Safety and Efficacy of Antiviral Drugs and Vaccines in Pregnant Women: Insights from Physiologically Based Pharmacokinetic Modeling and Integration of Viral Infection Dynamics
Abstract
:1. Medication Use in Pregnancy: Navegating Challenges, Considerations, Strategies, and the Pursuit of Optimal Health Outcomes
2. Viral Infections Relevant to Pregnancy
2.1. Human Immunodeficiency Virus (HIV) in Pregnancy
2.2. Hepatitis B and C Virus (HBV and HCV) in Pregnancy
2.3. Influenza in Pregnancy
2.4. Cytomegalovirus (CMV) in Pregnancy
2.5. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in Pregnancy
3. Overview of Antiviral Treatment in Pregnant Women: Safety and Efficacy Considerations
3.1. Treatment and Management of HIV
3.2. Treatment and Management HBV and HCV
3.3. Treatment and Management of Influenza
3.4. Treatment and Management of CMV
3.5. Treatment and Management of SARS-CoV-2
3.6. Importance of Careful Dosage Determination and Adherence
4. Vaccines and Pregnant Population: Emerging Areas and Strategies
5. Understanding the Pharmacokinetics and Pharmacodynamics of Antiviral Medications and Vaccines in Pregnant Women
5.1. Leveraging In Vitro Studies
5.2. PK/PBPK Modeling of Antiviral Drugs in Pregnancy
5.3. Integration of Viral Dynamics
5.4. Machine Learning, and Causal Inference Technique
6. Future Considerations
Author Contributions
Funding
Conflicts of Interest
References
- Mitchell, A.A.; Gilboa, S.M.; Werler, M.M.; Kelley, K.E.; Louik, C.; Hernández-Díaz, S. Medication Use during Pregnancy, with Particular Focus on Prescription Drugs: 1976–2008. Am. J. Obstet. Gynecol. 2011, 205, 51.e1–51.e8. [Google Scholar] [CrossRef]
- Wesley, B.D.; Sewell, C.A.; Chang, C.Y.; Hatfield, K.P.; Nguyen, C.P. Prescription Medications for Use in Pregnancy–Perspective from the US Food and Drug Administration. Am. J. Obstet. Gynecol. 2021, 225, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control. Research on Medicines and Pregnancy. Available online: https://www.cdc.gov/medicine-and-pregnancy/research/?CDC_AAref_Val=https://www.cdc.gov/pregnancy/meds/treatingfortwo/research.html (accessed on 29 April 2024).
- Werler, M.M.; Kerr, S.M.; Ailes, E.C.; Reefhuis, J.; Gilboa, S.M.; Browne, M.L.; Kelley, K.E.; Hernandez-Diaz, S.; Smith-Webb, R.S.; Garcia, M.H.; et al. Patterns of Prescription Medication Use during the First Trimester of Pregnancy in the United States, 1997–2018. Clin. Pharmacol. Ther. 2023, 114, 836–844. [Google Scholar] [CrossRef]
- Desaunay, P.; Eude, L.-G.; Dreyfus, M.; Alexandre, C.; Fedrizzi, S.; Alexandre, J.; Uguz, F.; Guénolé, F. Benefits and Risks of Antidepressant Drugs During Pregnancy: A Systematic Review of Meta-Analyses. Pediatr. Drugs 2023, 25, 247–265. [Google Scholar] [CrossRef]
- Subramanian, A.; Azcoaga-Lorenzo, A.; Anand, A.; Phillips, K.; Lee, S.I.; Cockburn, N.; Fagbamigbe, A.F.; Damase-Michel, C.; Yau, C.; McCowan, C.; et al. Polypharmacy during Pregnancy and Associated Risk Factors: A Retrospective Analysis of 577 Medication Exposures among 1.5 Million Pregnancies in the UK, 2000–2019. BMC Med. 2023, 21, 21. [Google Scholar] [CrossRef] [PubMed]
- Macklin, R. Enrolling Pregnant Women in Biomedical Research. Lancet 2010, 375, 632–633. [Google Scholar] [CrossRef]
- Shields, K.E.; Lyerly, A.D. Exclusion of Pregnant Women From Industry-Sponsored Clinical Trials. Obstet. Gynecol. 2013, 122, 1077–1081. [Google Scholar] [CrossRef]
- Guinn, D.; Sahin, L.; Fletcher, E.P.; Choi, S.; Johnson, T.; Dinatale, M.; Baisden, K.; Sun, W.; Pillai, V.C.; Morales, J.P.; et al. Pharmacokinetic Evaluation in Pregnancy—Current Status and Future Considerations: Workshop Summary. J. Clin. Pharmacol. 2023, 63, S7–S17. [Google Scholar] [CrossRef]
- Chaphekar, N.; Dodeja, P.; Shaik, I.H.; Caritis, S.; Venkataramanan, R. Maternal-Fetal Pharmacology of Drugs: A Review of Current Status of the Application of Physiologically Based Pharmacokinetic Models. Front. Pediatr. 2021, 9, 733823. [Google Scholar] [CrossRef]
- Sachdeva, P.; Patel, B.; Patel, B. Drug Use in Pregnancy; a Point to Ponder! Indian J. Pharm. Sci. 2009, 71, 1. [Google Scholar] [CrossRef]
- McKiever, M.; Frey, H.; Costantine, M.M. Challenges in Conducting Clinical Research Studies in Pregnant Women. J. Pharmacokinet. Pharmacodyn. 2020, 47, 287–293. [Google Scholar] [CrossRef]
- Feghali, M.; Venkataramanan, R.; Caritis, S. Pharmacokinetics of Drugs in Pregnancy. Semin. Perinatol. 2015, 39, 512–519. [Google Scholar] [CrossRef]
- Costantine, M.M. Physiologic and Pharmacokinetic Changes in Pregnancy. Front. Pharmacol. 2014, 5, 65. [Google Scholar] [CrossRef]
- Sheffield, J.S.; Siegel, D.; Mirochnick, M.; Heine, R.P.; Nguyen, C.; Bergman, K.L.; Savic, R.M.; Long, J.; Dooley, K.E.; Nesin, M. Designing Drug Trials: Considerations for Pregnant Women. Clin. Infect. Dis. 2014, 59, S437–S444. [Google Scholar] [CrossRef]
- Morgan, M.A.; Cragan, J.D.; Goldenberg, R.L.; Rasmussen, S.A.; Schulkin, J. Obstetrician–Gynaecologist Knowledge of and Access to Information about the Risks of Medication Use during Pregnancy. J. Matern. Fetal Neonatal Med. 2010, 23, 1143–1150. [Google Scholar] [CrossRef]
- Lynch, M.M.; Amoozegar, J.B.; McClure, E.M.; Squiers, L.B.; Broussard, C.S.; Lind, J.N.; Polen, K.N.; Frey, M.T.; Gilboa, S.M.; Biermann, J. Improving Safe Use of Medications During Pregnancy: The Roles of Patients, Physicians, and Pharmacists. Qual. Health Res. 2017, 27, 2071–2080. [Google Scholar] [CrossRef]
- Physiologically Based Pharmacokinetic Model Informed Framework to Prioritize Drugs to Be Studied in Pregnant Population. Available online: https://www.fda.gov/science-research/advancing-regulatory-science/physiologically-based-pharmacokinetic-model-informed-framework-prioritize-drugs-be-studied-pregnant (accessed on 29 April 2024).
- Pariente, G.; Leibson, T.; Carls, A.; Adams-Webber, T.; Ito, S.; Koren, G. Pregnancy-Associated Changes in Pharmacokinetics: A Systematic Review. PLoS Med. 2016, 13, e1002160. [Google Scholar] [CrossRef]
- Eke, A.C.; Gebreyohannes, R.D.; Fernandes, M.F.S.; Pillai, V.C. Physiologic Changes During Pregnancy and Impact on Small-Molecule Drugs, Biologic (Monoclonal Antibody) Disposition, and Response. J. Clin. Pharmacol. 2023, 63, S34–S50. [Google Scholar] [CrossRef]
- Hudson, R.E.; Metz, T.D.; Ward, R.M.; McKnite, A.M.; Enioutina, E.Y.; Sherwin, C.M.; Watt, K.M.; Job, K.M. Drug Exposure during Pregnancy: Current Understanding and Approaches to Measure Maternal-Fetal Drug Exposure. Front. Pharmacol. 2023, 14, 1111601. [Google Scholar] [CrossRef]
- Yu, W.; Hu, X.; Cao, B. Viral Infections During Pregnancy: The Big Challenge Threatening Maternal and Fetal Health. Matern. Fetal Med. 2022, 4, 72–86. [Google Scholar] [CrossRef]
- Kumar, M.; Saadaoui, M.; Al Khodor, S. Infections and Pregnancy: Effects on Maternal and Child Health. Front. Cell. Infect. Microbiol. 2022, 12, 873253. [Google Scholar] [CrossRef] [PubMed]
- Beltrami, S.; Rizzo, S.; Schiuma, G.; Speltri, G.; Di Luca, D.; Rizzo, R.; Bortolotti, D. Gestational Viral Infections: Role of Host Immune System. Microorganisms 2023, 11, 1637. [Google Scholar] [CrossRef]
- Eke, A.C.; Mirochnick, M.; Lockman, S. Antiretroviral Therapy and Adverse Pregnancy Outcomes in People Living with HIV. N. Engl. J. Med. 2023, 388, 344–356. [Google Scholar] [CrossRef]
- Auriti, C.; De Rose, D.U.; Santisi, A.; Martini, L.; Piersigilli, F.; Bersani, I.; Ronchetti, M.P.; Caforio, L. Pregnancy and Viral Infections: Mechanisms of Fetal Damage, Diagnosis and Prevention of Neonatal Adverse Outcomes from Cytomegalovirus to SARS-CoV-2 and Zika Virus. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2021, 1867, 166198. [Google Scholar] [CrossRef]
- Cerveny, L.; Murthi, P.; Staud, F. HIV in Pregnancy: Mother-to-Child Transmission, Pharmacotherapy, and Toxicity. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2021, 1867, 166206. [Google Scholar] [CrossRef]
- Westin, A.A.; Reimers, A.; Spigset, O. Should Pregnant Women Receive Lower or Higher Medication Doses? Tidsskr. Nor. Legeforening 2018, 138, 1–8. [Google Scholar] [CrossRef]
- Pregnancy: Diagnosis, Physiology, and Care. Available online: https://www.lecturio.com/concepts/pregnancy-diagnosis-maternal-physiology-and-routine-care/ (accessed on 3 May 2024).
- Gallo, R.C.; Montagnier, L. The Chronology of AIDS Research. Nature 1987, 326, 435–436. [Google Scholar] [CrossRef]
- Okoye, A.A.; Picker, L.J. CD4+ T Cell Depletion in HIV Infection: Mechanisms of Immunological Failure. Immunol. Rev. 2013, 254, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, D.N.; Vieira, N.; Hønge, B.L.; da Silva Té, D.; Jespersen, S.; Bjerregaard-Andersen, M.; Oliveira, I.; Furtado, A.; Gomes, M.A.; Sodemann, M.; et al. HIV-1 and HIV-2 Prevalence, Risk Factors and Birth Outcomes among Pregnant Women in Bissau, Guinea-Bissau: A Retrospective Cross-Sectional Hospital Study. Sci. Rep. 2020, 10, 12174. [Google Scholar] [CrossRef] [PubMed]
- King, C.C.; Ellington, S.R.; Kourtis, A.P. The Role of Co-Infections in Mother-to-Child Transmission of HIV. Curr. HIV Res. 2013, 11, 10–23. [Google Scholar] [CrossRef]
- Ngo-Giang-Huong, N.; Khamduang, W.; Leurent, B.; Collins, I.; Nantasen, I.; Leechanachai, P.; Sirirungsi, W.; Limtrakul, A.; Leusaree, T.; Comeau, A.M.; et al. Early HIV-1 Diagnosis Using In-House Real-Time PCR Amplification on Dried Blood Spots for Infants in Remote and Resource-Limited Settings. JAIDS J. Acquir. Immune Defic. Syndr. 2008, 49, 465–471. [Google Scholar] [CrossRef]
- Ochodo, E.A.; Guleid, F.; Deeks, J.J.; Mallett, S. Point-of-Care Tests Detecting HIV Nucleic Acids for Diagnosis of HIV-1 or HIV-2 Infection in Infants and Children Aged 18 Months or Less. Cochrane Database Syst. Rev. 2021, 2021, CD013207. [Google Scholar] [CrossRef]
- Ikumi, N.M.; Matjila, M. Preterm Birth in Women With HIV: The Role of the Placenta. Front. Glob. Womens Health 2022, 3, 820759. [Google Scholar] [CrossRef]
- Hindle, S.; Brien, M.-È.; Pelletier, F.; Giguère, F.; Trudel, M.J.; Dal Soglio, D.; Kakkar, F.; Soudeyns, H.; Girard, S.; Boucoiran, I. Placenta Analysis of Hofbauer Cell Profile According to the Class of Antiretroviral Therapy Used during Pregnancy in People Living with HIV. Placenta 2023, 139, 120–126. [Google Scholar] [CrossRef]
- Amin, O.; Powers, J.; Bricker, K.M.; Chahroudi, A. Understanding Viral and Immune Interplay During Vertical Transmission of HIV: Implications for Cure. Front. Immunol. 2021, 12, 757400. [Google Scholar] [CrossRef]
- Eggleton, J.S.; Nagalli, S. Highly Active Antiretroviral Therapy (HAART); StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Demas, P.A.; Thea, D.M.; Weedon, J.; McWayne, J.; Bamji, M.; Lambert, G.; Schoenbaum, E.E. Adherence to Zidovudine for the Prevention of Perinatal Transmission in HIV-Infected Pregnant Women: The Impact of Social Network Factors, Side Effects, and Perceived Treatment Efficacy. Women Health 2005, 42, 99–115. [Google Scholar] [CrossRef] [PubMed]
- Mehrabi, F.; Karamouzian, M.; Farhoudi, B.; Moradi Falah Langeroodi, S.; Mehmandoost, S.; Abbaszadeh, S.; Motaghi, S.; Mirzazadeh, A.; Sadeghirad, B.; Sharifi, H. Comparison of Safety and Effectiveness of Antiretroviral Therapy Regimens among Pregnant Women Living with HIV at Preconception or during Pregnancy: A Systematic Review and Network Meta-Analysis of Randomized Trials. BMC Infect. Dis. 2024, 24, 417. [Google Scholar] [CrossRef] [PubMed]
- Dunkelberg, J.C.; Berkley, E.M.F.; Thiel, K.W.; Leslie, K.K. Hepatitis B and C in Pregnancy: A Review and Recommendations for Care. J. Perinatol. 2014, 34, 882–891. [Google Scholar] [CrossRef]
- Xu, W.-M.; Cui, Y.-T.; Wang, L.; Yang, H.; Liang, Z.-Q.; Li, X.-M.; Zhang, S.-L.; Qiao, F.-Y.; Campbell, F.; Chang, C.-N.; et al. Lamivudine in Late Pregnancy to Prevent Perinatal Transmission of Hepatitis B Virus Infection: A Multicentre, Randomized, Double-blind, Placebo-controlled Study. J. Viral Hepat. 2009, 16, 94–103. [Google Scholar] [CrossRef]
- Xu, D.; Yan, Y.; Choi, B.C.K.; Xu, J.; Men, K.; Zhang, J.; Liu, Z.; Wang, F. Risk Factors and Mechanism of Transplacental Transmission of Hepatitis B Virus: A Case-control Study. J. Med. Virol. 2002, 67, 20–26. [Google Scholar] [CrossRef]
- Zhou, Y.-H. Global Prevalence of Hepatitis B Virus Infection and Prevention of Mother-to-Child Transmission. Lancet Gastroenterol. Hepatol. 2018, 3, 598. [Google Scholar] [CrossRef]
- Navabakhsh, B.; Mehrabi, N.; Estakhri, A.; Mohamadnejad, M.; Poustchi, H. Hepatitis B Virus Infection during Pregnancy: Transmission and Prevention. Middle East J. Dig. Dis. 2011, 3, 92–102. [Google Scholar]
- Cheung, K.W.; Lao, T.T.-H. Hepatitis B—Vertical Transmission and the Prevention of Mother-to-Child Transmission. Best Pract. Res. Clin. Obstet. Gynaecol. 2020, 68, 78–88. [Google Scholar] [CrossRef]
- Zhao, X.; Bai, X.; Xi, Y. Intrauterine Infection and Mother-to-Child Transmission of Hepatitis B Virus: Route and Molecular Mechanism. Infect. Drug Resist. 2022, 15, 1743–1751. [Google Scholar] [CrossRef]
- Huang, Q.; Hang, L.; Zhong, M.; Gao, Y.; Luo, M.; Yu, Y. Maternal HCV Infection Is Associated with Intrauterine Fetal Growth Disturbance. Medicine 2016, 95, e4777. [Google Scholar] [CrossRef]
- Pembrey, L.; Newell, M.-L.; Tovo, P.-A.; The EPHN Collaborators. The Management of HCV Infected Pregnant Women and Their Children European Paediatric HCV Network. J. Hepatol. 2005, 43, 515–525. [Google Scholar] [CrossRef]
- Babik, J.M.; Cohan, D.; Monto, A.; Hartigan-O’Connor, D.J.; McCune, J.M. The Human Fetal Immune Response to Hepatitis C Virus Exposure in Utero. J. Infect. Dis. 2011, 203, 196–206. [Google Scholar] [CrossRef]
- Dal Molin, G.; D’Agaro, P.; Ansaldi, F.; Ciana, G.; Fertz, C.; Alberico, S.; Campello, C. Mother-to-infant Transmission of Hepatitis C Virus: Rate of Infection and Assessment of Viral Load and IgM Anti-HCV as Risk Factors*. J. Med. Virol. 2002, 67, 137–142. [Google Scholar] [CrossRef]
- El-Shabrawi, M.H.F.; Kamal, N.M.; Mogahed, E.A.; Elhusseini, M.A.; Aljabri, M.F. Perinatal Transmission of Hepatitis C Virus: An Update. Arch. Med. Sci. 2020, 16, 1360–1369. [Google Scholar] [CrossRef]
- Hayashida, A.; Inaba, N.; Oshima, K.; Nishikawa, M.; Shoda, A.; Hayashida, S.; Negishi, M.; Inaba, F.; Inaba, M.; Fukasawa, I.; et al. Re-evaluation of the True Rate of Hepatitis C Virus Mother-to-child Transmission and Its Novel Risk Factors Based on Our Two Prospective Studies. J. Obstet. Gynaecol. Res. 2007, 33, 417–422. [Google Scholar] [CrossRef]
- Seitz, R.; Heiden, M.; Offergeld, R.; Burger, R. Influenza Virus. Transfus. Med. Hemother. 2009, 36, 32–39. [Google Scholar] [CrossRef]
- New Study Finds Influenza during Pregnancy Is Associated with Increased Risk of Pregnancy Loss and Reduced Birthweight. Available online: https://www.cdc.gov/flu/spotlights/2020-2021/influenza-pregnancy-loss.htm (accessed on 29 April 2024).
- Gozde Kanmaz, H.; Erdeve, O.; Suna Oğz, S.; Uras, N.; Çelen, Ş.; Korukluoglu, G.; Zergeroglu, S.; Kara, A.; Dilmen, U. Placental Transmission of Novel Pandemic Influenza a Virus. Fetal Pediatr. Pathol. 2011, 30, 280–285. [Google Scholar] [CrossRef]
- Sappenfield, E.; Jamieson, D.J.; Kourtis, A.P. Pregnancy and Susceptibility to Infectious Diseases. Infect. Dis. Obstet. Gynecol. 2013, 2013, 1–8. [Google Scholar] [CrossRef]
- Giri, T.; Panda, S.; Kelly, J.C.; Pancaro, C.; Palanisamy, A. Upregulated Influenza A Viral Entry Factors and Enhanced Interferon-Alpha Response in the Nasal Epithelium of Pregnant Rats. Heliyon 2022, 8, e09407. [Google Scholar] [CrossRef]
- Weckman, A.M.; Ngai, M.; Wright, J.; McDonald, C.R.; Kain, K.C. The Impact of Infection in Pregnancy on Placental Vascular Development and Adverse Birth Outcomes. Front. Microbiol. 2019, 10, 1924. [Google Scholar] [CrossRef]
- Oseghale, O.; Vlahos, R.; O’Leary, J.J.; Brooks, R.D.; Brooks, D.A.; Liong, S.; Selemidis, S. Influenza Virus Infection during Pregnancy as a Trigger of Acute and Chronic Complications. Viruses 2022, 14, 2729. [Google Scholar] [CrossRef]
- Shi, L.; Fatemi, S.H.; Sidwell, R.W.; Patterson, P.H. Maternal Influenza Infection Causes Marked Behavioral and Pharmacological Changes in the Offspring. J. Neurosci. 2003, 23, 297–302. [Google Scholar] [CrossRef]
- Liong, S.; Oseghale, O.; To, E.E.; Brassington, K.; Erlich, J.R.; Luong, R.; Liong, F.; Brooks, R.; Martin, C.; O’Toole, S.; et al. Influenza A Virus Causes Maternal and Fetal Pathology via Innate and Adaptive Vascular Inflammation in Mice. Proc. Natl. Acad. Sci. USA 2020, 117, 24964–24973. [Google Scholar] [CrossRef]
- Lim, B.H.; Mahmood, T.A. Influenza A H1N1 2009 (Swine Flu) and Pregnancy. J. Obstet. Gynecol. India 2011, 61, 386. [Google Scholar] [CrossRef]
- Lopatynsky-Reyes, E.Z.; Chacon-Cruz, E.; Greenberg, M.; Clemens, R.; Costa Clemens, S.A. Influenza Vaccination during Pregnancy: A Descriptive Study of the Knowledge, Beliefs, and Practices of Mexican Gynecologists and Family Physicians. Vaccines 2023, 11, 1383. [Google Scholar] [CrossRef]
- Arvin, A.; Campadelli-Fiume, G.; Mocarski, E.; Moore, P.S. Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis; Cambridge University Press: Cambridge, UK, 2007; ISBN 9780521827140. [Google Scholar]
- Gugliesi, F.; Coscia, A.; Griffante, G.; Galitska, G.; Pasquero, S.; Albano, C.; Biolatti, M. Where Do We Stand after Decades of Studying Human Cytomegalovirus? Microorganisms 2020, 8, 685. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.; Anderson, B.; Pass, R.F. Prevention of Maternal and Congenital Cytomegalovirus Infection. Clin. Obstet. Gynecol. 2012, 55, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Ben Shoham, A.; Schlesinger, Y.; Miskin, I.; Kalderon, Z.; Michaelson-Cohen, R.; Wiener-Well, Y. Cytomegalovirus (CMV) Seroprevalence among Women at Childbearing Age, Maternal and Congenital CMV Infection: Policy Implications of a Descriptive, Retrospective, Community-Based Study. Isr. J. Health Policy Res. 2023, 12, 16. [Google Scholar] [CrossRef] [PubMed]
- Britt, W. Maternal Immunity and the Natural History of Congenital Human Cytomegalovirus Infection. Viruses 2018, 10, 405. [Google Scholar] [CrossRef] [PubMed]
- Njue, A.; Coyne, C.; Margulis, A.V.; Wang, D.; Marks, M.A.; Russell, K.; Das, R.; Sinha, A. The Role of Congenital Cytomegalovirus Infection in Adverse Birth Outcomes: A Review of the Potential Mechanisms. Viruses 2020, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.; Petitt, M.; Tabata, T. Cytomegalovirus Infection and Antibody Protection of the Developing Placenta. Clin. Infect. Dis. 2013, 57 (Suppl. S4), S174–S177. [Google Scholar] [CrossRef] [PubMed]
- Schleiss, M.R. Congenital Cytomegalovirus: Impact on Child Health. Contemp. Pediatr. 2018, 35, 16–24. [Google Scholar] [PubMed]
- Kabani, N.; Ross, S.A. Congenital Cytomegalovirus Infection. J. Infect. Dis. 2020, 221, S9–S14. [Google Scholar] [CrossRef] [PubMed]
- Rawlinson, W.D.; Boppana, S.B.; Fowler, K.B.; Kimberlin, D.W.; Lazzarotto, T.; Alain, S.; Daly, K.; Doutré, S.; Gibson, L.; Giles, M.L.; et al. Congenital Cytomegalovirus Infection in Pregnancy and the Neonate: Consensus Recommendations for Prevention, Diagnosis, and Therapy. Lancet Infect. Dis. 2017, 17, e177–e188. [Google Scholar] [CrossRef]
- Leber, A.L. Maternal and Congenital Human Cytomegalovirus Infection: Laboratory Testing for Detection and Diagnosis. J. Clin. Microbiol. 2024, 62, e00313-23. [Google Scholar] [CrossRef]
- Zammarchi, L.; Lazzarotto, T.; Andreoni, M.; Campolmi, I.; Pasquini, L.; Di Tommaso, M.; Simonazzi, G.; Tomasoni, L.R.; Castelli, F.; Galli, L.; et al. Management of Cytomegalovirus Infection in Pregnancy: Is It Time for Valacyclovir? Clin. Microbiol. Infect. 2020, 26, 1151–1154. [Google Scholar] [CrossRef] [PubMed]
- Rybak-Krzyszkowska, M.; Górecka, J.; Huras, H.; Massalska-Wolska, M.; Staśkiewicz, M.; Gach, A.; Kondracka, A.; Staniczek, J.; Górczewski, W.; Borowski, D.; et al. Cytomegalovirus Infection in Pregnancy Prevention and Treatment Options: A Systematic Review and Meta-Analysis. Viruses 2023, 15, 2142. [Google Scholar] [CrossRef] [PubMed]
- Nigro, G.; Muselli, M. Prevention of Congenital Cytomegalovirus Infection: Review and Case Series of Valaciclovir versus Hyperimmune Globulin Therapy. Viruses 2023, 15, 1376. [Google Scholar] [CrossRef]
- Sartori, P.; Baud, D.; de Tejada, B.M.; Farin, A.; Rossier, M.-C.; Rieder, W.; Rouiller, S.; Robyr, R.; Grant, G.; Eggel, B.; et al. Cytomegalovirus Infection during Pregnancy: Cross-Sectional Survey of Knowledge and Prevention Practices of Healthcare Professionals in French-Speaking Switzerland. Virol. J. 2024, 21, 45. [Google Scholar] [CrossRef] [PubMed]
- Greye, H.; Henning, S.; Freese, K.; Köhn, A.; Lux, A.; Radusch, A.; Redlich, A.; Schleef, D.; Seeger, S.; Thäle, V.; et al. Cross-Sectional Study to Assess Awareness of Cytomegalovirus Infection among Pregnant Women in Germany. BMC Pregnancy Childbirth 2022, 22, 964. [Google Scholar] [CrossRef] [PubMed]
- Nyholm, J.L.; Schleiss, M.R. Schleiss Prevention of Maternal Cytomegalovirus Infection: Current Status and Future Prospects. Int. J. Womens Health 2010, 2, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Paules, C.I.; Marston, H.D.; Fauci, A.S. Coronavirus Infections—More Than Just the Common Cold. JAMA 2020, 323, 707. [Google Scholar] [CrossRef]
- Pal, M.; Berhanu, G.; Desalegn, C.; Kandi, V. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): An Update. Cureus 2020, 12, e7423. [Google Scholar] [CrossRef] [PubMed]
- Ponprabha, R.; Thiagarajan, S.; Balamurugesan, K.; Davis, P. A Clinical Retrospective Study on the Transmission of COVID-19 From Mothers to Their Newborn and Its Outcome. Cureus 2022, 14, e20963. [Google Scholar] [CrossRef]
- Olivini, N.; Calò Carducci, F.I.; Santilli, V.; De Ioris, M.A.; Scarselli, A.; Alario, D.; Geremia, C.; Lombardi, M.H.; Marabotto, C.; Mariani, R.; et al. A Neonatal Cluster of Novel Coronavirus Disease 2019: Clinical Management and Considerations. Ital. J. Pediatr. 2020, 46, 180. [Google Scholar] [CrossRef]
- Moza, A.; Duica, F.; Antoniadis, P.; Bernad, E.S.; Lungeanu, D.; Craina, M.; Bernad, B.C.; Paul, C.; Muresan, C.; Nitu, R.; et al. Outcome of Newborns with Confirmed or Possible SARS-CoV-2 Vertical Infection—A Scoping Review. Diagnostics 2023, 13, 245. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.P.; Tan, G.C.; Omar, S.Z.; Mustangin, M.; Singh, Y.; Salker, M.S.; Abd Aziz, N.H.; Shafiee, M.N. SARS-CoV-2 Infection in Pregnancy: Placental Histomorphological Patterns, Disease Severity and Perinatal Outcomes. Int. J. Environ. Res. Public Health 2022, 19, 9517. [Google Scholar] [CrossRef]
- Celik, E.; Vatansever, C.; Ozcan, G.; Kapucuoglu, N.; Alatas, C.; Besli, Y.; Palaoglu, E.; Gursoy, T.; Manici, M.; Turgal, M.; et al. Placental Deficiency during Maternal SARS-CoV-2 Infection. Placenta 2022, 117, 47–56. [Google Scholar] [CrossRef]
- Garcia-Flores, V.; Romero, R.; Xu, Y.; Theis, K.R.; Arenas-Hernandez, M.; Miller, D.; Peyvandipour, A.; Bhatti, G.; Galaz, J.; Gershater, M.; et al. Maternal-Fetal Immune Responses in Pregnant Women Infected with SARS-CoV-2. Nat. Commun. 2022, 13, 320. [Google Scholar] [CrossRef] [PubMed]
- DeBolt, C.A.; Bianco, A.; Limaye, M.A.; Silverstein, J.; Penfield, C.A.; Roman, A.S.; Rosenberg, H.M.; Ferrara, L.; Lambert, C.; Khoury, R.; et al. Pregnant Women with Severe or Critical Coronavirus Disease 2019 Have Increased Composite Morbidity Compared with Nonpregnant Matched Controls. Am. J. Obstet. Gynecol. 2021, 224, 510.e1–510.e12. [Google Scholar] [CrossRef] [PubMed]
- Novillo, B.; Martínez-Varea, A. COVID-19 Vaccines during Pregnancy and Breastfeeding: A Systematic Review. J. Pers. Med. 2022, 13, 40. [Google Scholar] [CrossRef] [PubMed]
- Racicot, K.; Mor, G. Risks Associated with Viral Infections during Pregnancy. J. Clin. Investig. 2017, 127, 1591–1599. [Google Scholar] [CrossRef]
- Recommendations for the Use of Antiretroviral Drugs During Pregnancy. Available online: https://clinicalinfo.hiv.gov/en/guidelines/perinatal/recommendations-arv-drugs-pregnancy-overview#:~:text=Overview,-Panel’s%20Recommendations&text=All%20pregnant%20people%20with%20HIV,and%20sexual%20transmission%20(AI) (accessed on 1 May 2024).
- Rasi, V.; Peters, H.; Sconza, R.; Francis, K.; Bukasa, L.; Thorne, C.; Cortina-Borja, M. Trends in Antiretroviral Use in Pregnancy in the UK and Ireland, 2008–2018. HIV Med. 2022, 23, 397–405. [Google Scholar] [CrossRef]
- Musanhu, C.C.C.; Takarinda, K.C.; Shea, J.; Chitsike, I.; Eley, B. Viral Load Testing among Pregnant Women Living with HIV in Mutare District of Manicaland Province, Zimbabwe. AIDS Res. Ther. 2022, 19, 52. [Google Scholar] [CrossRef]
- Fassinou, L.C.; Songwa Nkeunang, D.; Delvaux, T.; Nagot, N.; Kirakoya-Samadoulougou, F. Adherence to Option B + Antiretroviral Therapy and Associated Factors in Pregnant and Breastfeeding Women in Sub-Saharan Africa: A Systematic Review and Meta-Analysis. BMC Public Health 2024, 24, 94. [Google Scholar] [CrossRef]
- Huntington, S.E.; Bansi, L.K.; Thorne, C.; Anderson, J.; Newell, M.-L.; Taylor, G.P.; Pillay, D.; Hill, T.; Tookey, P.A.; Sabin, C.A. Treatment Switches during Pregnancy among HIV-Positive Women on Antiretroviral Therapy at Conception. AIDS 2011, 25, 1647–1655. [Google Scholar] [CrossRef] [PubMed]
- Foster, E.G.; Gendelman, H.E.; Bade, A.N. HIV-1 Integrase Strand Transfer Inhibitors and Neurodevelopment. Pharmaceuticals 2022, 15, 1533. [Google Scholar] [CrossRef] [PubMed]
- Gilleece, D.Y.; Tariq, D.S.; Bamford, D.A.; Bhagani, D.S.; Byrne, D.L.; Clarke, D.E.; Clayden, M.P.; Lyall, D.H.; Metcalfe, D.R.; Palfreeman, D.A.; et al. British HIV Association Guidelines for the Management of HIV in Pregnancy and Postpartum 2018. HIV Med. 2019, 20, S2–S85. [Google Scholar] [CrossRef] [PubMed]
- Taramasso, L.; Bovis, F.; Di Biagio, A.; Mignone, F.; Giaquinto, C.; Tagliabue, C.; Giacomet, V.; Genovese, O.; Chiappini, E.; Salomè, S.; et al. Intrapartum Use of Zidovudine in a Large Cohort of Pregnant Women Living with HIV in Italy. J. Infect. 2022, 85, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Lockman, S.; Brummel, S.S.; Ziemba, L.; Stranix-Chibanda, L.; McCarthy, K.; Coletti, A.; Jean-Philippe, P.; Johnston, B.; Krotje, C.; Fairlie, L.; et al. Efficacy and Safety of Dolutegravir with Emtricitabine and Tenofovir Alafenamide Fumarate or Tenofovir Disoproxil Fumarate, and Efavirenz, Emtricitabine, and Tenofovir Disoproxil Fumarate HIV Antiretroviral Therapy Regimens Started in Pregnancy (IMPAACT 2010/VESTED): A Multicentre, Open-Label, Randomised, Controlled, Phase 3 Trial. Lancet 2021, 397, 1276–1292. [Google Scholar] [CrossRef] [PubMed]
- Thimm, M.A.; Livingston, A.; Ramroop, R.; Eke, A.C. Pregnancy Outcomes in Pregnant Women with HIV on Tenofovir Disoproxil Fumarate (TDF) Compared to Tenofovir Alafenamide (TAF). J. AIDS HIV Treat. 2022, 4, 6–13. [Google Scholar] [PubMed]
- Delicio, A.M.; Lajos, G.J.; Amaral, E.; Lopes, F.; Cavichiolli, F.; Myioshi, I.; Milanez, H. Adverse Effects of Antiretroviral Therapy in Pregnant Women Infected with HIV in Brazil from 2000 to 2015: A Cohort Study. BMC Infect. Dis. 2018, 18, 485. [Google Scholar] [CrossRef] [PubMed]
- Tukei, V.J.; Hoffman, H.J.; Greenberg, L.; Thabelo, R.; Nchephe, M.; Mots’oane, T.; Masitha, M.; Chabela, M.; Mokone, M.; Mofenson, L.; et al. Adverse Pregnancy Outcomes Among HIV-Positive Women in the Era of Universal Antiretroviral Therapy Remain Elevated Compared With HIV-Negative Women. Pediatr. Infect. Dis. J. 2021, 40, 821–826. [Google Scholar] [CrossRef]
- Avulakunta, I.; Balasundaram, P.; Rechnitzer, A.; Morgan-Joseph, T.; Nafday, S. A Improving Birth-Dose Hepatitis-B Vaccination in a Tertiary Level IV Neonatal Intensive Care Unit. Pediatr. Qual. Saf. 2023, 8, e693. [Google Scholar] [CrossRef]
- Ayres, A.; Yuen, L.; Jackson, K.M.; Manoharan, S.; Glass, A.; Maley, M.; Yoo, W.; Hong, S.P.; Kim, S.-O.; Luciani, F.; et al. Short Duration of Lamivudine for the Prevention of Hepatitis B Virus Transmission in Pregnancy: Lack of Potency and Selection of Resistance Mutations. J. Viral Hepat. 2014, 21, 809–817. [Google Scholar] [CrossRef]
- Hu, Y.-H. Tenofovir Rescue Therapy in Pregnant Females with Chronic Hepatitis B. World J. Gastroenterol. 2015, 21, 2504. [Google Scholar] [CrossRef] [PubMed]
- Dionne-Odom, J.; Cozzi, G.D.; Franco, R.A.; Njei, B.; Tita, A.T.N. Treatment and Prevention of Viral Hepatitis in Pregnancy. Am. J. Obstet. Gynecol. 2022, 226, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Liu, H.; Tang, L.; Wang, F.; Tolufashe, G.; Chang, J.; Guo, J.-T. Mechanism of Interferon Alpha Therapy for Chronic Hepatitis B and Potential Approaches to Improve Its Therapeutic Efficacy. Antivir. Res. 2024, 221, 105782. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.W.; Lee, J.S.; Ahn, S.H. Hepatitis B Virus Cure: Targets and Future Therapies. Int. J. Mol. Sci. 2020, 22, 213. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Quadeer, A.A.; McKay, M.R. Direct-Acting Antiviral Resistance of Hepatitis C Virus Is Promoted by Epistasis. Nat. Commun. 2023, 14, 7457. [Google Scholar] [CrossRef]
- Freriksen, J.J.M.; van Seyen, M.; Judd, A.; Gibb, D.M.; Collins, I.J.; Greupink, R.; Russel, F.G.M.; Drenth, J.P.H.; Colbers, A.; Burger, D.M. Review Article: Direct-acting Antivirals for the Treatment of HCV during Pregnancy and Lactation—Implications for Maternal Dosing, Foetal Exposure, and Safety for Mother and Child. Aliment. Pharmacol. Ther. 2019, 50, 738–750. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Hiebert, L.; Armstrong, P.A.; Wester, C.; Ward, J.W. Hepatitis C in Pregnancy and the TiP-HepC Registry. Lancet Gastroenterol. Hepatol. 2022, 7, 598–599. [Google Scholar] [CrossRef] [PubMed]
- Recommendations for Obstetric Health Care Providers Related to Use of Antiviral Medications in the Treatment and Prevention of Influenza. Available online: https://www.cdc.gov/flu/professionals/antivirals/avrec_ob.htm#:~:text=For%20treatment%20of%20pregnant%20people,with%20oseltamivir%20is%205%20days (accessed on 1 May 2024).
- Goodrich, J.M. Ganciclovir Prophylaxis To Prevent Cytomegalovirus Disease after Allogeneic Marrow Transplant. Ann. Intern. Med. 1993, 118, 173. [Google Scholar] [CrossRef]
- De Santis, M.; Apicella, M.; De Luca, C.; D’Oria, L.; Valentini, P.; Sanguinetti, M.; Lanzone, A.; Scambia, G.; Santangelo, R.; Masini, L. Valacyclovir in Primary Maternal CMV Infection for Prevention of Vertical Transmission: A Case-Series. J. Clin. Virol. 2020, 127, 104351. [Google Scholar] [CrossRef]
- Contejean, A.; Leruez-Ville, M.; Treluyer, J.-M.; Tsatsaris, V.; Ville, Y.; Charlier, C.; Chouchana, L. Assessing the Risk of Adverse Pregnancy Outcomes and Birth Defects Reporting in Women Exposed to Ganciclovir or Valganciclovir during Pregnancy: A Pharmacovigilance Study. J. Antimicrob. Chemother. 2023, 78, 1265–1269. [Google Scholar] [CrossRef]
- Shahar-Nissan, K.; Pardo, J.; Peled, O.; Krause, I.; Bilavsky, E.; Wiznitzer, A.; Hadar, E.; Amir, J. Valaciclovir to Prevent Vertical Transmission of Cytomegalovirus after Maternal Primary Infection during Pregnancy: A Randomised, Double-Blind, Placebo-Controlled Trial. Lancet 2020, 396, 779–785. [Google Scholar] [CrossRef]
- Leruez-Ville, M.; Ghout, I.; Bussières, L.; Stirnemann, J.; Magny, J.-F.; Couderc, S.; Salomon, L.J.; Guilleminot, T.; Aegerter, P.; Benoist, G.; et al. In Utero Treatment of Congenital Cytomegalovirus Infection with Valacyclovir in a Multicenter, Open-Label, Phase II Study. Am. J. Obstet. Gynecol. 2016, 215, 462.e1–462.e10. [Google Scholar] [CrossRef]
- Nigro, G.; Torre, R.L.; Pentimalli, H.; Taverna, P.; Lituania, M.; de Tejada, B.M.; Adler, S.P. Regression of Fetal Cerebral Abnormalities by Primary Cytomegalovirus Infection Following Hyperimmunoglobulin Therapy. Prenat. Diagn. 2008, 28, 512–517. [Google Scholar] [CrossRef]
- Nigro, G.; Adler, S.P.; Gatta, E.; Mascaretti, G.; Megaloikonomou, A.; Torre, R.L.; Necozione, S. Fetal Hyperechogenic Bowel May Indicate Congenital Cytomegalovirus Disease Responsive to Immunoglobulin Therapy. J. Matern. Fetal Neonatal Med. 2012, 25, 2202–2205. [Google Scholar] [CrossRef]
- Chiaie, L.D.; Neuberger, P.; Vochem, M.; Lihs, A.; Karck, U.; Enders, M. No Evidence of Obstetrical Adverse Events after Hyperimmune Globulin Application for Primary Cytomegalovirus Infection in Pregnancy: Experience from a Single Centre. Arch. Gynecol. Obstet. 2018, 297, 1389–1395. [Google Scholar] [CrossRef]
- Seidel, V.; Hackelöer, M.; Rancourt, R.C.; Henrich, W.; Siedentopf, J.-P. Fetal and Maternal Outcome after Hyperimmunoglobulin Administration for Prevention of Maternal–Fetal Transmission of Cytomegalovirus during Pregnancy: Retrospective Cohort Analysis. Arch. Gynecol. Obstet. 2020, 302, 1353–1359. [Google Scholar] [CrossRef]
- Nigro, G.; Adler, S.P.; Lasorella, S.; Iapadre, G.; Maresca, M.; Mareri, A.; Di Paolantonio, C.; Catenaro, M.; Tambucci, R.; Mattei, I.; et al. High-Dose Cytomegalovirus (CMV) Hyperimmune Globulin and Maternal CMV DNAemia Independently Predict Infant Outcome in Pregnant Women With a Primary CMV Infection. Clin. Infect. Dis. 2020, 71, 1491–1498. [Google Scholar] [CrossRef] [PubMed]
- Adler, S.P. Screening for Cytomegalovirus during Pregnancy. Infect. Dis. Obstet. Gynecol. 2011, 2011, 942937. [Google Scholar] [CrossRef]
- Salomè, S.; Corrado, F.R.; Mazzarelli, L.L.; Maruotti, G.M.; Capasso, L.; Blazquez-Gamero, D.; Raimondi, F. Congenital Cytomegalovirus Infection: The State of the Art and Future Perspectives. Front. Pediatr. 2023, 11, 1276912. [Google Scholar] [CrossRef] [PubMed]
- Chandiwana, N.C.; Siedner, M.J.; Marconi, V.C.; Hill, A.; Ali, M.K.; Batterham, R.L.; Venter, W.D.F. Weight Gain After HIV Therapy Initiation: Pathophysiology and Implications. J. Clin. Endocrinol. Metab. 2024, 109, e478–e487. [Google Scholar] [CrossRef]
- Choodinatha, H.K.; Jeon, M.R.; Choi, B.Y.; Lee, K.-N.; Kim, H.J.; Park, J.Y. Cytomegalovirus Infection during Pregnancy. Obstet. Gynecol. Sci. 2023, 66, 463–476. [Google Scholar] [CrossRef] [PubMed]
- Arbabzadeh, T.; Masoumi Shahrbabak, M.; Pooransari, P.; Khatuni, M.; Mirzamoradi, M.; Saleh Gargari, S.; Naeiji, Z.; Rahmati, N.; Omidi, S.; Ebrahimi Meimand, F. Remdesivir in Pregnant Women with Moderate to Severe Coronavirus Disease 2019 (COVID-19): A Retrospective Cohort Study. Clin. Exp. Med. 2023, 23, 3709–3717. [Google Scholar] [CrossRef] [PubMed]
- Budi, D.S.; Pratama, N.R.; Wafa, I.A.; Putra, M.; Wardhana, M.P.; Wungu, C.D.K. Remdesivir for Pregnancy: A Systematic Review of Antiviral Therapy for COVID-19. Heliyon 2022, 8, e08835. [Google Scholar] [CrossRef] [PubMed]
- Reis, S.; Metzendorf, M.-I.; Kuehn, R.; Popp, M.; Gagyor, I.; Kranke, P.; Meybohm, P.; Skoetz, N.; Weibel, S. Nirmatrelvir Combined with Ritonavir for Preventing and Treating COVID-19. Cochrane Database Syst. Rev. 2023, 2023, CD015395. [Google Scholar] [CrossRef]
- Crispino, P.; Marocco, R.; Di Trento, D.; Guarisco, G.; Kertusha, B.; Carraro, A.; Corazza, S.; Pane, C.; Di Troia, L.; del Borgo, C.; et al. Use of Monoclonal Antibodies in Pregnant Women Infected by COVID-19: A Case Series. Microorganisms 2023, 11, 1953. [Google Scholar] [CrossRef] [PubMed]
- Magala Ssekandi, A.; Sserwanja, Q.; Olal, E.; Kawuki, J.; Bashir Adam, M. Corticosteroids Use in Pregnant Women with COVID-19: Recommendations from Available Evidence. J. Multidiscip. Healthc. 2021, 14, 659–663. [Google Scholar] [CrossRef] [PubMed]
- SeyedAlinaghi, S.; Mirzapour, P.; Pashaei, Z.; Afzalian, A.; Tantuoyir, M.M.; Salmani, R.; Maroufi, S.F.; Paranjkhoo, P.; Maroufi, S.P.; Badri, H.; et al. The Impacts of COVID-19 Pandemic on Service Delivery and Treatment Outcomes in People Living with HIV: A Systematic Review. AIDS Res. Ther. 2023, 20, 4. [Google Scholar] [CrossRef] [PubMed]
- Davies, A.; Mullin, S.; Chapman, S.; Barnard, K.; Bakhbakhi, D.; Ion, R.; Neuberger, F.; Standing, J.; Merriel, A.; Fraser, A.; et al. Interventions to Enhance Medication Adherence in Pregnancy- a Systematic Review. BMC Pregnancy Childbirth 2023, 23, 135. [Google Scholar] [CrossRef]
- Eke, A.C. Adherence Predictors in Pregnant Women Living with HIV on Tenofovir Alafenamide and Tenofovir Disoproxil Fumarate. J. Pharm. Drug. Res. 2022, 5, 585–593. [Google Scholar]
- Pinheiro, E.A.; Stika, C.S. Drugs in Pregnancy: Pharmacologic and Physiologic Changes That Affect Clinical Care. Semin. Perinatol. 2020, 44, 151221. [Google Scholar] [CrossRef]
- Wang, C.; Yang, H. SARS-CoV-2 Infection and Pregnancy: Clinical Update and Perspective. Chin. Med. J. 2023, 136, 1891–1893. [Google Scholar] [CrossRef] [PubMed]
- Badell, M.L.; Dude, C.M.; Rasmussen, S.A.; Jamieson, D.J. COVID-19 Vaccination in Pregnancy. BMJ 2022, 378, e069741. [Google Scholar] [CrossRef] [PubMed]
- Santi Laurini, G.; Montanaro, N.; Motola, D. Safety of COVID-19 Vaccines in Pregnancy: A VAERS Based Analysis. Eur. J. Clin. Pharmacol. 2023, 79, 657–661. [Google Scholar] [CrossRef] [PubMed]
- Veronese, P.; Dodi, I.; Esposito, S.; Indolfi, G. Prevention of Vertical Transmission of Hepatitis B Virus Infection. World J. Gastroenterol. 2021, 27, 4182–4193. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, D.M.; Fell, D.; Garritty, C.; Hamel, C.; Butler, C.; Hersi, M.; Ahmadzai, N.; Rice, D.B.; Esmaeilisaraji, L.; Michaud, A.; et al. Safety of Influenza Vaccination during Pregnancy: A Systematic Review. BMJ Open 2023, 13, e066182. [Google Scholar] [CrossRef]
- Rodríguez-Muñoz, M.F.; Martín-Martín, C.; Kovacheva, K.; Olivares, M.E.; Izquierdo, N.; Pérez-Romero, P.; García-Ríos, E. Hygiene-Based Measures for the Prevention of Cytomegalovirus Infection in Pregnant Women: A Systematic Review. BMC Pregnancy Childbirth 2024, 24, 172. [Google Scholar] [CrossRef] [PubMed]
- Dad, N.; Buhmaid, S.; Mulik, V. Vaccination in Pregnancy—The When, What and How? Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 265, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Saeed, Z.; Greer, O.; Shah, N.M. Is the Host Viral Response and the Immunogenicity of Vaccines Altered in Pregnancy? Antibodies 2020, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Goswami, R.; Pavon, C.G.; Miller, I.G.; Berendam, S.J.; Williams, C.A.; Rosenthal, D.; Gross, M.; Phan, C.; Byrd, A.; Pollara, J.; et al. Prenatal Immunization to Prevent Viral Disease Outcomes During Pregnancy and Early Life. Front. Virol. 2022, 2, 849995. [Google Scholar] [CrossRef]
- Kim, J.; Vasan, S.; Kim, J.H.; Ake, J.A. Current Approaches to HIV Vaccine Development: A Narrative Review. J. Int. AIDS Soc. 2021, 24, e25793. [Google Scholar] [CrossRef]
- Fortner, A.; Bucur, O. MRNA-Based Vaccine Technology for HIV. Discoveries 2022, 10, e150. [Google Scholar] [CrossRef] [PubMed]
- Rech-Medeiros, A.F.; Marcon, P.d.S.; Tovo, C.d.V.; de Mattos, A.A. Evaluation of Response to Hepatitis B Virus Vaccine in Adults with Human Immunodeficiency Virus. Ann. Hepatol. 2019, 18, 725–729. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, L.; Kang, S.; Li, X.; Lu, L.; Liu, X.; Song, X.; Li, Y.; Li, X.; Lyu, W.; et al. Immune Responses to HBV Vaccine in People Living with HIV (PLWHs) Who Achieved Successful Treatment: A Prospective Cohort Study. Vaccines 2023, 11, 400. [Google Scholar] [CrossRef] [PubMed]
- McVoy, M.A. Cytomegalovirus Vaccines. Clin. Infect. Dis. 2013, 57, S196–S199. [Google Scholar] [CrossRef]
- Zhou, M.; Lanchy, J.-M.; Ryckman, B.J. Human Cytomegalovirus GH/GL/GO Promotes the Fusion Step of Entry into All Cell Types, Whereas GH/GL/UL128-131 Broadens Virus Tropism through a Distinct Mechanism. J. Virol. 2015, 89, 8999–9009. [Google Scholar] [CrossRef]
- Choi, K.Y.; McGregor, A. A Fully Protective Congenital CMV Vaccine Requires Neutralizing Antibodies to Viral Pentamer and GB Glycoprotein Complexes but a Pp65 T-Cell Response Is Not Necessary. Viruses 2021, 13, 1467. [Google Scholar] [CrossRef]
- Reuter, N.; Kropff, B.; Britt, W.; Mach, M.; Thomas, M. Neutralizing Antibodies Limit Cell-Associated Spread of Human Cytomegalovirus in Epithelial Cells and Fibroblasts. Viruses 2022, 14, 284. [Google Scholar] [CrossRef]
- Lu, B.; Lim, J.M.; Yu, B.; Song, S.; Neeli, P.; Sobhani, N.; K, P.; Bonam, S.R.; Kurapati, R.; Zheng, J.; et al. The Next-Generation DNA Vaccine Platforms and Delivery Systems: Advances, Challenges and Prospects. Front. Immunol. 2024, 15, 1332939. [Google Scholar] [CrossRef]
- La Rosa, C.; Wang, Z.; Brewer, J.C.; Lacey, S.F.; Villacres, M.C.; Sharan, R.; Krishnan, R.; Crooks, M.; Markel, S.; Maas, R.; et al. Preclinical Development of an Adjuvant-Free Peptide Vaccine with Activity against CMV Pp65 in HLA Transgenic Mice. Blood 2002, 100, 3681–3689. [Google Scholar] [CrossRef] [PubMed]
- Kharbanda, E.O.; Vazquez-Benitez, G. COVID-19 MRNA Vaccines During Pregnancy. JAMA 2022, 327, 1451. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, S.C.J.; Hernandez, A.; Fell, D.B.; Austin, P.C.; D’Souza, R.; Guttmann, A.; Brown, K.A.; Buchan, S.A.; Gubbay, J.B.; Nasreen, S.; et al. Maternal MRNA Covid-19 Vaccination during Pregnancy and Delta or Omicron Infection or Hospital Admission in Infants: Test Negative Design Study. BMJ 2023, 380, e074035. [Google Scholar] [CrossRef] [PubMed]
- Röbl-Mathieu, M.; Kunstein, A.; Liese, J.; Mertens, T.; Wojcinski, M. Vaccination in Pregnancy. Dtsch. Ärztebl. Int. 2021, 18, 262. [Google Scholar] [CrossRef]
- Trovato, M.; Sartorius, R.; D’Apice, L.; Manco, R.; De Berardinis, P. Viral Emerging Diseases: Challenges in Developing Vaccination Strategies. Front. Immunol. 2020, 11, 2130. [Google Scholar] [CrossRef] [PubMed]
- Fleming-Dutra, K.E.; Jones, J.M.; Roper, L.E.; Prill, M.M.; Ortega-Sanchez, I.R.; Moulia, D.L.; Wallace, M.; Godfrey, M.; Broder, K.R.; Tepper, N.K.; et al. Use of the Pfizer Respiratory Syncytial Virus Vaccine During Pregnancy for the Prevention of Respiratory Syncytial Virus–Associated Lower Respiratory Tract Disease in Infants: Recommendations of the Advisory Committee on Immunization Practices—United States, 2023. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 1115–1122. [Google Scholar] [CrossRef] [PubMed]
- Phijffer, E.W.; de Bruin, O.; Ahmadizar, F.; Bont, L.J.; Van der Maas, N.A.; Sturkenboom, M.C.; Wildenbeest, J.G.; Bloemenkamp, K.W. Respiratory syncytial virus vaccination during pregnancy for improving infant outcomes. Cochrane Database Syst. Rev. 2024, 5, CD015134. [Google Scholar] [CrossRef] [PubMed]
- Van Spall, H.G.C. Exclusion of Pregnant and Lactating Women from COVID-19 Vaccine Trials: A Missed Opportunity. Eur. Heart J. 2021, 42, 2724–2726. [Google Scholar] [CrossRef] [PubMed]
- Taskar, K.S.; Harada, I.; Alluri, R.V. Physiologically-Based Pharmacokinetic (PBPK) Modelling of Transporter Mediated Drug Absorption, Clearance and Drug-Drug Interactions. Curr. Drug. Metab. 2021, 22, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Mathiesen, L.; Buerki-Thurnherr, T.; Pastuschek, J.; Aengenheister, L.; Knudsen, L.E. Fetal Exposure to Environmental Chemicals; Insights from Placental Perfusion Studies. Placenta 2021, 106, 58–66. [Google Scholar] [CrossRef]
- Le Merdy, M.; Szeto, K.X.; Perrier, J.; Bolger, M.B.; Lukacova, V. PBPK Modeling Approach to Predict the Behavior of Drugs Cleared by Metabolism in Pregnant Subjects and Fetuses. Pharmaceutics 2024, 16, 96. [Google Scholar] [CrossRef]
- Arora, G.; Joshi, J.; Mandal, R.S.; Shrivastava, N.; Virmani, R.; Sethi, T. Artificial Intelligence in Surveillance, Diagnosis, Drug Discovery and Vaccine Development against COVID-19. Pathogens 2021, 10, 1048. [Google Scholar] [CrossRef]
- Syme, M.R.; Paxton, J.W.; Keelan, J.A. Drug Transfer and Metabolism by the Human Placenta. Clin. Pharmacokinet. 2004, 43, 487–514. [Google Scholar] [CrossRef] [PubMed]
- Mao, Q.; Chen, X. An Update on Placental Drug Transport and Its Relevance to Fetal Drug Exposure. Med. Rev. 2022, 2, 501–511. [Google Scholar] [CrossRef]
- Griffiths, S.K.; Campbell, J.P. Placental Structure, Function and Drug Transfer. Contin. Educ. Anaesth. Crit. Care Pain 2015, 15, 84–89. [Google Scholar] [CrossRef]
- Giaginis, C.; Tsantili-Kakoulidou, A.; Theocharis, S. Assessing Drug Transport Across the Human Placental Barrier: From In Vivo and In Vitro Measurements to the Ex Vivo Perfusion Method and In Silico Techniques. Curr. Pharm. Biotechnol. 2011, 12, 804–813. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Semmes, E.C.; Ovies, C.; Megli, C.; Permar, S.; Gilner, J.B.; Coyne, C.B. Innate Immune Signaling in Trophoblast and Decidua Organoids Defines Differential Antiviral Defenses at the Maternal-Fetal Interface. eLife 2022, 11, e79794. [Google Scholar] [CrossRef]
- Tupova, L.; Hirschmugl, B.; Sucha, S.; Pilarova, V.; Székely, V.; Bakos, É.; Novakova, L.; Özvegy-Laczka, C.; Wadsack, C.; Ceckova, M. Interplay of Drug Transporters P-Glycoprotein (MDR1), MRP1, OATP1A2 and OATP1B3 in Passage of Maraviroc across Human Placenta. Biomed. Pharmacother. 2020, 129, 110506. [Google Scholar] [CrossRef]
- Mandelbrot, L.; Ceccaldi, P.-F.; Duro, D.; Lê, M.; Pencolé, L.; Peytavin, G. Placental Transfer and Tissue Accumulation of Dolutegravir in the Ex Vivo Human Cotyledon Perfusion Model. PLoS ONE 2019, 14, e0220323. [Google Scholar] [CrossRef]
- Schalkwijk, S.; Greupink, R.; Colbers, A.P.; Wouterse, A.C.; Verweij, V.G.M.; van Drongelen, J.; Teulen, M.; van den Oetelaar, D.; Burger, D.M.; Russel, F.G.M. Placental Transfer of the HIV Integrase Inhibitor Dolutegravir in an Ex Vivo Human Cotyledon Perfusion Model. J. Antimicrob. Chemother. 2016, 71, 480–483. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Nassal, M. Stable HepG2- and Huh7-Based Human Hepatoma Cell Lines for Efficient Regulated Expression of Infectious Hepatitis B Virus. J. Hepatol. 2006, 45, 636–645. [Google Scholar] [CrossRef]
- Abdelhamed, A.M.; Kelley, C.M.; Miller, T.G.; Furman, P.A.; Cable, E.E.; Isom, H.C. Comparison of Anti-Hepatitis B Virus Activities of Lamivudine and Clevudine by a Quantitative Assay. Antimicrob. Agents Chemother. 2003, 47, 324–336. [Google Scholar] [CrossRef]
- Cerveny, L.; Karbanova, S.; Karahoda, R.; Horackova, H.; Jiraskova, L.; Ali, M.N.H.; Staud, F. Assessment of the Role of Nucleoside Transporters, P-Glycoprotein, Breast Cancer Resistance Protein, and Multidrug Resistance-Associated Protein 2 in the Placental Transport of Entecavir Using in Vitro, Ex Vivo, and in Situ Methods. Toxicol. Appl. Pharmacol. 2023, 463, 116427. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Wang, J.; Li, Q.; Duan, J.; Yao, Q.; Zheng, Q.; Wang, J.; Wu, D.; Zhou, Q.; Tian, Y.; et al. Transplacental Transfer of Oseltamivir Phosphate and Its Metabolite Oseltamivir Carboxylate Using the Ex Vivo Human Placenta Perfusion Model in Chinese Hans Population. J. Matern. Fetal Neonatal Med. 2017, 30, 1288–1292. [Google Scholar] [CrossRef]
- Ehrenstein, V.; Kristensen, N.R.; Monz, B.U.; Clinch, B.; Kenwright, A.; Sørensen, H.T. Oseltamivir in Pregnancy and Birth Outcomes. BMC Infect. Dis. 2018, 18, 519. [Google Scholar] [CrossRef] [PubMed]
- Akinosoglou, K.; Schinas, G.; Rigopoulos, E.-A.; Polyzou, E.; Tzouvelekis, A.; Adonakis, G.; Gogos, C. COVID-19 Pharmacotherapy in Pregnancy: A Literature Review of Current Therapeutic Choices. Viruses 2023, 15, 787. [Google Scholar] [CrossRef]
- Coppola, P.; Kerwash, E.; Cole, S. Physiologically Based Pharmacokinetics Model in Pregnancy: A Regulatory Perspective on Model Evaluation. Front. Pediatr. 2021, 9, 687978. [Google Scholar] [CrossRef]
- Rayner, C.R.; Smith, P.F.; Andes, D.; Andrews, K.; Derendorf, H.; Friberg, L.E.; Hanna, D.; Lepak, A.; Mills, E.; Polasek, T.M.; et al. Model-Informed Drug Development for Anti-Infectives: State of the Art and Future. Clin. Pharmacol. Ther. 2021, 109, 867–891. [Google Scholar] [CrossRef]
- Vijaywargi, G.; Kollipara, S.; Ahmed, T.; Chachad, S. Predicting Transporter Mediated Drug–Drug Interactions via Static and Dynamic Physiologically Based Pharmacokinetic Modeling: A Comprehensive Insight on Where We Are Now and the Way Forward. Biopharm. Drug Dispos. 2023, 44, 195–220. [Google Scholar] [CrossRef]
- Rowland Yeo, K.; Gil Berglund, E.; Chen, Y. Dose Optimization Informed by PBPK Modeling: State-of-the Art and Future. Clin. Pharmacol. Ther. 2024; early view. [Google Scholar] [CrossRef]
- Tan, Y.-M.; Worley, R.R.; Leonard, J.A.; Fisher, J.W. Challenges Associated With Applying Physiologically Based Pharmacokinetic Modeling for Public Health Decision-Making. Toxicol. Sci. 2018, 162, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.I.; Momper, J.D.; Rakhmanina, N.Y.; Green, D.J.; Burckart, G.J.; Cressey, T.R.; Mirochnick, M.; Best, B.M.; van den Anker, J.N.; Dallmann, A. Prediction of Maternal and Fetal Pharmacokinetics of Dolutegravir and Raltegravir Using Physiologically Based Pharmacokinetic Modeling. Clin. Pharmacokinet. 2020, 59, 1433–1450. [Google Scholar] [CrossRef]
- Shenkoya, B.; Atoyebi, S.; Eniayewu, I.; Akinloye, A.; Olagunju, A. Mechanistic Modeling of Maternal Lymphoid and Fetal Plasma Antiretroviral Exposure During the Third Trimester. Front. Pediatr. 2021, 9, 734122. [Google Scholar] [CrossRef] [PubMed]
- Schalkwijk, S.; ter Heine, R.; Colbers, A.C.; Huitema, A.D.R.; Denti, P.; Dooley, K.E.; Capparelli, E.; Best, B.M.; Cressey, T.R.; Greupink, R.; et al. A Mechanism-Based Population Pharmacokinetic Analysis Assessing the Feasibility of Efavirenz Dose Reduction to 400 Mg in Pregnant Women. Clin. Pharmacokinet. 2018, 57, 1421–1433. [Google Scholar] [CrossRef] [PubMed]
- Betcher, H.K.; George, A.L. Pharmacogenomics in Pregnancy. Semin. Perinatol. 2020, 44, 151222. [Google Scholar] [CrossRef]
- Duwal, S.; Seeler, D.; Dickinson, L.; Khoo, S.; von Kleist, M. The Utility of Efavirenz-Based Prophylaxis Against HIV Infection. A Systems Pharmacological Analysis. Front. Pharmacol. 2019, 10, 199. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.-F.; Neiner, A.; Kharasch, E.D. Efavirenz Metabolism: Influence of Polymorphic CYP2B6 Variants and Stereochemistry. Drug Metab. Dispos. 2019, 47, 1195–1205. [Google Scholar] [CrossRef] [PubMed]
- Vujkovic, M.; Bellamy, S.L.; Zuppa, A.F.; Gastonguay, M.R.; Moorthy, G.S.; Ratshaa, B.; Han, X.; Steenhoff, A.P.; Mosepele, M.; Strom, B.L.; et al. Polymorphisms in Cytochrome P450 Are Associated with Extensive Efavirenz Pharmacokinetics and CNS Toxicities in an HIV Cohort in Botswana. Pharmacogenomics J. 2018, 18, 678–688. [Google Scholar] [CrossRef]
- Lartey, M.; Kenu, E.; Lassey, A.; Ntumy, M.; Ganu, V.; Sam, M.; Boamah, I.; Gilani, F.S.; Yang, H.; Burch, G.M.; et al. Pharmacokinetics of Efavirenz 600 Mg Once Daily During Pregnancy and Post Partum in Ghanaian Women Living with HIV. Clin. Ther. 2020, 42, 1818–1825. [Google Scholar] [CrossRef] [PubMed]
- Scott, R.K.; Yu, Y.; Marzinke, M.A.; Coleman, J.S.; Hendrix, C.W.; Bies, R. Clinical Trial Simulation to Evaluate Tenofovir Disoproxil Fumarate/Emtricitabine HIV Pre-Exposure Prophylaxis Dosing during Pregnancy. Front. Reprod. Health 2023, 5, 1224580. [Google Scholar] [CrossRef] [PubMed]
- Erturk, U.S.; Mete, B.; Ozaras, R.; Saltoglu, N.; Balkan, I.I.; Mert, A.; Kacmaz, B.; Saglam, O.; Guney, B.; Sayman, O.A.; et al. Plasma and Breast Milk Pharmacokinetics of Tenofovir Disoproxil Fumarate in Nursing Mother with Chronic Hepatitis B-Infant Pairs. Antimicrob. Agents Chemother. 2021, 65, 1–6. [Google Scholar] [CrossRef] [PubMed]
- De Sousa Mendes, M.; Hirt, D.; Urien, S.; Valade, E.; Bouazza, N.; Foissac, F.; Blanche, S.; Treluyer, J.; Benaboud, S. Physiologically-based Pharmacokinetic Modeling of Renally Excreted Antiretroviral Drugs in Pregnant Women. Br. J. Clin. Pharmacol. 2015, 80, 1031–1041. [Google Scholar] [CrossRef]
- Benaboud, S.; Hirt, D.; Launay, O.; Pannier, E.; Firtion, G.; Rey, E.; Bouazza, N.; Foissac, F.; Chappuy, H.; Urien, S.; et al. Pregnancy-Related Effects on Tenofovir Pharmacokinetics: A Population Study with 186 Women. Antimicrob. Agents Chemother. 2012, 56, 857–862. [Google Scholar] [CrossRef]
- Pillai, V.C.; Han, K.; Beigi, R.H.; Hankins, G.D.; Clark, S.; Hebert, M.F.; Easterling, T.R.; Zajicek, A.; Ren, Z.; Caritis, S.N.; et al. Population Pharmacokinetics of Oseltamivir in Non-pregnant and Pregnant Women. Br. J. Clin. Pharmacol. 2015, 80, 1042–1050. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.I.; Momper, J.D.; Rakhmanina, N.; van den Anker, J.N.; Green, D.J.; Burckart, G.J.; Best, B.M.; Mirochnick, M.; Capparelli, E.V.; Dallmann, A. Physiologically Based Pharmacokinetic Models to Predict Maternal Pharmacokinetics and Fetal Exposure to Emtricitabine and Acyclovir. J. Clin. Pharmacol. 2020, 60, 240–255. [Google Scholar] [CrossRef] [PubMed]
- Abduljalil, K.; Pansari, A.; Ning, J.; Jamei, M. Prediction of Maternal and Fetal Acyclovir, Emtricitabine, Lamivudine, and Metformin Concentrations during Pregnancy Using a Physiologically Based Pharmacokinetic Modeling Approach. Clin. Pharmacokinet. 2022, 61, 725–748. [Google Scholar] [CrossRef]
- Sychterz, C.; Galetin, A.; Taskar, K.S. When Special Populations Intersect with Drug–Drug Interactions: Application of Physiologically-based Pharmacokinetic Modeling in Pregnant Populations. Biopharm. Drug Dispos. 2021, 42, 160–177. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.I.; Dallmann, A.; Brooks, K.; Best, B.M.; Clarke, D.F.; Mirochnick, M.; van den Anker, J.N.; Capparelli, E.V.; Momper, J.D. Physiologically-based Pharmacokinetic Modeling of Remdesivir and Its Metabolites in Pregnant Women with COVID-19. CPT Pharmacometrics Syst. Pharmacol. 2023, 12, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Yang, Y.; Grimstein, M.; Zhang, X.; Kitabi, E.; Earp, J.C.; Arya, V.; Reynolds, K.S.; Zhu, H.; Wang, Y. Whole Body PBPK Modeling of Remdesivir and Its Metabolites to Aid in Estimating Active Metabolite Exposure in the Lung and Liver in Patients With Organ Dysfunction. Clin. Pharmacol. Ther. 2022, 111, 624–634. [Google Scholar] [CrossRef] [PubMed]
- Deb, S.; Reeves, A.A.; Hopefl, R.; Bejusca, R. ADME and Pharmacokinetic Properties of Remdesivir: Its Drug Interaction Potential. Pharmaceuticals 2021, 14, 655. [Google Scholar] [CrossRef]
- Tegenge, M.A.; Mitkus, R.J. A First-Generation Physiologically Based Pharmacokinetic (PBPK) Model of Alpha-Tocopherol in Human Influenza Vaccine Adjuvant. Regul. Toxicol. Pharmacol. 2015, 71, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Saldanha, L.; Vale, N. The First Physiologically Based Pharmacokinetic (PBPK) Model for an Oral Vaccine Using Alpha-Tocopherol as an Adjuvant. Pharmaceutics 2023, 15, 2313. [Google Scholar] [CrossRef]
- Saldanha, L.; Langel, Ü.; Vale, N. In Silico Studies to Support Vaccine Development. Pharmaceutics 2023, 15, 654. [Google Scholar] [CrossRef]
- Naasani, I. Establishing the Pharmacokinetics of Genetic Vaccines Is Essential for Maximising Their Safety and Efficacy. Clin. Pharmacokinet. 2022, 61, 921–927. [Google Scholar] [CrossRef]
- Bettonte, S.; Berton, M.; Marzolini, C. Magnitude of Drug–Drug Interactions in Special Populations. Pharmaceutics 2022, 14, 789. [Google Scholar] [CrossRef] [PubMed]
- Bukkems, V.E.; Colbers, A.; Marzolini, C.; Molto, J.; Burger, D.M. Drug–Drug Interactions with Antiretroviral Drugs in Pregnant Women Living with HIV: Are They Different from Non-Pregnant Individuals? Clin. Pharmacokinet. 2020, 59, 1217–1236. [Google Scholar] [CrossRef]
- Wang, W.; Ouyang, D. Opportunities and Challenges of Physiologically Based Pharmacokinetic Modeling in Drug Delivery. Drug Discov. Today 2022, 27, 2100–2120. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wu, H. A Bayesian Approach for Estimating Antiviral Efficacy in HIV Dynamic Models. J. Appl. Stat. 2006, 33, 155–174. [Google Scholar] [CrossRef]
- Canini, L.; Perelson, A.S. Viral Kinetic Modeling: State of the Art. J. Pharmacokinet. Pharmacodyn. 2014, 41, 431–443. [Google Scholar] [CrossRef] [PubMed]
- Zitzmann, C.; Kaderali, L. Mathematical Analysis of Viral Replication Dynamics and Antiviral Treatment Strategies: From Basic Models to Age-Based Multi-Scale Modeling. Front. Microbiol. 2018, 9, 1546. [Google Scholar] [CrossRef]
- Chigutsa, E.; Jordie, E.; Riggs, M.; Nirula, A.; Elmokadem, A.; Knab, T.; Chien, J.Y. A Quantitative Modeling and Simulation Framework to Support Candidate and Dose Selection of Anti-SARS-CoV-2 Monoclonal Antibodies to Advance Bamlanivimab Into a First-in-Human Clinical Trial. Clin. Pharmacol. Ther. 2022, 111, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Gallo, J.M. Hybrid Physiologically-based Pharmacokinetic Model for Remdesivir: Application to SARS-CoV-2. Clin. Transl. Sci. 2021, 14, 1082–1091. [Google Scholar] [CrossRef]
- Chou, W.-C.; Lin, Z. Machine Learning and Artificial Intelligence in Physiologically Based Pharmacokinetic Modeling. Toxicol. Sci. 2023, 191, 1–14. [Google Scholar] [CrossRef]
- Huang, X.; Tang, J. Virus Infection and Direct-Acting Antivirals in Pregnancy. Clin. Exp. Obstet. Gynecol. 2022, 49, 89. [Google Scholar] [CrossRef]
- Herbek, S.L.; Smithgall, M.C.; Murphy, E.A.; Schwartz, R.E.; Chen, S.; Riley, L.E.; Stuhlmann, H.; Yang, Y.J.; Goswami, R. Human Maternal-Fetal Interface Cellular Models to Assess Antiviral Drug Toxicity during Pregnancy. Reprod. Med. 2022, 3, 303–319. [Google Scholar] [CrossRef]
- Mudra, Y. The Tactics of Antiviral Therapy for Chronic Viral Hepatitis B in Pregnant Women. Technol. Transf. Innov. Solut. Med. 2020, 4, 14–16. [Google Scholar] [CrossRef]
- Young, D.; Houshmand, B.; Tan, C.C.; Kirubarajan, A.; Parbhakar, A.; Dada, J.; Whittle, W.; Sobel, M.L.; Gomez, L.M.; Rüdiger, M.; et al. Predicting Adverse Outcomes in Pregnant Patients Positive for SARS-CoV-2: A Machine Learning Approach- a Retrospective Cohort Study. BMC Pregnancy Childbirth 2023, 23, 553. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Lysenko, A.; Jia, S.; Boroevich, K.A.; Tsunoda, T. Advances in AI and Machine Learning for Predictive Medicine. J. Hum. Genet. 2024. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Lo-Ciganic, W.-H.; Huang, J.; Wu, Y.; Henry, L.; Peter, J.; Sulkowski, M.; Nelson, D.R. Evaluation of Machine Learning Algorithms for Predicting Direct-Acting Antiviral Treatment Failure among Patients with Chronic Hepatitis C Infection. Sci. Rep. 2022, 12, 18094. [Google Scholar] [CrossRef]
- Osinubi, A.; Harris, A.M.; Vellozzi, C.; Lom, J.; Miller, L.; Millman, A.J. Evaluation of the Performance of Algorithms That Use Serial Hepatitis C RNA Tests to Predict Treatment Initiation and Sustained Virological Response Among Patients Infected with Hepatitis C Virus. Am. J. Epidemiol. 2019, 188, 555–561. [Google Scholar] [CrossRef]
- Nabulsi, N.A.; Martin, M.T.; Sharp, L.K.; Koren, D.E.; Teply, R.; Zuckerman, A.; Lee, T.A. Predicting Treatment Failure for Initiators of Hepatitis C Virus Treatment in the Era of Direct-Acting Antiviral Therapy. Front. Pharmacol. 2020, 11, 551500. [Google Scholar] [CrossRef] [PubMed]
- Harabor, V.; Mogos, R.; Nechita, A.; Adam, A.-M.; Adam, G.; Melinte-Popescu, A.-S.; Melinte-Popescu, M.; Stuparu-Cretu, M.; Vasilache, I.-A.; Mihalceanu, E.; et al. Machine Learning Approaches for the Prediction of Hepatitis B and C Seropositivity. Int. J. Environ. Res. Public Health 2023, 20, 2380. [Google Scholar] [CrossRef]
- Rogers, J.A.; Maas, H.; Pitarch, A.P. An Introduction to Causal Inference for Pharmacometricians. CPT Pharmacometrics Syst. Pharmacol. 2023, 12, 27–40. [Google Scholar] [CrossRef]
- Crown, W.H. Real-World Evidence, Causal Inference, and Machine Learning. Value Health 2019, 22, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, P.; Voisey, J.P.; Xia, T.; Watson, H.I.; O’Neil, A.Q.; Tsaftaris, S.A. Causal Machine Learning for Healthcare and Precision Medicine. R. Soc. Open Sci. 2022, 9, 220638. [Google Scholar] [CrossRef] [PubMed]
- Feuerriegel, S.; Frauen, D.; Melnychuk, V.; Schweisthal, J.; Hess, K.; Curth, A.; Bauer, S.; Kilbertus, N.; Kohane, I.S.; van der Schaar, M. Causal Machine Learning for Predicting Treatment Outcomes. Nat. Med. 2024, 30, 958–968. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.; Lapa, R.; Vale, N. PBPK Modeling and Simulation and Therapeutic Drug Monitoring: Possible Ways for Antibiotic Dose Adjustment. Processes 2021, 9, 2087. [Google Scholar] [CrossRef]
- Correia, C.; Ferreira, A.; Santos, J.; Lapa, R.; Yliperttula, M.; Urtti, A.; Vale, N. New In Vitro-In Silico Approach for the Prediction of In Vivo Performance of Drug Combinations. Molecules 2021, 26, 4257. [Google Scholar] [CrossRef] [PubMed]
- Vale, N.; Pereira, M.; Santos, J.; Moura, C.; Marques, L.; Duarte, D. Prediction of Drug Synergism between Peptides and Antineoplastic Drugs Paclitaxel, 5-Fluorouracil, and Doxorubicin Using In Silico Approaches. Int. J. Mol. Sci. 2023, 24, 69. [Google Scholar] [CrossRef] [PubMed]
- Marques, L.; Vale, N. Prediction of CYP-Mediated Drug Interaction Using Physiologically Based Pharmacokinetic Modeling: A Case Study of Salbutamol and Fluvoxamine. Pharmaceutics 2023, 15, 1586. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.; Martins, H.; Oliveira, J.C.; Lapa, R.; Vale, N. PBPK Modeling and Simulation of Antibiotics Amikacin, Gentamicin, Tobramycin, and Vancomycin Used in Hospital Practice. Life 2021, 11, 1130. [Google Scholar] [CrossRef]
- Pereira, M.; Caljon, G.; Gouveia, M.J.; Maes, L.; Vale, N. Synthesis, Biological Activity and In Silico Pharmacokinetic Prediction of a New 2-Thioxo-Imidazoldidin-4-One of Primaquine. Pharmaceuticals 2021, 14, 196. [Google Scholar] [CrossRef]
- Costa, B.; Silva, I.; Oliveira, J.C.; Reguengo, H.; Vale, N. Pharmacokinetic Simulation Study: Exploring the Impact of Clinical Parameters on Lamotrigine for Different Patient Populations with Implications for Liver Function Assessment and Therapeutic Drug Monitoring. Sci. Pharm. 2024, 92, 15. [Google Scholar] [CrossRef]
- Marques, L.; Costa, B.; Pereira, M.; Silva, A.; Santos, J.; Saldanha, L.; Silva, I.; Magalhães, P.; Schmidt, S.; Vale, N. Advancing Precision Medicine: A Review of Innovative In Silico Approaches for Drug Development, Clinical Pharmacology and Personalized Healthcare. Pharmaceutics 2024, 16, 332. [Google Scholar] [CrossRef] [PubMed]
Viral Infection | Dosing Regimen Recommendation in Pregnant Women | Safety and Efficacy Notes | Knowledge Gaps |
---|---|---|---|
HIV | Antiretroviral therapy (ART) as per guidelines. Adjustments may be needed based on individual patient factors. | ART generally safe and effective in pregnancy, reducing mother-to-child transmission risk. | Long-term effects of ART on fetus, optimal timing of initiation during pregnancy, impact on maternal health outcomes. |
Hepatitis | Vaccination recommended for Hepatitis B. Treatment for Hepatitis C depends on the genotype and stage of liver disease. | Hepatitis B vaccination safe during pregnancy. Limited data on efficacy of Hepatitis C treatment in pregnant women. | Safety and efficacy of Hepatitis C treatment during pregnancy, impact of maternal treatment on vertical transmission. |
Influenza | Annual influenza vaccination recommended during pregnancy. | Influenza vaccination safe and effective in pregnant women, reduces the risk of influenza-related complications. | Long-term effects of influenza vaccination on the fetus, optimal timing of vaccination during pregnancy. |
CMV | No specific antiviral treatment for CMV during pregnancy. | CMV infection in pregnancy can lead to congenital CMV, causing developmental issues in newborns. Prevention through hygiene measures advised. | Development of safe and effective antiviral therapy for CMV during pregnancy, understanding of immune responses to prevent congenital CMV transmission. |
SARS-CoV-2 | Vaccination recommended during pregnancy. Treatment varies based on severity and trimester. | Limited data on SARS-CoV-2 vaccines during pregnancy; preliminary studies suggest safety and efficacy. SARS-CoV-2 infection in pregnancy associated with increased risk of complications. | Long-term effects of SARS-CoV-2 vaccination on pregnancy outcomes and fetal development, optimal management strategies for SARS-CoV-2 in pregnant women. |
Viral Infection | Prophylactic Vaccines | Therapeutic Vaccines |
---|---|---|
HIV | No prophylactic vaccine is available. However, it would be crucial to prevent vertical transmission from mother to child during pregnancy and childbirth. | No therapeutic vaccine is available. May have a role in managing maternal infection and reducing the risk of vertical transmission (research is still ongoing). |
HBV/HCV | Recommended for pregnant women at high risk of exposure to prevent transmission to the fetus during pregnancy and childbirth. | No therapeutic vaccine is available. It can have a limited role, as the focus is on managing the infection through antiviral therapy. |
Influenza | It is recommended that all pregnant women protect themselves and their newborns from severe influenza complications. | No therapeutic vaccine is available. May have a limited role, as the focus is on preventing severe disease through prophylactic vaccination. |
CMV | No prophylactic vaccine is available. But it would be crucial to prevent congenital CMV infection, a leading cause of birth defects. | No therapeutic vaccine is available. May have a role in managing maternal infection and reducing the risk of vertical transmission. |
SARS-CoV-2 | Strongly recommended for pregnant women protect them and their newborns from severe SARS-CoV-2 disease. | No therapeutic vaccine is available. May have a role in managing acute SARS-CoV-2 infection in pregnant women, but more research is needed. |
RSV | Prevent RSV infection in infants by providing passive immunity through maternal vaccination during pregnancy, reducing the risk of infection in infants. | No therapeutic vaccine is available. May have a limited role, as the focus is on preventing RSV infections in infants in their vulnerable early months. |
Limitation | Description |
---|---|
Lack of data | Delay in data availability due to pregnant women’s exclusion from clinical trials; hampers accurate modeling of drug pharmacokinetics. |
Insufficient characterization of physiological changes | Inadequate characterization of pregnancy-related physiological changes like plasma volume and protein concentrations, impacting model accuracy. |
Unavailability of gestational-age dependent equations | Lack of equations for enzymes like CYP2C19, CYP2B6, and CYP2C9 at different gestational stages, limiting model predictability. |
Limited availability of clinical data | Sparse clinical PK data, particularly for drugs like sertraline, hindering model performance assessment. |
Uncertainty in hepatic intrinsic clearance | Variability in hepatic intrinsic clearance parameter estimation affecting model precision; integration of additional CYP data can enhance accuracy. |
Inadequate representation of placental transfer | Simplified models and scarce data on placental transfer parameters limit fetal exposure prediction accuracy. |
Uncertainty in maternal and fetal pharmacokinetics | Uncertain maternal and fetal pharmacokinetics influencing drug exposure prediction; integration with placenta perfusion data improves accuracy. |
Lack of published PBPK models for mabs in pregnancy | The absence of PBPK models for monoclonal antibodies (mAbs) in pregnant women highlights a knowledge gap and modeling challenge. |
Need for suitable modelling and simulation techniques | Requirement for suitable techniques to optimize PBPK models predicting mAb exposure in pregnant women; ongoing research needed. |
Challenges in incorporating pharmacodynamic changes | Impact of pregnancy-related pharmacodynamic changes on drug response; PBPK models need to consider these alterations. |
Limitations in extrapolating data from healthy pregnant women | Data limitations from healthy pregnant women with singleton births; maternal health complexities not fully accounted for. |
Need for incorporating placental transfer into PBPK models | Crucial for simulating fetal exposure; ex vivo human cotyledon perfusion models provide valuable data. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, B.; Gouveia, M.J.; Vale, N. Safety and Efficacy of Antiviral Drugs and Vaccines in Pregnant Women: Insights from Physiologically Based Pharmacokinetic Modeling and Integration of Viral Infection Dynamics. Vaccines 2024, 12, 782. https://doi.org/10.3390/vaccines12070782
Costa B, Gouveia MJ, Vale N. Safety and Efficacy of Antiviral Drugs and Vaccines in Pregnant Women: Insights from Physiologically Based Pharmacokinetic Modeling and Integration of Viral Infection Dynamics. Vaccines. 2024; 12(7):782. https://doi.org/10.3390/vaccines12070782
Chicago/Turabian StyleCosta, Bárbara, Maria João Gouveia, and Nuno Vale. 2024. "Safety and Efficacy of Antiviral Drugs and Vaccines in Pregnant Women: Insights from Physiologically Based Pharmacokinetic Modeling and Integration of Viral Infection Dynamics" Vaccines 12, no. 7: 782. https://doi.org/10.3390/vaccines12070782
APA StyleCosta, B., Gouveia, M. J., & Vale, N. (2024). Safety and Efficacy of Antiviral Drugs and Vaccines in Pregnant Women: Insights from Physiologically Based Pharmacokinetic Modeling and Integration of Viral Infection Dynamics. Vaccines, 12(7), 782. https://doi.org/10.3390/vaccines12070782