Tailoring COVID-19 Vaccination Strategies in High-Seroprevalence Settings: Insights from Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Settings and Period
2.2. Study Participants
2.3. Data Collection and Procedures
2.4. Data Management and Analysis
3. Results
3.1. Baseline Characteristics of Study Participants
3.2. Post-Vaccine Antibody Response and Rate of SARS-CoV-2 Reinfection
3.3. Cost-Effectiveness of Vaccine Strategies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahmani, K.; Shavaleh, R.; Forouhi, M.; Disfani, H.F.; Kamandi, M.; Oskooi, R.K.; Foogerdi, M.; Soltani, M.; Rahchamani, M.; Mohaddespour, M.; et al. The effectiveness of COVID-19 vaccines in reducing the incidence, hospitalization, and mortality from COVID-19: A systematic review and meta-analysis. Front. Public Health 2022, 10, 873596. [Google Scholar] [CrossRef] [PubMed]
- Watson, O.J.; Barnsley, G.; Toor, J.; Hogan, A.B.; Winskill, P.; Ghani, A.C. Global impact of the first year of COVID-19 vaccination: A mathematical modelling study. Lancet Infect. Dis. 2022, 22, 1293–1302. [Google Scholar] [CrossRef] [PubMed]
- Vitale, J.; Mumoli, N.; Clerici, P.; De Paschale, M.; Evangelista, I.; Cei, M.; Mazzone, A. Assessment of SARS-CoV-2 Reinfection 1 Year after Primary Infection in a Population in Lombardy, Italy. JAMA Intern. Med. 2021, 181, 1407–1408. [Google Scholar] [CrossRef]
- Hall, V.J.; Foulkes, S.; Charlett, A.; Atti, A.; Monk, E.J.M.; Simmons, R.; Wellington, E.; Cole, M.J.; Saei, A.; Oguti, B.; et al. SARS-CoV-2 infection rates of antibody-positive compared with antibody-negative health-care workers in England: A large, multicentre, prospective cohort study (SIREN). Lancet 2021, 397, 1459–1469. [Google Scholar] [CrossRef] [PubMed]
- Keehner, J.; Horton, L.E.; Pfeffer, M.A.; Longhurst, C.A.; Schooley, R.T.; Currier, J.S.; Abeles, S.R.; Torriani, F.J. SARS-CoV-2 Infection after Vaccination in Health Care Workers in California. N. Engl. J. Med. 2021, 384, 1774–1775. [Google Scholar] [CrossRef]
- Oster, Y.; Benenson, S.; Yochi Harpaz, L.; Buda, I.; Nir-Paz, R.; Strahilevitz, J.; Cohen, M.J. Association between Exposure Characteristics and the Risk for COVID-19 Infection among Health Care Workers with and without BNT162b2 Vaccination. JAMA Netw. Open 2021, 4, e2125394. [Google Scholar] [CrossRef]
- Goga, A.; Bekker, L.G.; Garrett, N.; Reddy, T.; Yende-Zuma, N.; Fairall, L.; Moultrie, H.; Takalani, A.; Trivella, V.; Faesen, M.; et al. Breakthrough SARS-CoV-2 infections during periods of delta and omicron predominance, South Africa. Lancet 2022, 400, 269–271. [Google Scholar] [CrossRef]
- Modes, M.E.; Directo, M.P.; Melgar, M.; Johnson, L.R.; Yang, H.; Chaudhary, P.; Bartolini, S.; Kho, N.; Noble, P.W.; Isonaka, S.; et al. Clinical Characteristics and Outcomes among Adults Hospitalized with Laboratory-Confirmed SARS-CoV-2 Infection During Periods of B.1.617.2 (Delta) and B.1.1.529 (Omicron) Variant Predominance-One Hospital, California, July 15–September 23, 2021, and December 21, 2021–January 27, 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 217–223. [Google Scholar] [CrossRef]
- Shekhar, R.; Garg, I.; Pal, S.; Kottewar, S.; Sheikh, A.B. COVID-19 Vaccine Booster: To Boost or Not to Boost. Infect. Dis. Rep. 2021, 13, 924–929. [Google Scholar] [CrossRef]
- World Health Organization. WHO/Europe Recommends a Second COVID-19 Booster Shot for Immuno-Compromised and Other Vulnerable Groups. 2022. Available online: https://reliefweb.int/report/world/whoeurope-recommends-second-covid-19-booster-shot-immuno-compromised-and-other-vulnerable-groups?gclid=Cj0KCQjwrMKmBhCJARIsAHuEAPTRrfrOGTVi9uZTVUvaNAqxJDdtUeI6VsGsrwsBCFlqphNAVbc5CUQaAin-EALw_wcB (accessed on 7 August 2023).
- Our World in Data. Coronavirus (COVID-19) Vaccinations. 2023. Available online: https://ourworldindata.org/covid-vaccinations (accessed on 7 August 2023).
- Azanaw, J.; Endalew, M.; Zenbaba, D.; Abera, E.; Chattu, V.K. COVID-19 vaccine acceptance and associated factors in 13 African countries: A systematic review and meta-analysis. Front. Public Health 2022, 10, 1001423. [Google Scholar] [CrossRef]
- Lewis, H.C.; Ware, H.; Whelan, M.; Subissi, L.; Li, Z.; Ma, X.; Nardone, A.; Valenciano, M.; Cheng, B.; Noel, K.; et al. SARS-CoV-2 infection in Africa: A systematic review and meta-analysis of standardised seroprevalence studies, from January 2020 to December 2021. BMJ Glob. Health 2022, 7, e008793. [Google Scholar] [CrossRef] [PubMed]
- Refolo, P.; Bloemen, B.; Corsano, B.; Grin, J.; Gutierrez-Ibarluzea, I.; Hofmann, B.; Oortwijn, W.; Sampietro-Colom, L.; Sandman, L.; van der Wilt, G.J.; et al. Prioritization of COVID-19 vaccination. The added value of the “VALIDATE” approach. Health Policy 2022, 126, 770–776. [Google Scholar] [CrossRef]
- Bobrovitz, N.; Ware, H.; Ma, X.; Li, Z.; Hosseini, R.; Cao, C.; Selemon, A.; Whelan, M.; Premji, Z.; Issa, H.; et al. Protective effectiveness of previous SARS-CoV-2 infection and hybrid immunity against the omicron variant and severe disease: A systematic review and meta-regression. Lancet Infect. Dis. 2023, 23, 556–567. [Google Scholar] [CrossRef]
- Hammerman, A.; Sergienko, R.; Friger, M.; Beckenstein, T.; Peretz, A.; Netzer, D.; Yaron, S.; Arbel, R. Effectiveness of the BNT162b2 Vaccine after Recovery from COVID-19. N. Engl. J. Med. 2022, 386, 1221–1229. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. 2.2 Million COVID-19 Vaccines Allocated by the COVAX Facility Arrive in Ethiopia, Marking the Start of the Country’s COVID-19 Vaccination Campaign. 2021. Available online: https://www.afro.who.int/news/22-million-covid-19-vaccines-allocated-covax-facility-arrive-ethiopia-marking-start-countrys (accessed on 8 August 2023).
- World Health Organization. Interim Recommendations for Use of the ChAdOx1-S [Recombinant] Vaccine against COVID-19 (AstraZeneca COVID-19 Vaccine AZD1222 Vaxzevria™, SII COVISHIELD™). 2022. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-vaccines-SAGE_recommendation-AZD1222-2021.1 (accessed on 8 August 2023).
- World Health Organization. Ethiopia Introduces COVID-19 Vaccine in a National Launching Ceremony. 2021. Available online: https://www.afro.who.int/news/ethiopia-introduces-covid-19-vaccine-national-launching-ceremony (accessed on 4 July 2023).
- Arora, N.; Das, K.N.; Jain, R. EXCLUSIVE: India Unlikely to Resume Sizable COVID-19 Vaccine Exports until October. Reuters. 2021. Available online: https://www.reuters.com/world/india/exclusive-india-unlikely-resume-sizable-covid-19-vaccine-exports-until-october-2021-05-18/ (accessed on 8 August 2023).
- World Health Organization. Ethiopia Launches a COVID-19 Vaccination Campaign Targeting the 12 Years and above Population. 2021. Available online: https://www.afro.who.int/news/ethiopia-launches-covid-19-vaccination-campaign-targeting-12-years-and-above-population (accessed on 28 September 2023).
- Gudina, E.K.; Ali, S.; Girma, E.; Gize, A.; Tegene, B.; Hundie, G.B.; Sime, W.T.; Ambachew, R.; Gebreyohanns, A.; Bekele, M.; et al. Seroepidemiology and model-based prediction of SARS-CoV-2 in Ethiopia: Longitudinal cohort study among front-line hospital workers and communities. Lancet Glob. Health 2021, 9, e1517–e1527. [Google Scholar] [CrossRef]
- World Health Organization. Background Document on the AZD1222 Vaccine against COVID-19 Developed by Oxford University and AstraZeneca. 2021. Available online: https://www.who.int/publications/i/item/background-document-on-the-azd1222-vaccine-against-covid-19-developed-by-oxford-university-and-astrazeneca (accessed on 17 May 2024).
- Merkt, S.; Ali, S.; Gudina, E.K.; Adissu, W.; Gize, A.; Muenchhoff, M.; Graf, A.; Krebs, S.; Elsbernd, K.; Kisch, R.; et al. Long-term monitoring of SARS-CoV-2 seroprevalence and variants in Ethiopia provides prediction for immunity and cross-immunity. Nat. Commun. 2024, 15, 3463. [Google Scholar] [CrossRef]
- Reinkemeyer, C.; Khazaei, Y.; Weigert, M.; Hannes, M.; Le Gleut, R.; Plank, M.; Winter, S.; Noreña, I.; Meier, T.; Xu, L.; et al. The Prospective COVID-19 Post-Immunization Serological Cohort in Munich (KoCo-Impf): Risk Factors and Determinants of Immune Response in Healthcare Workers. Viruses 2023, 15, 1574. [Google Scholar] [CrossRef]
- Wheeler, S.E.; Shurin, G.V.; Yost, M.; Anderson, A.; Pinto, L.; Wells, A.; Shurin, M.R. Differential Antibody Response to mRNA COVID-19 Vaccines in Healthy Subjects. Microbiol. Spectr. 2021, 9, e0034121. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, A.; Bogale, F.; Ababor, S.; Bergren, E.; Gebreyohannes, Y.; Jit, M.; Ruiz, F.; Pearson, C.; Torres-Rueda, S.; Vassall, A. Understanding the Cost-Effectiveness of COVID-19 Vaccination in Ethiopia. 2022. Available online: https://www.cgdev.org/publication/understanding-cost-effectiveness-covid-19-vaccination-ethiopia (accessed on 26 December 2023).
- Gelanew, T.; Seyoum, B.; Mulu, A.; Mihret, A.; Abebe, M.; Wassie, L.; Gelaw, B.; Sorsa, A.; Merid, Y.; Muchie, Y.; et al. High seroprevalence of anti-SARS-CoV-2 antibodies among Ethiopian healthcare workers. BMC Infect. Dis. 2022, 22, 261. [Google Scholar] [CrossRef]
- Kriss, J.L.; Reynolds, L.E.; Wang, A.; Stokley, S.; Cole, M.M.; Harris, L.Q.; Shaw, L.K.; Black, C.L.; Singleton, J.A.; Fitter, D.L.; et al. COVID-19 Vaccine Second-Dose Completion and Interval Between First and Second Doses Among Vaccinated Persons-United States, December 14, 2020-February 14, 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 389–395. [Google Scholar] [CrossRef]
- Khandker, S.S.; Godman, B.; Jawad, M.I.; Meghla, B.A.; Tisha, T.A.; Khondoker, M.U.; Haq, M.A.; Charan, J.; Talukder, A.A.; Azmuda, N.; et al. A Systematic Review on COVID-19 Vaccine Strategies, Their Effectiveness, and Issues. Vaccines 2021, 9, 1387. [Google Scholar] [CrossRef] [PubMed]
- Edem, B.; Williams, V.; Onwuchekwa, C.; Umesi, A.; Calnan, M. COVID-19-related research in Africa: A cross-sectional review of the International Clinical Trial Registration Platform (ICTRP). Trials 2021, 22, 682. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Phillips, D.J.; White, T.; Sayal, H.; Aley, P.K.; Bibi, S.; Dold, C.; Fuskova, M.; Gilbert, S.C.; Hirsch, I.; et al. Correlates of protection against symptomatic and asymptomatic SARS-COV-2 infection. Nat. Med. 2021, 27, 2032–2040. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, A. Ethiopia: Age Structure from 2012 to 2022. January 2024. Available online: https://www.statista.com/statistics/455134/age-structure-in-ethiopia/ (accessed on 17 May 2024).
- Roche Diagnostics. Elecsys® Anti-SARS-CoV-2 S. Available online: https://diagnostics.roche.com/global/en/products/params/elecsys-anti-sars-cov-2-s.html (accessed on 8 August 2023).
Vaccinated Cohort (n = 254) | Unvaccinated Cohort (n = 81) | |
---|---|---|
Participant category | Healthcare workers | Community |
Pre-vaccination visit period | 7–12 April 2021 | 1 February–16 March 2021 |
Sex, n (%) | ||
Male | 174 (68.5) | 42 (51.9) |
Female | 80 (31.5) | 39 (48.1) |
Age in years, mean (SD) | 32.3 (7.9) | 32.3 (12.3) |
Pre-existing medical condition, n (%) | 16 (6.3) | 6 (7.4) |
SARS-CoV-2 seroprevalence, n (%) | ||
By anti-nucleocapsid antibody | 158 (62.2) | 31 (38.5) |
By anti-spike antibody | 165 (65) | 32 (39.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gudina, E.K.; Elsbernd, K.; Yilma, D.; Kisch, R.; Wallrafen-Sam, K.; Abebe, G.; Mekonnen, Z.; Berhane, M.; Gerbaba, M.; Suleman, S.; et al. Tailoring COVID-19 Vaccination Strategies in High-Seroprevalence Settings: Insights from Ethiopia. Vaccines 2024, 12, 745. https://doi.org/10.3390/vaccines12070745
Gudina EK, Elsbernd K, Yilma D, Kisch R, Wallrafen-Sam K, Abebe G, Mekonnen Z, Berhane M, Gerbaba M, Suleman S, et al. Tailoring COVID-19 Vaccination Strategies in High-Seroprevalence Settings: Insights from Ethiopia. Vaccines. 2024; 12(7):745. https://doi.org/10.3390/vaccines12070745
Chicago/Turabian StyleGudina, Esayas Kebede, Kira Elsbernd, Daniel Yilma, Rebecca Kisch, Karina Wallrafen-Sam, Gemeda Abebe, Zeleke Mekonnen, Melkamu Berhane, Mulusew Gerbaba, Sultan Suleman, and et al. 2024. "Tailoring COVID-19 Vaccination Strategies in High-Seroprevalence Settings: Insights from Ethiopia" Vaccines 12, no. 7: 745. https://doi.org/10.3390/vaccines12070745
APA StyleGudina, E. K., Elsbernd, K., Yilma, D., Kisch, R., Wallrafen-Sam, K., Abebe, G., Mekonnen, Z., Berhane, M., Gerbaba, M., Suleman, S., Mamo, Y., Rubio-Acero, R., Ali, S., Zeynudin, A., Merkt, S., Hasenauer, J., Chala, T. K., Wieser, A., & Kroidl, A. (2024). Tailoring COVID-19 Vaccination Strategies in High-Seroprevalence Settings: Insights from Ethiopia. Vaccines, 12(7), 745. https://doi.org/10.3390/vaccines12070745