.1) | 230 (23.7) | 320 (21.2) | ||
Infection + 1 dose | 15 (3.1) | 15 (3.1) | 30 (3.1) | 54 (3.6) | ||
Infection + 2 doses | 42 (8.8) | 28 (5.7) | 70 (7.2) | 86 (5.7) | ||
COVID-19 vaccine product and dose 10 | 0.148 | 0.002 | ||||
None | 280 (58.3) | 296 (60.4) | 576 (59.4) | 868 (57.4) | ||
mRNA 1 dose | 30 (6.2) | 25 (5.1) | 55 (5.7) | 125 (8.3) | ||
mRNA 2 doses | 154 (32.1) | 146 (29.8) | 300 (30.9) | 416 (27.5) | ||
Vector 1 dose | 13 (2.7) | 23 (4.7) | 36 (3.7) | 86 (5.7) | ||
Vector 2 doses | 0 (0.0) | (0.0) | (0.0) | 7 (0.5) | ||
Unknown 1 dose | 3 (0.6) | 0 (0.0) | 3 (0.3) | 9 (0.6) | ||
Had SARS-CoV-2 infection during follow-up 11 | 119 (24.8) | 104 (21.2) | 0.214 | 223 (21.2) | 298 (19.7) | 0.109 |
Infection severity 12 | 0.727 | 0.541 | ||||
No infection | 361 (75.2) | 386 (78.8) | 747 (77.0) | 1213 (77.9) | ||
Asymptomatic | 15 (3.1) | 18 (3.7) | 33 (3.4) | 42 (2.8) | ||
Very Mild | 65 (13.5) | 55 (11.2) | 120 (12.4) | 163 (10.8) | ||
Mild | 25 (5.2) | 19 (3.9) | 44 (4.5) | 61 (4.0) | ||
Moderate | 1 (0.2) | 1 (0.2) | 2 (0.2) | 3 (0.2) | ||
Unknown | 13 (2.7) | 11 (2.2) | 24 (2.5) | 29 (1.9) | ||
Acute duration of infection 13 | 0.401 | 0.908 | ||||
0 days/no infection | 377 (78.5) | 405 (82.7) | 782 (80.6) | 1251 (82.8) | ||
0–1 weeks | 20 (4.2) | 9 (1.8) | 29 (3.0) | 44 (2.9) | ||
1–2 weeks | 22 (4.6) | 23 (4.7) | 45 (4.6) | 61 (4.0) | ||
2–3 weeks | 17 (3.5) | 15 (3.1) | 32 (3.3) | 42 (2.8) | ||
3–4 weeks | 9 (1.9) | 8 (1.6) | 17 (1.8) | 20 (1.3) | ||
4+ weeks | 10 (2.1) | 5 (1.0) | 15 (1.5) | 18 (1.2) | ||
Lingering | 10 (2.1) | 12 (2.4) | 22 (2.3) | 34 (2.3) | ||
Ongoing/UNK | 15 (3.1) | 13 (2.7) | 28 (2.9) | 41 (2.7) | ||
Long COVID | 0.489 | 0.975 | ||||
No | 106 (89.1) | 87 (83.7) | 193 (86.5) | 256 (85.9) | ||
Yes | 8 (6.7) | 11 (10.6) | 19 (8.5) | 27 (5.0) | ||
Unknown | 5 (4.2) | 6 (5.8) | 11 (4.9) | 15 (9.1) | ||
Long-term loss of smell/taste | 0.208 | 0.711 | ||||
No | 112 (94.1) | 99 (95.2) | 211 (94.6) | 278 (93.3) | ||
Yes | 5 (4.2) | 1 (1.0) | 6 (2.7) | 12 (4.0) | ||
Unknown | 2 (1.7) | 4 (3.8) | 6 (2.7) | 8 (2.7) |
Determinants Cells contain mean (SD) | M12 Anti-S1 | M12 Anti-N | ||||
---|---|---|---|---|---|---|
Log10 Conc (IU/mL) | GMC 1 (IU/mL) | p 2 | Log10 Conc (IU/mL) | GMC 1 (IU/mL) | p 2 | |
Overall mean | 1.55 (1.39) | 35.48 (24.55) | 0.73 (0.52) | 5.37 (3.31) | ||
Intervention | 0.431 | 0.096 | ||||
BCG | 1.51 (1.36) | 32.36 (22.91) | 0.71 (0.53) | 5.13 (3.38) | ||
Placebo | 1.59 (1.41) | 38.90 (25.70) | 0.75 (0.52) | 5.62 (3.31) | ||
Number of immune events 3 | <0.001 | <0.001 | ||||
0 | 0.25 (0.32) | 1.78 (2.09) | 0.54 (0.28) | 3.47 (1.91) | ||
1 | 2.02 (0.86) | 104.71 (7.24) | 1.12 (0.70) | 13.18 (5.01) | ||
2 | 2.98 (0.61) | 954.99 (4.07) | 0.65 (0.47) | 4.47 (2.95) | ||
3 | 3.36 (0.42) | 2290.87 (2.63) | 1.28 (0.51) | 19.05 (3.23) | ||
Immunity type | <0.001 | <0.001 | ||||
None | 0.25 (0.32) | 1.78 (2.09) | 0.54 (0.28) | 3.47 (1.91) | ||
Infection only 4 | 1.90 (0.82) | 79.43 (6.61) | 1.42 (0.65) | 26.30 (4.47) | ||
Vaccine 1 dose | 2.25 (0.88) | 177.83 (7.59) | 0.53 (0.26) | 3.39 (1.82) | ||
Vaccine 2 doses | 2.90 (0.54) | 794.33 (3.47) | 0.54 (0.26) | 3.47 (1.82) | ||
Infection + 1 dose | 3.60 (0.73) | 3981.07 (5.37) | 1.50 (0.75) | 31.62 (5.62) | ||
Infection + 2 doses | 3.36 (0.42) | 2290.87 (2.63) | 1.28 (0.51) | 19.05 (3.24) | ||
COVID-19 vaccine product and dose 5 | <0.001 | 0.956 | ||||
None | 0.25 (0.32) | 1.78 (2.09) | 0.54 (0.28) | 3.47 (1.91) | ||
mRNA 1 dose | 2.67 (0.76) | 467.73 (5.75) | 0.56 (0.28) | 3.36 (1.91) | ||
mRNA 2 doses | 2.90 (0.54) | 794.33 (3.47) | 0.54 (0.26) | 3.47 (1.82) | ||
Vector 1 dose | 1.80 (0.70) | 63.10 (5.01) | 0.51 (0.23) | 3.24 (1.70) | ||
Infection severity 6 | 0.566 | 0.002 | ||||
Asymptomatic | 2.54 (0.90) | 346.74 (7.94) | 1.14 (0.49) | 13.80 (3.09) | ||
Very mild | 2.52 (1.03) | 331.13 (10.72) | 1.36 (0.66) | 22.91 (4.57) | ||
Mild | 2.67 (1.13) | 467.73 (13.49) | 1.65 (0.52) | 44.67 (3.31) | ||
Moderate | 3.36 (0.56) | 2290.87 (3.63) | 1.66 (1.41) | 45.71 (25.70) | ||
Acute-episode duration 7 | 0.755 | 0.128 | ||||
0 days/no infection | 2.53 (0.92) | 33.84 (8.32) | 1.13 (0.48) | 13.49 (3.02) | ||
0–1 weeks | 2.45 (1.11) | 281.84 (12.88) | 1.37 (0.65) | 23.44 (4.47) | ||
1–2 weeks | 2.49 (1.04) | 309.03 (10.96) | 1.32 (0.64) | 20.89 (4.37) | ||
2–3 weeks | 2.80 (0.91) | 630.96 (8.13) | 1.56 (0.69) | 36.31 (4.90) | ||
3–4 weeks | 2.38 (0.97) | 239.88 (9.33) | 1.37 (0.67) | 23.44 (4.68) | ||
4+ weeks | 2.61 (1.28) | 407.38 (19.05) | 1.57 (0.53) | 37.15 (3.39) | ||
Lingering | 2.80 (1.07) | 630.96 (11.75) | 1.49 (0.62) | 30.90 (4.17) | ||
Ongoing/UNK | 2.63 (1.22) | 426.58 (16.60) | 1.46 (0.66) | 28.84 (4.57) | ||
Long COVID 7,8 | 0.973 | 0.194 | ||||
No | 2.59 (1.03) | 389.05 (10.72) | 1.36 (0.63) | 22.91 (4.27) | ||
Yes | 2.57 (1.25) | 371.54 (17.78) | 1.53 (0.66) | 33.88 (4.57) | ||
Unknown | 2.55 (1.07) | 354.81 (11.75) | 1.63 (0.54) | 42.66 (3.47) | ||
Long-term loss taste/smell 7,9 | 0.572 | 0.541 | ||||
No | 2.57 (1.04) | 371.54 (10.96) | 1.38 (0.63) | 23.99 (4.27) | ||
Yes | 3.06 (1.11) | 1148.15 (12.88) | 1.30 (0.49) | 19.95 (3.09) | ||
Unknown | 2.56 (1.25) | 363.08 (17.78) | 1.62 (0.74) | 41.69 (5.50) | ||
Dyspnoea severity 10,11 | 0.938 | 0.239 | ||||
0 | 2.57 (1.07) | 371.54 (11.75) | 1.35 (0.61) | 22.39 (4.07) | ||
1–3 | 2.63 (0.99) | 426.58 (9.77) | 1.42 (0.68) | 26.30 (4.79) | ||
4–5 | 2.55 (0.99) | 354.81 (9.77) | 1.54 (0.60) | 34.67 (3.98) | ||
Dyspnoea duration (days) 11 | 0.373 | 0.280 | ||||
0 | 2.59 (1.08) | 389.05 (12.02) | 1.36 (0.62) | 22.91 (4.17) | ||
1–3 | 2.72 (0.94) | 524.81 (8.71) | 1.28 (0.58) | 19.05 (3.80) | ||
4–7 | 2.32 (0.96) | 208.93 (9.12) | 1.38 (0.73) | 23.99 (5.37) | ||
Week+ | 2.84 (0.94) | 691.83 (8.71) | 1.62 (0.54) | 41.69 (3.47) | ||
Resp. symptoms severity 10,12,13 | 0.240 | 0.003 | ||||
0 | 2.48 (0.97) | 302.00 (9.33) | 1.12 (0.55) | 13.18 (3.55) | ||
1–3 | 2.42 (1.11) | 263.03 (12.88) | 1.38 (0.65) | 23.99 (4.47) | ||
4–5 | 2.73 (0.97) | 537.03 (9.33) | 1.54 (0.61) | 34.67 (4.07) | ||
Resp. symptoms duration (days) 12,14 | 0.641 | 0.006 | ||||
0 | 2.46 (0.96) | 288.40 (9.12) | 1.12 (0.55) | 13.18 (3.55) | ||
1–3 | 2.56 (1.13) | 363.08 (13.49) | 1.42 (0.62) | 26.30 (4.17) | ||
4–7 | 2.37 (1.15) | 234.42 (14.13) | 1.29 (0.68) | 19.50 (4.79) | ||
Week+ | 2.65 (1.02) | 446.68 (10.47) | 1.52 (0.62) | 33.11 (4.17) | ||
Fever 10,15 | 0.845 | 0.029 | ||||
No | 2.57 (1.06) | 371.54 (11.48) | 1.31 (0.61) | 20.42 (4.07) | ||
Yes | 2.60 (1.01) | 398.11 (10.23) | 1.50 (0.63) | 31.62 (4.27) | ||
Fever duration (days) 10,15 | 0.781 | 0.024 | ||||
0 | 2.57 (1.06) | 371.54 (11.48) | 1.31 (0.61) | 20.42 (4.07) | ||
1–3 | 2.63 (1.09) | 426.58 (12.03) | 1.29 (0.53) | 19.50 (3.39) | ||
4–7 | 2.48 (0.93) | 302.00 (8.51) | 1.51 (0.68) | 32.36 (4.79) | ||
Week+ | 2.74 (1.07) | 549.54 (11.75) | 1.69 (0.60) | 48.98 (3.98) | ||
Non-resp. symptoms severity 10,16,17 | 0.225 | 0.002 | ||||
0 | 2.35 (1.07) | 223.87 (11.75) | 1.13 (0.54) | 13.48 (3.47) | ||
1–3 | 2.73 (0.95) | 537.03 (8.91) | 1.38 (0.59) | 23.99 (3.89) | ||
4–5 | 2.55 (1.05) | 354.81 (11.22) | 1.50 (0.65) | 31.62 (4.47) |
Model: M12 Anti-S1 6,7 | Covariate | Estimate (95% CI) | Exp 4 (Estimate) (95% CI) | p | VIF 5 | |
Model intercept 1 | 0.50; (0.36, 0.64) | 3.02; (2.19, 4.17) | <0.001 | |||
BCG vs. placebo 2 | 0.02; (−0.05, 0.09) | 1.05; (0.89, 1.23) | 0.585 | 1.01 | ||
Age (per year) | −0.004; (−0.01, −0.007) | 0.99; (0.98, 0.99) | 0.008 | 1.04 | ||
Male sex | −0.04; (−0.12, 0.04) | 0.91; (0.76, 1.10) | 0.311 | 1.01 | ||
All the below compared to participants who never had an infection or vaccination during follow-up: | ||||||
Asymptomatic | 1.14; (0.95, 1.34) | 14.13; (8.91, 21.88) | <0.001 | 1.01 | ||
Very mild | 1.19; (1.08, 1.30) | 16.22; (12.59, 20.42) | <0.001 | 1.02 | ||
Mild | 1.39; (1.22, 1.56) | 25.12; (16.98, 38.02) | <0.001 | 1.02 | ||
Moderate | 1.89 (1.12, 2.66) | 74.13; (12.30, 446.68) | <0.001 | 1.01 | ||
Unknown severity | 1.01; (0.78, 1.24) | 10.96; (6.46, 18.62) | <0.001 | 1.02 | ||
mRNA 1 dose | 2.31; (2.15, 2.46) | 112.20; (47.86, 263.03) | <0.001 | 1.06 | ||
mRNA 2 doses | 2.40; (2.32, 2.47) | 245.47; (204.17, 295.12) | <0.001 | 1.06 | ||
Vector 1 dose | 1.49; (1.31, 1.68) | 223.87; (151.36, 331.13) | <0.001 | 1.06 | ||
Model: M12 Anti-N 8,9 | Covariate | Estimate (95% CI) | Exp 4 (estimate) | p | VIF 5 | |
Model intercept 3 | 0.48; (0.39, 0.57) | 2.95; (2.40, 3.63) | <0.001 | |||
BCG vs. placebo 2 | −0.003; (−0.05, 0.04) | 0.99; (0.89, 1.10) | 0.901 | 1.01 | ||
Age (per year) | 0.001; (−0.007, 0.003) | 1.00; (0.98, 1.01) | 0.312 | 1.06 | ||
Male sex | 0.06; (0.005, 0.11) | 1.15; (1.01, 1.29) | 0.040 | 1.01 | ||
Hypertension med | 0.06; (−0.04, 0.16) | 1.15; (0.91, 1.44) | 0.222 | 1.07 | ||
All the below compared to participants who never had an infection or vaccination during follow-up: | ||||||
Asymptomatic | 0.60; (0.47, 0.74) | 4.07; (2.95, 5.50) | <0.001 | 1.01 | ||
Very mild | 0.82; (0.74, 0.89) | 6.61; (5.62, 7.94) | <0.001 | 1.04 | ||
Mild | 1.11; (1.00, 1.23) | 13.18; (10.0, 16.98) | <0.001 | 1.01 | ||
Moderate | 1.11; (0.58, 1.63) | 13.48; (4.07, 45.71) | <0.001 | 1.01 | ||
Unknown severity | 0.86; (0.71, 1.02) | 7.24; (5.13, 10.23) | <0.001 | 1.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Claus, J.; ten Doesschate, T.; Taks, E.; Debisarun, P.A.; Smits, G.; van Binnendijk, R.; van der Klis, F.; Verhagen, L.M.; de Jonge, M.I.; Bonten, M.J.M.; et al. Determinants of Systemic SARS-CoV-2-Specific Antibody Responses to Infection and to Vaccination: A Secondary Analysis of Randomised Controlled Trial Data. Vaccines 2024, 12, 691. https://doi.org/10.3390/vaccines12060691
Claus J, ten Doesschate T, Taks E, Debisarun PA, Smits G, van Binnendijk R, van der Klis F, Verhagen LM, de Jonge MI, Bonten MJM, et al. Determinants of Systemic SARS-CoV-2-Specific Antibody Responses to Infection and to Vaccination: A Secondary Analysis of Randomised Controlled Trial Data. Vaccines. 2024; 12(6):691. https://doi.org/10.3390/vaccines12060691
Chicago/Turabian StyleClaus, Juana, Thijs ten Doesschate, Esther Taks, Priya A. Debisarun, Gaby Smits, Rob van Binnendijk, Fiona van der Klis, Lilly M. Verhagen, Marien I. de Jonge, Marc J. M. Bonten, and et al. 2024. "Determinants of Systemic SARS-CoV-2-Specific Antibody Responses to Infection and to Vaccination: A Secondary Analysis of Randomised Controlled Trial Data" Vaccines 12, no. 6: 691. https://doi.org/10.3390/vaccines12060691
APA StyleClaus, J., ten Doesschate, T., Taks, E., Debisarun, P. A., Smits, G., van Binnendijk, R., van der Klis, F., Verhagen, L. M., de Jonge, M. I., Bonten, M. J. M., Netea, M. G., & van de Wijgert, J. H. H. M. (2024). Determinants of Systemic SARS-CoV-2-Specific Antibody Responses to Infection and to Vaccination: A Secondary Analysis of Randomised Controlled Trial Data. Vaccines, 12(6), 691. https://doi.org/10.3390/vaccines12060691