Patterns of Diversity and Humoral Immunogenicity for HIV-1 Antisense Protein (ASP)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Analysis
2.2. Peptide Selection and Synthesis
2.3. Immunoscreening of Peptide Array
3. Results
3.1. Phylogenetic Analysis of ASP HIV-1 Subtypes
3.2. Genetic Variability of ASP
3.3. IgM and IgG Responses against ASP
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foley, B.; Leitner, T.; Apetrei, C.; Hahn, B.; Mizrachi, I.; Mullins, J.; Rambaut, A.; Wolinsky, S.; Korber, B.; Singh, A.; et al. HIV Sequence Compendium 2018; Foley, B., Leitner, T., Apetrei, C., Hahn, B., Mizrachi, I., Mullins, J., Rambaut, A., Wolinsky, S., Korber, B., Singh, A., et al., Eds.; Los Alamos National Laboratory, Theoretical Biology and Biophysics: Los Alamos, NM, USA, 2018.
- Cardinaud, S.; Moris, A.; Février, M.; Rohrlich, P.S.; Weiss, L.; Langlade-Demoyen, P.; Lemonnier, F.A.; Schwartz, O.; Habel, A. Identification of Cryptic MHC I-Restricted Epitopes Encoded by HIV-1 Alternative Reading Frames. J. Exp. Med. 2004, 199, 1053–1063. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, L.B.; Ambrus, J.L.; Krawczyk, K.A.; Sharma, S.; Brooks, S.; Hsiao, C.B.; Schwartz, S.A. Human Immunodeficiency Virus-Type 1 LTR DNA Contains an Intrinsic Gene Producing Antisense RNA and Protein Products. Retrovirology 2006, 3, 80. [Google Scholar] [CrossRef] [PubMed]
- Champiat, S.; Raposo, R.A.S.; Maness, N.J.; Lehman, J.L.; Purtell, S.E.; Hasenkrug, A.M.; Miller, J.C.; Dean, H.; Koff, W.C.; Hong, M.A.; et al. Influence of HAART on Alternative Reading Frame Immune Responses over the Course of HIV-1 Infection. PLoS ONE 2012, 7, e39311. [Google Scholar] [CrossRef] [PubMed]
- Berger, C.T.; Llano, A.; Carlson, J.M.; Brumme, Z.L.; Brockman, M.A.; Cedeño, S.; Harrigan, P.R.; Kaufmann, D.E.; Heckerman, D.; Meyerhans, A.; et al. Immune Screening Identifies Novel T Cell Targets Encoded by Antisense Reading Frames of HIV-1. J. Virol. 2015, 89, 4015–4019. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.H. Human Immunodeficiency Virus May Encode a Novel Protein on the Genomic DNA plus Strand. Science 1988, 239, 1420–1422. [Google Scholar] [CrossRef] [PubMed]
- Bukrinsky, M.I.; Etkin, A.F. Plus Strand of the HIV Provirus DNA Is Expressed at Early Stages of Infection. AIDS Res. Hum. Retroviruses 1990, 6, 425–426. [Google Scholar] [CrossRef] [PubMed]
- Michael, N.L.; Vahey, M.T.; d’Arcy, L.; Ehrenberg, P.K.; Mosca, J.D.; Rappaport, J.; Redfield, R.R. Negative-Strand RNA Transcripts Are Produced in Human Immunodeficiency Virus Type 1-Infected Cells and Patients by a Novel Promoter Downregulated by Tat. J. Virol. 1994, 68, 979–987. [Google Scholar] [CrossRef] [PubMed]
- Peeters, A.; Lambert, P.F.; Deacon, N.J. A Fourth Sp1 Site in the Human Immunodeficiency Virus Type 1 Long Terminal Repeat Is Essential for Negative-Sense Transcription. J. Virol. 1996, 70, 6665–6672. [Google Scholar] [CrossRef] [PubMed]
- Bentley, K.; Deacon, N.; Sonza, S.; Zeichner, S.; Churchill, M. Mutational Analysis of the HIV-1 LTR as a Promoter of Negative Sense Transcription. Arch. Virol. 2004, 149, 2277–2294. [Google Scholar] [CrossRef] [PubMed]
- Landry, S.; Halin, M.; Lefort, S.; Audet, B.; Vaquero, C.; Mesnard, J.M.; Barbeau, B. Detection, Characterization and Regulation of Antisense Transcripts in HIV-1. Retrovirology 2007, 4, 71. [Google Scholar] [CrossRef]
- Cassana, E.; Arigon-Chifolleaua, A.M.; Mesnard, J.-M.M.; Gross, A.; Gascuel, O.; Cassan, E.; Arigon-Chifolleau, A.-M.; Mesnard, J.-M.M.; Gross, A.; Gascuel, O. Concomitant Emergence of the AntiSense Protein Gene of HIV-1 and of the Pandemic. Proc. Natl. Acad. Sci. USA 2016, 113, 11537–11542. [Google Scholar] [CrossRef] [PubMed]
- Briquet, S.; Vaquero, C. Immunolocalization Studies of an Antisense Protein in HIV-1-Infected Cells and Viral Particles. Virology 2002, 292, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Clerc, I.; Laverdure, S.; Torresilla, C.; Landry, S.; Borel, S.; Vargas, A.; Arpin-André, C.; Gay, B.; Briant, L.; Gross, A.; et al. Polarized Expression of the Membrane ASP Protein Derived from HIV-1 Antisense Transcription in T Cells. Retrovirology 2011, 8, 74. [Google Scholar] [CrossRef] [PubMed]
- Mancarella, A.; Procopio, F.A.; Achsel, T.; De Crignis, E.; Foley, B.T.; Corradin, G.; Bagni, C.; Pantaleo, G.; Graziosi, C. Detection of Antisense Protein (ASP) RNA Transcripts in Individuals Infected with Human Immunodeficiency Virus Type 1 (HIV-1). J. General. Virol. 2019, 100, 863–876. [Google Scholar] [CrossRef] [PubMed]
- Affram, Y.; Zapata, J.C.; Gholizadeh, Z.; Tolbert, W.D.; Zhou, W.; Iglesias-Ussel, M.D.; Pazgier, M.; Ray, K.; Latinovic, O.S.; Romerio, F. The HIV-1 Antisense Protein ASP Is a Transmembrane Protein of the Cell Surface and an Integral Protein of the Viral Envelope. J. Virol. 2019, 93, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Vanhée-Brossollet, C.; Thoreau, H.; Serpente, N.; D’Auriol, L.; Lévy, J.P.; Vaquero, C. A Natural Antisense RNA Derived from the HIV-1 Env Gene Encodes a Protein Which Is Recognized by Circulating Antibodies of HIV+ Individuals. Virology 1995, 206, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Savoret, J.; Chazal, N.; Moles, J.P.; Tuaillon, E.; Boufassa, F.; Meyer, L.; Lecuroux, C.; Lambotte, O.; Van De Perre, P.; Mesnard, J.M.; et al. A Pilot Study of the Humoral Response Against the AntiSense Protein (ASP) in HIV-1-Infected Patients. Front. Microbiol. 2020, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Los Alamos National Laboratory Los Alamos HIV Databases. Available online: https://www.hiv.lanl.gov/content/index (accessed on 13 June 2022).
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Biomatters Geneious | Bioinformatics Software for Sequence Data Analysis 2022.
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2—Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree Of Life (ITOL) v5: An Online Tool for Phylogenetic Tree Display and Annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2021. [Google Scholar]
- Posit Team RStudio: Integrated Development Environment for R; R Core Team: Vienna, Austria, 2023.
- Pagès, H.; Aboyoun, P.; Gentleman, R.; DebRoy, S. Biostrings: Efficient Manipulation of Biological Strings 2022.
- Huber, W.; Carey, J.V.; Gentleman, R.; Anders, S.; Carlson, M.; Carvalho, B.S.; Bravo, H.C.; Davis, S.; Gatto, L.; Girke, T.; et al. Orchestrating High-Throughput Genomic Analysis with Bioconductor. Nat. Methods 2015, 12, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Grant, B.J.; Rodrigues, A.P.C.; ElSawy, K.M.; McCammon, J.A.; Caves, L.S.D. Bio3d: An R Package for the Comparative Analysis of Protein Structures. Bioinformatics 2006, 22, 2695–2696. [Google Scholar] [CrossRef] [PubMed]
- Wagih, O. Ggseqlogo: A “ggplot2” Extension for Drawing Publication-Ready Sequence; R Core Team: Vienna, Austria, 2017. [Google Scholar]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Kassambara, A. Rstatix: Pipe-Friendly Framework for Basic Statistical Tests; R Core Team: Vienna, Austria, 2023. [Google Scholar]
- da Silva, F.R.; Napoleão-Pego, P.; De-Simone, S.G. Identification of Linear B Epitopes of Pertactin of Bordetella Pertussis Induced by Immunization with Whole and Acellular Vaccine. Vaccine 2014, 32, 6251–6258. [Google Scholar] [CrossRef] [PubMed]
- De-Simone, S.G.; Gomes, L.R.; Napoleão-Pêgo, P.; Lechuga, G.C.; de Pina, J.S.; da Silva, F.R. Epitope Mapping of the Diphtheria Toxin and Development of an ELISA-Specific Diagnostic Assay. Vaccines 2021, 9, 313. [Google Scholar] [CrossRef] [PubMed]
- De-Simone, S.G.; Napoleão-Pêgo, P.; Teixeira-Pinto, L.A.L.; Melgarejo, A.R.; Aguiar, A.S.; Provance, D.W. IgE and IgG Epitope Mapping by Microarray Peptide-Immunoassay Reveals the Importance and Diversity of the Immune Response to the IgG3 Equine Immunoglobulin. Toxicon 2014, 78, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Bet, A.; Maze, A.A.; Bansal, A.; Sterrett, S.; Gross, A.; Graff-Dubois, S.; Samri, A.; Guihot, A.; Katlama, C.; Theodorou, I.; et al. The HIV-1 Antisense Protein (ASP) Induces CD8 T Cell Responses during Chronic Infection. Retrovirology 2015, 12, 15. [Google Scholar] [CrossRef] [PubMed]
- The Lancet HIV What Future for HIV Vaccines? Lancet HIV 2023, 10, e143. [CrossRef] [PubMed]
- Erdmann, N.; Du, V.Y.; Carlson, J.; Schaefer, M.; Jureka, A.; Sterrett, S.; Yue, L.; Dilernia, D.; Lakhi, S.; Tang, J.; et al. HLA Class-II Associated HIV Polymorphisms Predict Escape from CD4+ T Cell Responses. PLoS Pathog. 2015, 11, e1005111. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Yin, Q.; Li, W.; Li, Z.; Kong, D.; Wu, Y.; Hong, K.; Xing, H.; Shao, Y.; Jiang, S.; et al. Escape from Humoral Immunity Is Associated with Treatment Failure in HIV-1-Infected Patients Receiving Long-Term Antiretroviral Therapy. Sci. Rep. 2017, 7, 6222. [Google Scholar] [CrossRef] [PubMed]
- Dalmau, J.; Rotger, M.; Erkizia, I.; Rauch, A.; Reche, P.; Pino, M.; Esteve, A.; Palou, E.; Brander, C.; Paredes, R.; et al. Highly Pathogenic Adapted HIV-1 Strains Limit Host Immunity and Dictate Rapid Disease Progression. Aids 2014, 28, 1261–1272. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G.K.; Pazgier, M.; DeVico, A.L. Survivors Remorse: Antibody-mediated Protection against HIV-1. Immunol. Rev. 2017, 275, 271–284. [Google Scholar] [CrossRef] [PubMed]
- Hsu, D.C.; O’Connell, R.J. Progress in HIV Vaccine Development. Hum. Vaccin. Immunother. 2017, 13, 1018–1030. [Google Scholar] [CrossRef] [PubMed]
- Korber, B.; Gaschen, B.; Yusim, K.; Thakallapally, R.; Kesmir, C.; Detours, V. Evolutionary and Immunological Implications of Contemporary HIV-1 Variation. Br. Med. Bull. 2001, 58, 19–42. [Google Scholar] [CrossRef] [PubMed]
- Lynch, R.M.; Shen, T.; Gnanakaran, S.; Derdeyn, C.A. Appreciating HIV Type 1 Diversity: Subtype Differences in Env. AIDS Res. Hum. Retroviruses 2009, 25, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Gräf, T.; Bello, G.; Andrade, P.; Arantes, I.; Pereira, J.M.; Bonfim, A.; Da Silva, P.; Veiga, R.V.; Mariani, D.; Boullosa, L.T.; et al. HIV-1 Molecular Diversity in Brazil Unveiled by 10 Years of Sampling by the National Genotyping Network. Sci. Rep. 2021, 11, 15842. [Google Scholar] [CrossRef] [PubMed]
- Krzywoszyńska, K.; Swiątek-Kozłowska, J.; Potocki, S.; Ostrowska, M.; Kozłowski, H. Triplet of Cysteines—Coordinational Riddle? J. Inorg. Biochem. 2020, 204, 110957. [Google Scholar] [CrossRef] [PubMed]
- Savoret, J.; Mesnard, J.M.; Gross, A.; Chazal, N. Antisense Transcripts and Antisense Protein: A New Perspective on Human Immunodeficiency Virus Type 1. Front. Microbiol. 2021, 11, 625941. [Google Scholar] [CrossRef] [PubMed]
- Haynes, B.F.; Gilbert, P.B.; McElrath, M.J.; Zolla-Pazner, S.; Tomaras, G.D.; Alam, S.M.; Evans, D.T.; Montefiori, D.C.; Karnasuta, C.; Sutthent, R.; et al. Immune-Correlates Analysis of an HIV-1 Vaccine Efficacy Trial. N. Engl. J. Med. 2012, 366, 1275–1286. [Google Scholar] [CrossRef] [PubMed]
- Yates, N.L.; Liao, H.X.; Fong, Y.; DeCamp, A.; Vandergrift, N.A.; Williams, W.T.; Alam, S.M.; Ferrari, G.; Yang, Z.Y.; Seaton, K.E.; et al. Vaccine-Induced Env V1-V2 IgG3 Correlates with Lower HIV-1 Infection Risk and Declines Soon after Vaccination. Sci. Transl. Med. 2014, 6, 228ra39. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caetano, D.G.; Napoleão-Pêgo, P.; Villela, L.M.; Côrtes, F.H.; Cardoso, S.W.; Hoagland, B.; Grinsztejn, B.; Veloso, V.G.; De-Simone, S.G.; Guimarães, M.L. Patterns of Diversity and Humoral Immunogenicity for HIV-1 Antisense Protein (ASP). Vaccines 2024, 12, 771. https://doi.org/10.3390/vaccines12070771
Caetano DG, Napoleão-Pêgo P, Villela LM, Côrtes FH, Cardoso SW, Hoagland B, Grinsztejn B, Veloso VG, De-Simone SG, Guimarães ML. Patterns of Diversity and Humoral Immunogenicity for HIV-1 Antisense Protein (ASP). Vaccines. 2024; 12(7):771. https://doi.org/10.3390/vaccines12070771
Chicago/Turabian StyleCaetano, Diogo Gama, Paloma Napoleão-Pêgo, Larissa Melo Villela, Fernanda Heloise Côrtes, Sandra Wagner Cardoso, Brenda Hoagland, Beatriz Grinsztejn, Valdilea Gonçalves Veloso, Salvatore Giovanni De-Simone, and Monick Lindenmeyer Guimarães. 2024. "Patterns of Diversity and Humoral Immunogenicity for HIV-1 Antisense Protein (ASP)" Vaccines 12, no. 7: 771. https://doi.org/10.3390/vaccines12070771
APA StyleCaetano, D. G., Napoleão-Pêgo, P., Villela, L. M., Côrtes, F. H., Cardoso, S. W., Hoagland, B., Grinsztejn, B., Veloso, V. G., De-Simone, S. G., & Guimarães, M. L. (2024). Patterns of Diversity and Humoral Immunogenicity for HIV-1 Antisense Protein (ASP). Vaccines, 12(7), 771. https://doi.org/10.3390/vaccines12070771