Breakthrough Measles among Vaccinated Adults Born during the Post-Soviet Transition Period in Mongolia
Abstract
:1. Background
2. Methods
2.1. Study Design and Ethical Clearance
2.2. Case Definition and Sample Selection
2.3. Laboratory Testing
2.4. Case Classification and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Minta, A.; Ferrari, M.; Antoni, S.; Portnoy, A.; Sbarra, A.; Lambert, B.; Hatcher, C.; Hsu, C.; Ho, L.; Steulet, C.; et al. Progress toward Measles Elimination—Worldwide, 2000–2022. MMWR Morb. Mortal. Wkly. Rep. 2023, 98, 1262–1268. [Google Scholar] [CrossRef]
- Rentsen, T.; Enkhtuya, B.; Nymadawa, P.; Kobune, F.; Suzuki, K.; Yoshida, H.; Hachiya, M. Measles outbreak after a post-honeymoon period in Mongolia, 2001. Jpn J. Infect. Dis. 2007, 60, 198–199. [Google Scholar] [CrossRef]
- World Health Organization Regional Office for the Western Pacific. Meeting Report. In Proceedings of the Third Annual Meeting of the Regional Verification Commission for Measles Elimination in the Western Pacific; Seoul, Republic of Korea, 18–21 March 2014, World Health Organization: Manila, Philippines, 2016. [Google Scholar]
- Hagan, J.; Takashima, Y.; Sarankhuu, A.; Dashpagma, O.; Jantsansengee, B.; Pastore, R.; Nyamaa, G.; Yadamsuren, B.; Mulders, M.; Wannemuehler, K.; et al. Goodson Risk Factors for Measles Virus Infection Among Adults During a Large Outbreak in Postelimination Era in Mongolia, 2015. J. Infect. Dis. 2017, 216, 1187–1195. [Google Scholar] [CrossRef]
- World Health Organization Regional Office for the Western Pacific. Meeting Report. In Proceedings of the Fifth Annual Meeting of the Regional Verification Commission for Measles Elimination in the Western Pacific; Sydney, NWS, Australia, 20–23 September 2016, World Health Organization: Manila, Philippines, 2016. [Google Scholar]
- Cherry, J.; Zahn, M. Clinical Characteristics of Measles in Previously Vaccinated and Unvaccinated Patients in California. Clin. Infect. Dis. 2018, 67, 1315–1319. [Google Scholar] [CrossRef] [PubMed]
- López-Perea, N.; Fernández-García, A.; Echevarría, J.; de Ory, F.; Pérez-Olmeda, M.; Masa-Calles, J. Measles in Vaccinated People: Epidemiology and Challenges in Surveillance and Diagnosis in the Post-Elimination Phase. Spain, 2014–2020. Viruses 2021, 13, 1982. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, S.; Gori, M.; Fappani, C.; Ciceri, G.; Canuti, M.; Colzani, D.; Dura, M.; Terraneo, M.; Lamberti, A.; Baggieri, M.; et al. Characterization of Vaccine Breakthrough Cases during Measles Outbreaks in Milan and Surrounding Areas, Italy, 2017–2021. Viruses 2022, 14, 1068. [Google Scholar] [CrossRef]
- Wiedermann, U.; Garner-Spitzer, E.; Wagner, A. Primary vaccine failure to routine vaccines: Why and what to do? Hum. Vaccines Immunother. 2016, 12, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Javelle, E.; Colson, P.; Parola, P.; Raoult, D. Measles, the need for a paradigm shift. Eur. J. Epidemiol. 2019, 34, 897–915. [Google Scholar] [CrossRef]
- Sniadack, D.H.; Crowcroft, N.S.; Durrheim, D.N.; Rota, P.A. Roadmap to elimination standard measles and rubella surveillance. Wkly. Epidemiol. Rec. 2017, 9, 97–105. [Google Scholar]
- Pannuti, C.S.; Morello, R.; Moraes, J.; Curti, S.; Afonso, A.; Camargo, M.; Souza, V. Identification of primary and secondary measles vaccine failures by measurement of immunoglobulin G avidity in measles cases during the 1997 São Paulo epidemic. Clin. Diagn. Lab. Immunol. 2004, 11, 119–122. [Google Scholar] [CrossRef]
- Mercader, S.; Garcia, P.; Bellini, W. Measles virus IgG avidity assay for use in classification of measles vaccine failure in measles elimination settings. Clin. Vaccine Immunol. 2012, 19, 1810–1817. [Google Scholar] [CrossRef] [PubMed]
- Sowers, S.; Rota, J.; Hickman, C.; Mercader, S.; Redd, S.; McNall, R.; Williams, N.; McGrew, M.; Walls, M.; Rota, P.; et al. High Concentrations of Measles Neutralizing Antibodies and High-Avidity Measles IgG Accurately Identify Measles Reinfection Cases. Clin. Vaccine Immunol. 2016, 23, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Hummel, K.; Erdman, D.; Heath, J.; Bellini, W. Baculovirus expression of the nucleoprotein gene of measles virus and utility of the recombinant protein in diagnostic enzyme immunoassays. J. Clin. Microbiol. 1992, 30, 2874–2880. [Google Scholar] [CrossRef] [PubMed]
- Cohen, B.J.; Audet, S.; Andrews, N.; Beeler, J. Plaque reduction neutralization test for measles antibodies: Description of a standardised laboratory method for use in immunogenicity studies of aerosol vaccination. Vaccine 2007, 26, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Orenstein, W. Epidemiologic methods in immunization programs. Epidemiol. Rev. 1996, 18, 99–117. [Google Scholar] [CrossRef] [PubMed]
- Sundell, N.; Dotevall, L.; Sansone, M.; Andersson, M.; Lindh, M.; Wahlberg, T.; Tyrberg, T.; Westin, J.; Liljeqvist, J.; Bergström, T.; et al. Measles outbreak in Gothenburg urban area, Sweden, 2017 to 2018: Low viral load in breakthrough infections. Eurosurveillance 2019, 24, 1900114. [Google Scholar] [CrossRef] [PubMed]
- Gibney, K.; Attwood, L.; Nicholson, S.; Tran, T.; Druce, J.; Healy, J.; Strachan, J.; Franklin, L.; Hall, R.; Cross, G. Emergence of Attenuated Measles Illness Among IgG-positive/IgM-negative Measles Cases: Victoria, Australia, 2008–2017. Clin. Infect. Dis. 2020, 70, 1060–1067. [Google Scholar] [CrossRef] [PubMed]
- Venkat, H.; Briggs, G.; Brady, S.; Komatsu, K.; Hill, C.; Leung, J.; Patel, M.; Livar, E.; Su, C.; Kassem, A.; et al. Measles Outbreak at a Privately Operated Detention Facility: Arizona, 2016. Clin. Infect. Dis. 2019, 68, 2018–2025. [Google Scholar] [CrossRef] [PubMed]
- Seto, J.; Ikeda, T.; Tanaka, S.; Komabayashi, K.; Matoba, Y.; Suzuki, Y.; Takeuchi, S.; Yamauchi, T.; Mizuta, K. Detection of modified measles and super-spreader using a real-time reverse transcription PCR in the largest measles outbreak, Yamagata, Japan, 2017 in its elimination era. Epidemiol. Infect. 2018, 146, 1707–1713. [Google Scholar] [CrossRef]
- Avramovich, E.; Indenbaum, V.; Haber, M.; Amitai, Z.; Tsifanski, E.; Farjun, S.; Sarig, A.; Bracha, A.; Castillo, K.; Markovich, M.; et al. Measles Outbreak in a Highly Vaccinated Population—Israel, July–August 2017. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 1186–1188. [Google Scholar] [CrossRef]
- Edmonson, M.; Addiss, D.; McPherson, J.; Berg, J.; Circo, S.; Davis, J. Mild measles and secondary vaccine failure during a sustained outbreak in a highly vaccinated population. JAMA 1990, 263, 2467–2471. [Google Scholar] [CrossRef] [PubMed]
- Strebel, P.; Orenstein, W. Measles. N. Engl. J. Med. 2019, 381, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Moss, W. Measles. Lancet 2017, 381, 2490–2502. [Google Scholar] [CrossRef]
- Rosen, J.; Rota, J.; Hickman, C.; Sowers, S.; Mercader, S.; Rota, P.; Bellini, W.; Huang, A.; Doll, M.; Zucker, J.; et al. Outbreak of measles among persons with prior evidence of immunity, New York City, 2011. Clin. Infect. Dis. 2014, 58, 1205–1210. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, M.; Hickman, C.; Colley, H.; Arciuolo, R.; Mahle, C.; Deocharan, B.; Siemetzki-Kapoor, U.; Zucker, J.; Rosen, J. Measles infection in persons with secondary vaccine failure, New York City, 2018–2019. Vaccine 2021, 39, 5346–5350. [Google Scholar] [CrossRef] [PubMed]
- Hales, C.; Johnson, E.; Helgenberger, L.; Papania, M.; Larzelere, M.; Gopalani, S.; Lebo, E.; Wallace, G.; Moturi, E.; Hickman, C.; et al. Measles Outbreak Associated With Low Vaccine Effectiveness Among Adults in Pohnpei State, Federated States of Micronesia, 2014. In Open Forum Infectious Diseases; Oxford University Press: Oxford, UK, 2016; Volume 3. [Google Scholar]
- Clemmons, N.; Wallace, G.; Patel, M.; Gastañaduy, P. Incidence of Measles in the United States, 2001–2015. JAMA 2017, 318, 1279–1281. [Google Scholar] [CrossRef] [PubMed]
- Cheng, V.; Wong, S.; Wong, S.; Sridhar, S.; Chen, J.; Yip, C.; Hung, D.; Li, X.; Chuang, V.; Tsang, O.; et al. Measles outbreak from Hong Kong International Airport to the hospital due to secondary vaccine failure in healthcare workers. Infect. Control Hosp. Epidemiol. 2019, 40, 1407–1415. [Google Scholar] [CrossRef] [PubMed]
- Augusto, G.; Silva, A.; Pereira, N.; Fernandes, T.; Leça, A.; Valente, P.; Calé, E.; Aguiar, B.; Martins, A.; Palminha, P.; et al. Report of simultaneous measles outbreaks in two different health regions in Portugal, February to May 2017: Lessons learnt and upcoming challenges. Eurosurveillance 2019, 24, 1800026. [Google Scholar] [CrossRef] [PubMed]
- Komabayashi, K.; Seto, J.; Tanaka, S.; Suzuki, Y.; Ikeda, T.; Onuki, N.; Yamada, K.; Ahiko, T.; Ishikawa, H.; Mizuta, K. The Largest Measles Outbreak, Including 38 Modified Measles and 22 Typical Measles Cases in Its Elimination Era in Yamagata, Japan, 2017. Jpn J. Infect. Dis. 2017, 71, 413–418. [Google Scholar] [CrossRef]
- Eom, H.; Park, Y.; Kim, J.; Yang, J.; Kang, H.; Kim, K.; Chun, B.; Park, O.; Hong, J. Occurrence of measles in a country with elimination status: Amplifying measles infection in hospitalized children due to imported virus. PLoS ONE 2018, 13, e0188957. [Google Scholar] [CrossRef]
- Rota, J.; Hickman, C.; Sowers, S.; Rota, P.; Mercader, S.; Bellini, W. Two case studies of modified measles in vaccinated physicians exposed to primary measles cases: High risk of infection but low risk of transmission. J. Infect. Dis. 2011, 204 (Suppl. S1), S559–S563. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Lu, L.; Zhangzhu, J.; Chen, M.; Yu, X.; Wang, F.; Peng, X.; Wu, J. A measles outbreak in a middle school with high vaccination coverage and evidence of prior immunity among cases, Beijing, P.A.R. China. Vaccine 2016, 34, 1853–1860. [Google Scholar] [CrossRef] [PubMed]
- Masters, N.; Wagner, A.; Ding, Y.; Zhang, Y.; Boulton, M. Assessing measles vaccine failure in Tianjin, China. Vaccine 2019, 37, 3251–3254. [Google Scholar] [CrossRef]
- Breakwell, L.; Moturi, E.; Helgenberger, L.; Gopalani, S.; Hales, C.; Lam, E.; Sharapov, U.; Larzelere, M.; Johnson, E.; Masao, C.; et al. Measles Outbreak Associated with Vaccine Failure in Adults—Federated States of Micronesia, February–August 2014. MMWR Morb. Mortal. Wkly. Rep. 2015, 64, 1088–1092. [Google Scholar] [CrossRef] [PubMed]
- Fowotade, A.; Okonko, I.; Nwabuisi, C.; Bakare, R.; Fadeyi, A.; Adu, F. Measles vaccine potency and sero-conversion rates among infants receiving measles immunization in Ilorin, Kwara State, Nigeria. J. Immunoass. Immunochem. 2015, 36, 195–209. [Google Scholar] [CrossRef] [PubMed]
- Brinkman, I.; de Wit, J.; Smits, G.; Hulscher, H.T.; Jongerius, M.; Abreu, T.; van der Klis, F.; Hahné, S.; Koopmans, M.; Rots, N.; et al. Early Measles Vaccination During an Outbreak in the Netherlands: Short-Term and Long-Term Decreases in Antibody Responses Among Children Vaccinated Before 12 Months of Age. J. Infect. Dis. 2019, 220, 594–602. [Google Scholar] [CrossRef]
- Gans, H.; Maldonado, Y. Loss of passively acquired maternal antibodies in highly vaccinated populations: An emerging need to define the ontogeny of infant immune responses. J. Infect. Dis. 2013, 208, 1–3. [Google Scholar] [CrossRef]
- WHO Immunization. Vaccines and Biologicals. In Surveillance Standards for Measles, Rubella and Congenital Rubella Syndrome; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Kurata, T.; Kanbayashi, D.; Egawa, K.; Kinoshita, M.; Yoshida, H.; Miyazono, M.; Motomura, K. A measles outbreak from an index case with immunologically confirmed secondary vaccine failure. Vaccine 2020, 38, 1467–1475. [Google Scholar] [CrossRef]
- Hübschen, M.; Gouandjika-Vasilache, I.; Dina, J. Measles. Lancet 2022, 399, 678–690. [Google Scholar] [CrossRef]
Characteristic n (%) or Median (IQR) | Low-Avidity IgG n = 120 | High-Avidity IgG n = 60 | Intermediate-Avidity IgG n = 13 | Total N = 193 | p-Value * |
---|---|---|---|---|---|
Age in years | 2.0 (0.7–9.5) | 19 (17–22) | 20 (17–22) | 9 (0.8–20) | p < 0.001 |
Birth cohort (age at infection) | |||||
2014–2015 (<2 years) | 57 (47.5) | 2 (3.3) | 0 (0.0) | 59 (30.6) | p < 0.001 |
2011–2013 (2–4 years) | 21 (17.5) | 2 (3.3) | 0 (0.0) | 23 (11.9) | |
2001–2010 (5–14 years) | 14 (11.7) | 5 (8.3) | 2 (15.4) | 21 (10.9) | |
1991–2000 (15–24 years) | 17 (14.2) | 42 (70.0) | 10 (76.9) | 69 (35.8) | |
1985–1990 (25–29 years) | 11 (9.2) | 9 (15.0) | 1 (7.7) | 21 (10.9) | |
Male sex | 67 (55.8) | 31 (51.7) | 6 (46.2) | 104 (53.9) | p = 0.597 |
Symptoms | |||||
Cough | 48 (40.0) | 17 (28.3) | 7 (53.8) | 72 (37.3) | p = 0.124 |
Coryza | 40 (33.3) | 28 (46.7) | 7 (53.8) | 75 (38.9) | p = 0.082 |
Conjunctivitis | 44 (36.7) | 24 (40.0) | 8 (61.5) | 76 (39.4) | p = 0.664 |
Recall history of measles vaccine | |||||
Yes | 10 (8.3) | 9 (15.0) | 0 (0.0) | 19 (9.8) | p = 0.172 |
No or unknown | 110 (91.7) | 51 (85) | 13 (100) | 174 (90.2) | |
Rubella IgG-positive | 37 (30.8) | 50 (83.3) | 10 (76.9) | 97 (50.3) | p < 0.001 |
PRN Geometric Mean Titer (geometric mean, 95%CI) | 894 (669–1195) | 47,003 (34,970–63,175) | 3695 (957–14,261) | 3371 (2410–4715) | p < 0.001 |
Age in Years (Birth Cohort) | ||||||
---|---|---|---|---|---|---|
Characteristic n (%) | 2014–2015 (<2 Years) n = 59 | 2011–2013 (2–5 Years) n = 23 | 2001–2010 (6–14 years) n = 21 | 1991–2000 (15–24 Years) n = 69 | 1985–1990 (25–29 Years) n = 21 | Total N = 193 |
Recall measles vaccination | 4 (7%) | 2 (9%) | 1 (5%) | 10 (14%) | 2 (10%) | 19 (10%) |
Rubella IgG | 7 (12%) | 5 (22%) | 3 (14%) | 61 (88%) | 21 (100%) | 97 (50%) |
High-avidity | 2 (3%) | 2 (9%) | 5 (24%) | 42 (61%) | 9 (43%) | 60 (31%) |
Intermediate-avidity | 0 (0%) | 0 (0%) | 2 (10%) | 10 (14%) | 1 (5%) | 13 (7%) |
Low-avidity | 57 (97%) | 21 (91%) | 14 (67%) | 17 (25%) | 11 (52%) | 120 (62%) |
PRNT GMT (geometric mean, 95%CI) | 951 (581–1557) | 1970 (917–4341) | 3333 (1142–9726) | 11,139 (6241–19,325) | 4231 (1347–13,294) | 3371 (2410–4715) |
Historical MCV1 coverage * | 98.1% | 97.8% | 96% | 93.6% | 87.6% | 94.1% |
Estimated %VE | 94.9% | 94.8% | 93.0% | 75.2% | 82.7% | 91.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hagan, J.E.; Crooke, S.N.; Gunregjav, N.; Sowers, S.B.; Mercader, S.; Hickman, C.J.; Mulders, M.N.; Pastore, R.; Takashima, Y.; Durrheim, D.N.; et al. Breakthrough Measles among Vaccinated Adults Born during the Post-Soviet Transition Period in Mongolia. Vaccines 2024, 12, 695. https://doi.org/10.3390/vaccines12060695
Hagan JE, Crooke SN, Gunregjav N, Sowers SB, Mercader S, Hickman CJ, Mulders MN, Pastore R, Takashima Y, Durrheim DN, et al. Breakthrough Measles among Vaccinated Adults Born during the Post-Soviet Transition Period in Mongolia. Vaccines. 2024; 12(6):695. https://doi.org/10.3390/vaccines12060695
Chicago/Turabian StyleHagan, José E., Stephen N. Crooke, Nyamaa Gunregjav, Sun B. Sowers, Sara Mercader, Carole J. Hickman, Mick N. Mulders, Roberta Pastore, Yoshihiro Takashima, David N. Durrheim, and et al. 2024. "Breakthrough Measles among Vaccinated Adults Born during the Post-Soviet Transition Period in Mongolia" Vaccines 12, no. 6: 695. https://doi.org/10.3390/vaccines12060695
APA StyleHagan, J. E., Crooke, S. N., Gunregjav, N., Sowers, S. B., Mercader, S., Hickman, C. J., Mulders, M. N., Pastore, R., Takashima, Y., Durrheim, D. N., Goodson, J. L., & Rota, P. A. (2024). Breakthrough Measles among Vaccinated Adults Born during the Post-Soviet Transition Period in Mongolia. Vaccines, 12(6), 695. https://doi.org/10.3390/vaccines12060695