Reactogenicity Differences between Adjuvanted, Protein-Based and Messenger Ribonucleic Acid (mRNA)-Based COVID-19 Vaccines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Objectives
2.3. Assessments
2.4. Statistics
3. Results
3.1. Participants
3.2. Systemic Reactogenicity
3.3. Local Reactogenicity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Drug Administration. Comirnaty. Available online: https://www.fda.gov/vaccines-blood-biologics/comirnaty (accessed on 23 May 2024).
- Food and Drug Administration. Spikevax. Available online: https://www.fda.gov/vaccines-blood-biologics/spikevax (accessed on 24 May 2024).
- Health Canada. Approved COVID-19 Vaccines. Available online: https://www.canada.ca/en/health-canada/services/drugs-health-products/covid19-industry/drugs-vaccines-treatments/vaccines.html (accessed on 30 May 2024).
- Food and Drug Administration. Novavax COVID-19 Vaccine, Adjuvanted. Available online: https://www.fda.gov/vaccines-blood-biologics/coronavirus-covid-19-cber-regulated-biologics/novavax-covid-19-vaccine-adjuvanted (accessed on 24 May 2024).
- Anez, G.; Dunkle, L.M.; Gay, C.L.; Kotloff, K.L.; Adelglass, J.M.; Essink, B.; Campbell, J.D.; Cloney-Clark, S.; Zhu, M.; Plested, J.S.; et al. Safety, Immunogenicity, and efficacy of the NVX-CoV2373 COVID-19 vaccine in adolescents: A randomized clinical trial. JAMA Netw. Open 2023, 6, e239135. [Google Scholar] [CrossRef] [PubMed]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Dunkle, L.M.; Kotloff, K.L.; Gay, C.L.; Anez, G.; Adelglass, J.M.; Barrat Hernandez, A.Q.; Harper, W.L.; Duncanson, D.M.; McArthur, M.A.; Florescu, D.F.; et al. Efficacy and safety of NVX-CoV2373 in adults in the United States and Mexico. N. Engl. J. Med. 2022, 386, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Heath, P.T.; Galiza, E.P.; Baxter, D.N.; Boffito, M.; Browne, D.; Burns, F.; Chadwick, D.R.; Clark, R.; Cosgrove, C.; Galloway, J.; et al. Safety and efficacy of NVX-CoV2373 Covid-19 vaccine. N. Engl. J. Med. 2021, 385, 1172–1183. [Google Scholar] [CrossRef] [PubMed]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Perez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Alves, K.; Plested, J.S.; Galbiati, S.; Chau, G.; Cloney-Clark, S.; Zhu, M.; Kalkeri, R.; Patel, N.; Smith, K.; Marcheschi, A.; et al. Immunogenicity and safety of a fourth homologous dose of NVX-CoV2373. Vaccine 2023, 41, 4280–4286. [Google Scholar] [CrossRef] [PubMed]
- Sadoff, J.; Gray, G.; Vandebosch, A.; Cardenas, V.; Shukarev, G.; Grinsztejn, B.; Goepfert, P.A.; Truyers, C.; Fennema, H.; Spiessens, B.; et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against covid-19. N. Engl. J. Med. 2021, 384, 2187–2201. [Google Scholar] [CrossRef] [PubMed]
- San Francisco Ramos, A.; Liu Sanchez, C.; Bovill Rose, T.; Smith, D.; Thorn, N.; Galiza, E.; Miah, T.; Pearce, J.; Hultin, C.; Cosgrove, C.; et al. Comparing reactogenicity of COVID-19 vaccine boosters: A systematic review and meta-analysis. Expert Rev. Vaccines 2024, 23, 266–282. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Seasonal Influenza Vaccine Safety: A Summary for Clinicians. Available online: https://www.cdc.gov/flu/professionals/vaccination/vaccine_safety.htm (accessed on 4 June 2024).
- Centers for Disease Control and Prevention. Shingles: About the Vaccine. Available online: https://www.cdc.gov/vaccines/vpd/shingles/hcp/shingrix/about-vaccine.html (accessed on 4 June 2024).
- Gonen, T.; Barda, N.; Asraf, K.; Joseph, G.; Weiss-Ottolenghi, Y.; Doolman, R.; Kreiss, Y.; Lustig, Y.; Regev-Yochay, G. Immunogenicity and reactogenicity of coadministration of COVID-19 and influenza vaccines. JAMA Netw. Open 2023, 6, e2332813. [Google Scholar] [CrossRef]
- Werner, F.; Zeschick, N.; Kuhlein, T.; Steininger, P.; Uberla, K.; Kaiser, I.; Sebastiao, M.; Hueber, S.; Warkentin, L. Patient-reported reactogenicity and safety of COVID-19 vaccinations vs. comparator vaccinations: A comparative observational cohort study. BMC Med. 2023, 21, 358. [Google Scholar] [CrossRef]
- Rousculp, M.D.; Hollis, K.; Ziemiecki, R.; Odom, D.; Marchese, A.M.; Montazeri, M.; Odak, S.; Jackson, L.; Miller, A.; Toback, S. Burden and impact of reactogenicity among adults receiving COVID-19 vaccines in the United States and Canada: Results from a prospective observational study. Vaccines 2024, 12, 83. [Google Scholar] [CrossRef] [PubMed]
- Breeher, L.E.; Wolf, M.E.; Geyer, H.; Brinker, T.; Tommaso, C.; Kohlnhofer, S.; Hainy, C.; Swift, M. Work absence following COVID-19 vaccination in a cohort of healthcare personnel. J. Occup. Environ. Med. 2022, 64, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Nachtigall, I.; Bonsignore, M.; Hohenstein, S.; Bollmann, A.; Gunther, R.; Kodde, C.; Englisch, M.; Ahmad-Nejad, P.; Schroder, A.; Glenz, C.; et al. Effect of gender, age and vaccine on reactogenicity and incapacity to work after COVID-19 vaccination: A survey among health care workers. BMC Infect. Dis. 2022, 22, 291. [Google Scholar] [CrossRef] [PubMed]
- Costa, K. Older Adults’ Intentions and Attitudes toward the Updated Bivalent COVID-19 Booster 2023: Survey, United States, July 2023. Available online: https://www.healthcanal.com/health/the-bivalent-covid-19-booster-survey (accessed on 30 May 2024).
- Rief, W. Fear of adverse effects and COVID-19 vaccine hesitancy: Recommendations of the treatment expectation expert group. JAMA Health Forum 2021, 2, e210804. [Google Scholar] [CrossRef] [PubMed]
- Freeman, E.E.; Strahan, A.G.; Smith, L.R.; Judd, A.D.; Samarakoon, U.; Chen, G.; King, A.J.; Blumenthal, K.G. The impact of COVID-19 vaccine reactions on secondary vaccine hesitancy. Ann. Allergy Asthma Immunol. 2024, 132, 630–636.E1. [Google Scholar] [CrossRef] [PubMed]
- Tiozzo, G.; Louwsma, T.; Konings, S.R.A.; Vondeling, G.T.; Perez Gomez, J.; Postma, M.J.; Freriks, R.D. Evaluating the reactogenicity of COVID-19 vaccines from network-meta analyses. Expert Rev. Vaccines 2023, 22, 410–418. [Google Scholar] [CrossRef] [PubMed]
- National Foundation for Infectious Diseases. 2023 National Survey: Attitudes about Influenza, COVID-19, Respiratory Syncytial Virus, and Pneumococcal Disease. Available online: https://www.nfid.org/resource/2023-national-survey-attitudes-about-influenza-covid-19-respiratory-syncytial-virus-and-pneumococcal-disease/ (accessed on 12 March 2024).
- Marchese, A.M.; Rousculp, M.; Macbeth, J.; Beyhaghi, H.; Seet, B.T.; Toback, S. The Novavax heterologous COVID booster demonstrates lower reactogenicity than mRNA: A targeted review. J. Infect. Dis. 2023, jiad519. [Google Scholar] [CrossRef] [PubMed]
- Munro, A.P.S.; Janani, L.; Cornelius, V.; Aley, P.K.; Babbage, G.; Baxter, D.; Bula, M.; Cathie, K.; Chatterjee, K.; Dodd, K.; et al. Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): A blinded, multicentre, randomised, controlled, phase 2 trial. Lancet 2021, 398, 2258–2276. [Google Scholar] [CrossRef] [PubMed]
- Atmar, R.L.; Lyke, K.E.; Deming, M.E.; Jackson, L.A.; Branche, A.R.; El Sahly, H.M.; Rostad, C.A.; Martin, J.M.; Johnston, C.; Rupp, R.E.; et al. Homologous and heterologous Covid-19 booster vaccinations. N. Engl. J. Med. 2022, 386, 1046–1057. [Google Scholar] [CrossRef]
- Sutton, N.; San Francisco Ramos, A.; Beales, E.; Smith, D.; Ikram, S.; Galiza, E.; Hsia, Y.; Heath, P.T. Comparing reactogenicity of COVID-19 vaccines: A systematic review and meta-analysis. Expert Rev. Vaccines 2022, 21, 1301–1318. [Google Scholar] [CrossRef]
- Salter, S.M.; Li, D.; Trentino, K.; Nissen, L.; Lee, K.; Orlemann, K.; Peters, I.; Murray, K.; Leeb, A.; Deng, L. Safety of four COVID-19 vaccines across primary doses 1, 2, 3 and booster: A prospective cohort study of Australian community pharmacy vaccinations. Vaccines 2022, 10, 2017. [Google Scholar] [CrossRef]
- Stuart, A.S.V.; Shaw, R.H.; Liu, X.; Greenland, M.; Aley, P.K.; Andrews, N.J.; Cameron, J.C.; Charlton, S.; Clutterbuck, E.A.; Collins, A.M.; et al. Immunogenicity, safety, and reactogenicity of heterologous COVID-19 primary vaccination incorporating mRNA, viral-vector, and protein-adjuvant vaccines in the UK (Com-COV2): A single-blind, randomised, phase 2, non-inferiority trial. Lancet 2022, 399, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Shaw, R.H.; Stuart, A.; Greenland, M.; Liu, X.; Nguyen Van-Tam, J.S.; Snape, M.D.; Com, C.O.V.S.G. Heterologous prime-boost COVID-19 vaccination: Initial reactogenicity data. Lancet 2021, 397, 2043–2046. [Google Scholar] [CrossRef]
- European Medicines Agency. EMA Recommendation to Update the Antigenic Composition of Authorised COVID-19 Vaccines for 2024–2025. Available online: https://www.ema.europa.eu/en/documents/other/ema-recommendation-update-antigenic-composition-authorised-covid-19-vaccines-2024-2025_en.pdf (accessed on 26 May 2024).
- World Health Organization. Statement on the Antigen Composition of COVID-19 Vaccines. Available online: https://www.who.int/news/item/26-04-2024-statement-on-the-antigen-composition-of-covid-19-vaccines (accessed on 26 May 2024).
- Food and Drug Administration. Updated COVID-19 Vaccines for Use in the United States Beginning in Fall 2023. Available online: https://www.fda.gov/vaccines-blood-biologics/updated-covid-19-vaccines-use-united-states-beginning-fall-2023 (accessed on 26 May 2024).
- Food and Drug Administration. Vaccines and Related Biological Products Advisory Committee June 5, 2024 Meeting Announcement. Available online: https://www.fda.gov/advisory-committees/advisory-committee-calendar/vaccines-and-related-biological-products-advisory-committee-june-5-2024-meeting-announcement (accessed on 26 May 2024).
- Matsumura, T.; Takano, T.; Takahashi, Y. Immune responses related to the immunogenicity and reactogenicity of COVID-19 mRNA vaccines. Int. Immunol. 2022, 35, 213–220. [Google Scholar] [CrossRef]
- Lindsay, K.E.; Bhosle, S.M.; Zurla, C.; Beyersdorf, J.; Rogers, K.A.; Vanover, D.; Xiao, P.; Araínga, M.; Shirreff, L.M.; Pitard, B.; et al. Visualization of early events in mRNA vaccine delivery in non-human primates via PET–CT and near-infrared imaging. Nat. Biomed. Eng. 2019, 3, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Woodruff, M.C.; Kim, E.H.; Nam, J.-H. Knife’s Edge: Balancing immunogenicity and reactogenicity in mRNA vaccines. Exp. Mol. Med. 2023, 55, 1305–1313. [Google Scholar] [CrossRef]
- Stertman, L.; Palm, A.-K.E.; Zarnegar, B.; Carow, B.; Lunderius Andersson, C.; Magnusson, S.E.; Carnrot, C.; Shinde, V.; Smith, G.; Glenn, G.; et al. The Matrix-MTM adjuvant: A critical component of vaccines for the 21st century. Hum. Vaccines Immunother. 2023, 19, 2189885. [Google Scholar] [CrossRef]
- Dagan, N.; Barda, N.; Kepten, E.; Miron, O.; Perchik, S.; Katz, M.A.; Hernán, M.A.; Lipsitch, M.; Reis, B.; Balicer, R.D. BNT162B2 mRNA COVID-19 vaccine in a nationwide mass vaccination setting. N. Engl. J. Med. 2021, 384, 1412–1423. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Haeussler, K.; Spellman, A.; Phillips, L.E.; Ramiller, A.; Bausch-Jurken, M.T.; Sharma, P.; Krivelyova, A.; Vats, S.; Van de Velde, N. Comparative effectiveness of mRNA-1273 and BNT162B2 COVID-19 vaccines in immunocompromised individuals: A systematic review and meta-analysis using the grade framework. Front. Immunol. 2023, 14, 1204831. [Google Scholar] [CrossRef] [PubMed]
- Marchese, A.M.; Zhou, X.; Kinol, J.; Underwood, E.; Woo, W.; McGarry, A.; Beyhaghi, H.; Áñez, G.; Toback, S.; Dunkle, L.M. NVX-Co2373 vaccine efficacy against hospitalization: A post hoc analysis of the PREVENT-19 phase 3, randomized, placebo-controlled trial. Vaccine 2023, 41, 3461–3466. [Google Scholar] [CrossRef]
- Shinde, V.; Bhikha, S.; Hoosain, Z.; Archary, M.; Bhorat, Q.; Fairlie, L.; Lalloo, U.; Masilela, M.S.L.; Moodley, D.; Hanley, S.; et al. Efficacy of NVX-CoV2373 COVID-19 vaccine against the B.1.351 variant. N. Engl. J. Med. 2021, 384, 1899–1909. [Google Scholar] [CrossRef] [PubMed]
Booster Population [17] | US | Canada | ||||
---|---|---|---|---|---|---|
Parameter | NVX-CoV2373 (n = 303) | mRNA Vaccine a (n = 827) | NVX-CoV2373 (n = 205) | mRNA Vaccine a (n = 426) | NVX-CoV2373 (n = 98) | mRNA Vaccine a (n = 401) |
Age, mean (SD) years | 38.9 (11.8) | 40.1 (13.0) | 39.4 (12.0) | 42.6 (13.4) | 37.9 (11.2) | 37.5 (12.0) |
Gender identity, n (%) | ||||||
Female | 156 (51.5) | 469 (56.7) | 109 (53.2) | 243 (57.0) | 47 (48.0) | 226 (56.4) |
Male | 142 (46.9) | 355 (42.9) | 95 (46.3) | 182 (42.7) | 47 (48.0) | 173 (43.1) |
Genderfluid | 1 (0.3) | 0 | 0 | 0 | 1 (1.0) | 0 |
Nonbinary | 2 (0.7) | 3 (0.4) | 0 | 1 (0.2) | 2 (2.0) | 2 (0.5) |
Prefer not to answer | 2 (0.7) | 0 | 1 (0.5) | 0 | 1 (1.0) | 0 |
Race/ethnicity b, n (%) | ||||||
African American or Black | 33 (10.9) | 77 (9.3) | 27 (13.2) | 67 (15.7) | 6 (6.1) | 10 (2.5) |
Asian c | 40 (13.2) | 189 (22.9) | 8 (3.9) | 21 (4.9) | 32 (32.7) | 168 (41.9) |
Hispanic, Latin American, or Latinx | 154 (50.8) | 207 (25.0) | 145 (70.7) | 197 (46.2) | 9 (9.2) | 10 (2.5) |
Middle Eastern or North African d | 5 (1.7) | 21 (2.5) | 2 (1.0) | 2 (0.5) | 3 (3.1) | 19 (4.7) |
Native Hawaiian or Pacific Islander e | 6 (2.0) | 75 (9.1) | 2 (1.0) | 0 | 4 (4.1) | 75 (18.7) |
White | 152 (50.2) | 278 (33.6) | 106 (51.7) | 157 (36.9) | 46 (46.9) | 121 (30.2) |
Other f | 11 (3.6) | 22 (2.7) | 6 (2.9) | 9 (2.1) | 5 (5.1) | 13 (3.2) |
Prior COVID-19 diagnosis, n (%) | 119 (39.3) | 433 (52.4) | 67 (32.7) | 239 (56.1) | 52 (53.1) | 194 (48.4) |
Medical condition that puts participant at high risk for severe COVID-19 b, n (%) | ||||||
Diabetes | 6 (31.6) | 21 (46.7) | 2 (1.0) | 15 (3.5) | 4 (4.1) | 6 (1.5) |
Hypertension | 7 (36.8) | 13 (28.9) | 5 (2.4) | 10 (2.3) | 2 (2.0) | 3 (7.5) |
Heart disease | 2 (10.5) | 8 (17.8) | 1 (6.7) | 8 (1.9) | 1 (1.0) | 0 |
Respiratory conditions | 5 (26.3) | 11 (24.4) | 4 (2.0) | 7 (1.6) | 1 (1.0) | 4 (1.0) |
Other | 5 (26.3) | 13 (28.9) | 4 (2.0) | 10 (2.3) | 1 (1.0) | 3 (0.7) |
Booster dose, n (%) | ||||||
First | 184 (60.7) | 309 (37.4) | 167 (81.5) | 266 (62.4) | 17 (17.3) | 43 (10.7) |
Second or later | 119 (39.3) | 518 (62.6) | 38 (18.5) | 160 (37.6) | 81 (82.7) | 358 (89.3) |
mRNA vaccine type, n (%) | ||||||
Monovalent | - | 652 (78.8) | - | 401 (94.1) | - | 251 (62.6) |
Bivalent | - | 175 (21.2) | - | 25 (5.9) | - | 150 (37.4) |
NVX-CoV2373 (n = 303) | mRNA Vaccine (n = 827) | mRNA Vaccine Subgroup | ||
---|---|---|---|---|
BNT162b2 (n = 502) | mRNA-1273 (n = 325) | |||
Median (range) | 1 (0–7) | 3 (0–7) | 3 (0–7) | 4 (0–7) |
Number of events, n (%) | ||||
No systemic reactogenicity events | 132 (43.6) | 129 (15.6) | 78 (15.5) | 51 (15.7) |
1 | 41 (13.5) | 91 (11.0) | 62 (12.4) | 29 (8.9) |
2 | 34 (11.2) | 98 (11.9) | 73 (14.5) | 25 (7.7) |
3 | 26 (8.6) | 108 (13.1) | 69 (13.7) | 39 (12.0) |
4 | 26 (8.6) | 140 (16.9) | 81 (16.1) | 59 (18.2) |
5 | 26 (8.6) | 128 (15.5) | 72 (14.3) | 56 (17.2) |
6 | 11 (3.6) | 89 (10.8) | 48 (9.6) | 41 (12.6) |
7 | 7 (2.3) | 44 (5.3) | 19 (3.8) | 25 (7.7) |
Severity, n (%) | ||||
No reactogenicity symptoms reported | 132 (43.6) | 129 (15.6) | 78 (15.5) | 51 (15.7) |
Mild/no interference with activities | 87 (28.7) | 290 (35.1) | 184 (36.7) | 106 (32.6) |
Moderate/interfered with activities | 62 (20.5) | 288 (34.8) | 177 (35.3) | 111 (34.2) |
Severe/significant interference with activities | 22 (7.3) | 120 (14.5) | 63 (12.5) | 57 (17.5) |
US | Canada | |||
---|---|---|---|---|
NVX-CoV2373 (n = 205) | mRNA Vaccine (n = 426) | NVX-CoV2373 (n = 98) | mRNA Vaccine (n = 401) | |
Mean (SD) | 1.6 (2.1) | 3.1 (2.3) | 2.1 (2.0) | 3.3 (1.9) |
Median (range) | 0 (0–7) | 3 (0–7) | 2 (0–7) | 4 (0–7) |
Any systemic event, n (%) | 100 (48.5) | 337 (79.1) | 71 (72.5) | 361 (90.0) |
Number of events, n (%) | ||||
No systemic reactogenicity events | 105 (51.2) | 89 (20.9) | 27 (27.6) | 40 (10.0) |
1 | 23 (11.2) | 41 (9.6) | 18 (18.4) | 50 (12.5) |
2 | 16 (7.8) | 48 (11.3) | 18 (13.4) | 50 (12.5) |
3 | 18 (8.8) | 52 (12.2) | 8 (8.2) | 56 (14.0) |
4 | 12 (5.9) | 57 (13.4) | 14 (14.3) | 83 (20.7) |
5 | 20 (9.8) | 63 (14.8) | 6 (6.1) | 65 (16.2) |
6 | 6 (2.9) | 45 (10.6) | 5 (5.1) | 44 (11.0) |
7 | 5 (2.4) | 31 (7.3) | 2 (2.0) | 12 (3.2) |
Severity, n (%) | ||||
No reactogenicity symptoms reported | 105 (51.2) | 89 (20.9) | 27 (27.6) | 40 (10.0) |
Mild/no interference with activities | 55 (26.8) | 143 (33.6) | 32 (32.7) | 147 (36.7) |
Moderate/interfered with activities | 31 (15.1) | 139 (32.5) | 31 (31.6) | 149 (37.2) |
Severe/significant interference with activities | 14 (6.8) | 55 (12.9) | 8 (8.2) | 65 (16.2) |
NVX-CoV2373 (n = 303) | mRNA Vaccine (n = 827) | mRNA Vaccine Subgroup | ||
---|---|---|---|---|
BNT162b2 (n = 502) | mRNA-1273 (n = 325) | |||
Median (range) | 2 (0–4) | 2 (0–4) | 2 (0–4) | 3 (0–4) |
Number of events, n (%) | ||||
No systemic reactogenicity events | 96 (31.7) | 67 (8.1) | 37 (7.4) | 30 (9.2) |
1 | 51 (16.8) | 57 (6.9) | 38 (7.6) | 19 (5.8) |
2 | 98 (32.3) | 328 (39.7) | 227 (45.2) | 101 (31.1) |
3 | 33 (10.9) | 216 (26.1) | 130 (25.9) | 86 (26.5) |
4 | 25 (8.3) | 159 (19.2) | 70 (13.9) | 89 (27.4) |
Severity, n (%) | ||||
No reactogenicity symptoms reported | 96 (31.7) | 67 (8.1) | 37 (7.4) | 30 (9.2) |
Mild/no interference with activities | 143 (47.2) | 330 (39.9) | 222 (44.2) | 108 (33.2) |
Moderate/interfered with activities | 57 (18.8) | 338 (40.9) | 200 (39.8) | 138 (42.5) |
Severe/significant interference with activities | 7 (2.3) | 92 (11.1) | 43 (8.6) | 49 (15.1) |
US | Canada | |||
---|---|---|---|---|
NVX-CoV2373 (n = 205) | mRNA Vaccine (n = 426) | NVX-CoV2373 (n = 98) | mRNA Vaccine (n = 401) | |
Mean (SD) | 1.3 (1.3) | 2.4 (1.3) | 1.7 (1.2) | 2.4 (1.0) |
Median (range) | 1 (0–4) | 2 (0–4) | 2 (0–4) | 2 (0–4) |
Any local event, n (%) | 128 (62.4) | 376 (88.3) | 79 (80.6) | 384 (95.8) |
Number of events, n (%) | ||||
No local reactogenicity events | 77 (37.6) | 50 (11.7) | 19 (19.4) | 17 (4.2) |
1 | 33 (16.1) | 36 (8.5) | 18 (18.4) | 21 (5.2) |
2 | 59 (28.8) | 133 (31.2) | 39 (39.8) | 195 (48.6) |
3 | 20 (9.8) | 108 (25.4) | 12 (13.3) | 108 (26.9) |
4 | 16 (7.8) | 99 (23.2) | 9 (9.2) | 60 (15.0) |
Severity, n (%) | ||||
No reactogenicity symptoms reported | 77 (37.6) | 50 (11.7) | 19 (19.4) | 17 (4.2) |
Mild/no interference with activities | 87 (42.4) | 180 (42.3) | 56 (57.1) | 150 (37.4) |
Moderate/interfered with activities | 37 (18.1) | 147 (34.5) | 20 (20.4) | 191 (47.6) |
Severe/significant interferences with activities | 4 (2.0) | 49 (11.5) | 3 (3.1) | 43 (10.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rousculp, M.D.; Hollis, K.; Ziemiecki, R.; Odom, D.; Marchese, A.M.; Montazeri, M.; Odak, S.; Jackson, L.; Beyhaghi, H.; Toback, S. Reactogenicity Differences between Adjuvanted, Protein-Based and Messenger Ribonucleic Acid (mRNA)-Based COVID-19 Vaccines. Vaccines 2024, 12, 802. https://doi.org/10.3390/vaccines12070802
Rousculp MD, Hollis K, Ziemiecki R, Odom D, Marchese AM, Montazeri M, Odak S, Jackson L, Beyhaghi H, Toback S. Reactogenicity Differences between Adjuvanted, Protein-Based and Messenger Ribonucleic Acid (mRNA)-Based COVID-19 Vaccines. Vaccines. 2024; 12(7):802. https://doi.org/10.3390/vaccines12070802
Chicago/Turabian StyleRousculp, Matthew D., Kelly Hollis, Ryan Ziemiecki, Dawn Odom, Anthony M. Marchese, Mitra Montazeri, Shardul Odak, Laurin Jackson, Hadi Beyhaghi, and Seth Toback. 2024. "Reactogenicity Differences between Adjuvanted, Protein-Based and Messenger Ribonucleic Acid (mRNA)-Based COVID-19 Vaccines" Vaccines 12, no. 7: 802. https://doi.org/10.3390/vaccines12070802
APA StyleRousculp, M. D., Hollis, K., Ziemiecki, R., Odom, D., Marchese, A. M., Montazeri, M., Odak, S., Jackson, L., Beyhaghi, H., & Toback, S. (2024). Reactogenicity Differences between Adjuvanted, Protein-Based and Messenger Ribonucleic Acid (mRNA)-Based COVID-19 Vaccines. Vaccines, 12(7), 802. https://doi.org/10.3390/vaccines12070802