Evaluating Nanoparticulate Vaccine Formulations for Effective Antigen Presentation and T-Cell Proliferation Using an In Vitro Overlay Assay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of the Whole-Cell Inactivated N. gonorrhoeae Vaccine Antigens from the Strains CDC F62, FA19, and FA 1090
2.2.2. Preparation of Whole Cell Inactivated FA 1090, FA19, and CDC F62 N. gonorrhoeae Vaccine Microparticles and Adjuvant Microparticles and Characterization
2.2.3. Preparation of Particulate Vaccine Candidates for Viral Antigens Measles, Zika, Inactivated Canine Coronavirus (iCCoV), and H1N1 Flu Prototype
2.2.4. Imaging of Antigen Presentation by Stimulated DCs to the Overlaid Naïve T-Cells
2.2.5. Assessment of Effective Antigen Presentation In Vitro
Pulsing DCs (APCs) with Various Vaccine Treatments
Flow Cytometry Analysis
2.2.6. Dose-Response Analysis of T-Cell Proliferation in Response to Various Concentrations of the Adjuvanted Vaccine Particles
2.2.7. Statistical Analysis
3. Results
3.1. Imaging of Antigen Presentation by the DCs during Antigen Presentation to T-Cells and Subsequent T-Cell Division
3.2. Isolation and Quantification of Proliferated T-Cells Using Flow Cytometry
3.3. Dose-Dependent Response Study for Various Antigen-Loaded Particulate Vaccine Candidates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Turner, S.J.; Bennett, T.J.; La Gruta, N.L. CD8 + T-Cell Memory: The Why, the When, and the How. Cold Spring Harb. Perspect. Biol. 2021, 13, a038661. [Google Scholar] [CrossRef] [PubMed]
- Koh, C.-H.; Lee, S.; Kwak, M.; Kim, B.-S.; Chung, Y. CD8 T-Cell Subsets: Heterogeneity, Functions, and Therapeutic Potential. Exp. Mol. Med. 2023, 55, 2287–2299. [Google Scholar] [CrossRef] [PubMed]
- Soerens, A.G.; Künzli, M.; Quarnstrom, C.F.; Scott, M.C.; Swanson, L.; Locquiao, J.; Ghoneim, H.E.; Zehn, D.; Youngblood, B.; Vezys, V.; et al. Functional T Cells Are Capable of Supernumerary Cell Division and Longevity. Nature 2023, 614, 762–766. [Google Scholar] [CrossRef] [PubMed]
- Ura, T.; Takeuchi, M.; Kawagoe, T.; Mizuki, N.; Okuda, K.; Shimada, M. Current Vaccine Platforms in Enhancing T-Cell Response. Vaccines 2022, 10, 1367. [Google Scholar] [CrossRef]
- Dhawan, M.; Rabaan, A.A.; Fawarah, M.M.A.; Almuthree, S.A.; Alsubki, R.A.; Alfaraj, A.H.; Mashraqi, M.M.; Alshamrani, S.A.; Abduljabbar, W.A.; Alwashmi, A.S.S.; et al. Updated Insights into the T Cell-Mediated Immune Response against SARS-CoV-2: A Step towards Efficient and Reliable Vaccines. Vaccines 2023, 11, 101. [Google Scholar] [CrossRef]
- Chowdhury, N.; Kundu, A. Nanotechnology Platform for Advancing Vaccine Development against the COVID-19 Virus. Diseases 2023, 11, 177. [Google Scholar] [CrossRef]
- Lopes Chaves, L.; Dourado, D.; Prunache, I.-B.; Manuelle Marques Da Silva, P.; Tacyana Dos Santos Lucena, G.; Cardoso De Souza, Z.; Muniz Mendes Freire De Moura, P.; Nunes Bordallo, H.; Rocha Formiga, F.; De Souza Rebouças, J. Nanocarriers of Antigen Proteins for Vaccine Delivery. Int. J. Pharm. 2024, 659, 124162. [Google Scholar] [CrossRef]
- Mohsen, M.O.; Zha, L.; Cabral-Miranda, G.; Bachmann, M.F. Major Findings and Recent Advances in Virus–like Particle (VLP)-Based Vaccines. Semin. Immunol. 2017, 34, 123–132. [Google Scholar] [CrossRef]
- Braz Gomes, K.; Vijayanand, S.; Bagwe, P.; Menon, I.; Kale, A.; Patil, S.; Kang, S.-M.; Uddin, M.N.; D’Souza, M.J. Vaccine-Induced Immunity Elicited by Microneedle Delivery of Influenza Ectodomain Matrix Protein 2 Virus-like Particle (M2e VLP)-Loaded PLGA Nanoparticles. Int. J. Mol. Sci. 2023, 24, 10612. [Google Scholar] [CrossRef]
- Bagwe, P.; Bajaj, L.; Menon, I.; Braz Gomes, K.; Kale, A.; Patil, S.; Vijayanand, S.; Gala, R.; D’Souza, M.J.; Zughaier, S.M. Gonococcal Microparticle Vaccine in Dissolving Microneedles Induced Immunity and Enhanced Bacterial Clearance in Infected Mice. Int. J. Pharm. 2023, 642, 123182. [Google Scholar] [CrossRef]
- Zaman, R.U.; Mulla, N.S.; Braz Gomes, K.; D’Souza, C.; Murnane, K.S.; D’Souza, M.J. Nanoparticle Formulations That Allow for Sustained Delivery and Brain Targeting of the Neuropeptide Oxytocin. Int. J. Pharm. 2018, 548, 698–706. [Google Scholar] [CrossRef] [PubMed]
- Kale, A.; Joshi, D.; Menon, I.; Bagwe, P.; Patil, S.; Vijayanand, S.; Braz Gomes, K.; D’Souza, M. Novel Microparticulate Zika Vaccine Induces a Significant Immune Response in a Preclinical Murine Model after Intramuscular Administration. Int. J. Pharm. 2022, 624, 121975. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Masuda, K.; Groso, C.; Hassan, R.; Zhou, Z.; Broderick, K.; Tsuji, M.; Tison, C. Microfluidic Synthesis of Scalable Layer-by-Layer Multiple Antigen Nano-Delivery Platform for SARS-CoV-2 Vaccines. Vaccines 2024, 12, 339. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, A.L.; Garçon, N.; Leo, O.; Friedland, L.R.; Strugnell, R.; Laupèze, B.; Doherty, M.; Stern, P. Vaccine Development: From Concept to Early Clinical Testing. Vaccine 2016, 34, 6655–6664. [Google Scholar] [CrossRef] [PubMed]
- Sanyal, G.; Särnefält, A.; Kumar, A. Considerations for Bioanalytical Characterization and Batch Release of COVID-19 Vaccines. npj Vaccines 2021, 6, 53. [Google Scholar] [CrossRef] [PubMed]
- Haber, P.; Sejvar, J.; Mikaeloff, Y.; DeStefano, F. Vaccines and Guillain-Barré Syndrome. Drug Saf. 2009, 32, 309–323. [Google Scholar] [CrossRef]
- Shao, S.-C.; Wang, C.-H.; Chang, K.-C.; Hung, M.-J.; Chen, H.-Y.; Liao, S.-C. Guillain-Barré Syndrome Associated with COVID-19 Vaccination. Emerg. Infect. Dis. 2021, 27, 3175–3178. [Google Scholar] [CrossRef]
- Castiglione, J.I.; Crespo, J.M.; Bendersky, M.; Silveira, F.O.; Lecchini, L.; Luis, M.B.; Zambrano, F.C.; Cotti, N.; Simison, C.J.; Aguirre, F.; et al. Guillain-Barré Syndrome and COVID-19 Vaccine: A Multicenter Retrospective Study of 46 Cases. J. Clin. Neuromuscul. Dis. 2023, 25, 1–10. [Google Scholar] [CrossRef]
- Finsterer, J. Neurological Adverse Reactions to SARS-CoV-2 Vaccines. Clin. Psychopharmacol. Neurosci. 2023, 21, 222–239. [Google Scholar] [CrossRef]
- Moon, S.; Kim, D.H.; Shin, J.U. In Vitro Models Mimicking Immune Response in the Skin. Yonsei Med. J. 2021, 62, 969. [Google Scholar] [CrossRef]
- Hammel, J.H.; Cook, S.R.; Belanger, M.C.; Munson, J.M.; Pompano, R.R. Modeling Immunity In Vitro: Slices, Chips, and Engineered Tissues. Annu. Rev. Biomed. Eng. 2021, 23, 461–491. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Calar, K.; de la Puente, P. Mimicking Tumor Hypoxia and Tumor-Immune Interactions Employing Three-Dimensional in Vitro Models. J. Exp. Clin. Cancer Res. 2020, 39, 75. [Google Scholar] [CrossRef] [PubMed]
- Gala, R.; Zaman, R.; D’Souza, M.; Zughaier, S. Novel Whole-Cell Inactivated Neisseria Gonorrhoeae Microparticles as Vaccine Formulation in Microneedle-Based Transdermal Immunization. Vaccines 2018, 6, 60. [Google Scholar] [CrossRef] [PubMed]
- Bagwe, P.; Bajaj, L.; Gala, R.P.; D’Souza, M.J.; Zughaier, S.M. Assessment of In Vitro Immunostimulatory Activity of an Adjuvanted Whole-Cell Inactivated Neisseria Gonorrhoeae Microparticle Vaccine Formulation. Vaccines 2022, 10, 983. [Google Scholar] [CrossRef] [PubMed]
- Joshi, D.; Gala, R.P.; Uddin, M.N.; D’Souza, M.J. Novel Ablative Laser Mediated Transdermal Immunization for Microparticulate Measles Vaccine. Int. J. Pharm. 2021, 606, 120882. [Google Scholar] [CrossRef]
- Gala, R.P.; Popescu, C.; Knipp, G.T.; McCain, R.R.; Ubale, R.V.; Addo, R.; Bhowmik, T.; Kulczar, C.D.; D’Souza, M.J. Physicochemical and Preclinical Evaluation of a Novel Buccal Measles Vaccine. AAPS PharmSciTech 2017, 18, 283–292. [Google Scholar] [CrossRef]
- Ubale, R.V.; D’souza, M.J.; Infield, D.T.; McCarty, N.A.; Zughaier, S.M. Formulation of Meningococcal Capsular Polysaccharide Vaccine-Loaded Microparticles with Robust Innate Immune Recognition. J. Microencapsul. 2013, 30, 28–41. [Google Scholar] [CrossRef]
- Vijayanand, S.; Patil, S.; Joshi, D.; Menon, I.; Braz Gomes, K.; Kale, A.; Bagwe, P.; Yacoub, S.; Uddin, M.N.; D’Souza, M.J. Microneedle Delivery of an Adjuvanted Microparticulate Vaccine Induces High Antibody Levels in Mice Vaccinated against Coronavirus. Vaccines 2022, 10, 1491. [Google Scholar] [CrossRef]
- Walker, E.; Van Niekerk, S.; Hanning, K.; Kelton, W.; Hicks, J. Mechanisms of Host Manipulation by Neisseria Gonorrhoeae. Front. Microbiol. 2023, 14, 1119834. [Google Scholar] [CrossRef]
- Jerse, A.E.; Bash, M.C.; Russell, M.W. Vaccines against Gonorrhea: Current Status and Future Challenges. Vaccine 2014, 32, 1579–1587. [Google Scholar] [CrossRef]
- Ubale, R.V.; Gala, R.P.; Zughaier, S.M.; D’Souza, M.J. Induction of Death Receptor CD95 and Co-Stimulatory Molecules CD80 and CD86 by Meningococcal Capsular Polysaccharide-Loaded Vaccine Nanoparticles. AAPS J. 2014, 16, 986–993. [Google Scholar] [CrossRef] [PubMed]
- Verch, T.; Trausch, J.J.; Shank-Retzlaff, M. Principles of Vaccine Potency Assays. Bioanalysis 2018, 10, 163–180. [Google Scholar] [CrossRef] [PubMed]
- Dauner, A.; Agrawal, P.; Salvatico, J.; Tapia, T.; Dhir, V.; Shaik, S.F.; Drake, D.R.; Byers, A.M. The in Vitro MIMIC® Platform Reflects Age-Associated Changes in Immunological Responses after Influenza Vaccination. Vaccine 2017, 35, 5487–5494. [Google Scholar] [CrossRef] [PubMed]
- Coffman, R.L.; Sher, A.; Seder, R.A. Vaccine Adjuvants: Putting Innate Immunity to Work. Immunity 2010, 33, 492–503. [Google Scholar] [CrossRef]
- Patel, N.; Davis, Z.; Hofmann, C.; Vlasak, J.; Loughney, J.W.; DePhillips, P.; Mukherjee, M. Development and Characterization of an In Vitro Cell-Based Assay to Predict Potency of mRNA–LNP-Based Vaccines. Vaccines 2023, 11, 1224. [Google Scholar] [CrossRef]
- Plotkin, S.A. Vaccines: Past, Present and Future. Nat. Med. 2005, 11, S5–S11. [Google Scholar] [CrossRef]
- Krutzik, P.O.; Irish, J.M.; Nolan, G.P.; Perez, O.D. Analysis of Protein Phosphorylation and Cellular Signaling Events by Flow Cytometry: Techniques and Clinical Applications. Clin. Immunol. 2004, 110, 206–221. [Google Scholar] [CrossRef]
- Bendall, S.C.; Simonds, E.F.; Qiu, P.; Amir, E.D.; Krutzik, P.O.; Finck, R.; Bruggner, R.V.; Melamed, R.; Trejo, A.; Ornatsky, O.I.; et al. Single-Cell Mass Cytometry of Differential Immune and Drug Responses across a Human Hematopoietic Continuum. Science 2011, 332, 687–696. [Google Scholar] [CrossRef]
- Mudd, P.A.; Minervina, A.A.; Pogorelyy, M.V.; Turner, J.S.; Kim, W.; Kalaidina, E.; Petersen, J.; Schmitz, A.J.; Lei, T.; Haile, A.; et al. SARS-CoV-2 mRNA Vaccination Elicits a Robust and Persistent T Follicular Helper Cell Response in Humans. Cell 2022, 185, 603–613.e15. [Google Scholar] [CrossRef]
- Millar, D.G.; Yang, S.Y.C.; Sayad, A.; Zhao, Q.; Nguyen, L.T.; Warner, K.; Sangster, A.G.; Nakatsugawa, M.; Murata, K.; Wang, B.X.; et al. Identification of Antigenic Epitopes Recognized by Tumor Infiltrating Lymphocytes in High Grade Serous Ovarian Cancer by Multi-Omics Profiling of the Auto-Antigen Repertoire. Cancer Immunol. Immunother. 2023, 72, 2375–2392. [Google Scholar] [CrossRef]
- Sumner, G.; Keller, S.; Huleatt, J.; Staack, R.F.; Wagner, L.; Azadeh, M.; Bandukwala, A.; Cao, L.; Du, X.; Salinas, G.F.; et al. 2022 White Paper on Recent Issues in Bioanalysis: Enzyme Assay Validation, BAV for Primary End Points, Vaccine Functional Assays, Cytometry in Tissue, LBA in Rare Matrices, Complex NAb Assays, Spectral Cytometry, Endogenous Analytes, Extracellular Vesicles Part 2—Recommendations on Biomarkers/CDx, Flow Cytometry, Ligand-Binding Assays Development & Validation; Emerging Technologies; Critical Reagents Deep Characterization. Bioanalysis 2023, 15, 861–903. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Lin, X.; Fu, B.; Xiong, Y.; Zaky, M.Y.; Wu, H. Functional Studies of HLA and Its Role in SARS-CoV-2: Stimulating T Cell Response and Vaccine Development. Life Sci. 2023, 315, 121374. [Google Scholar] [CrossRef] [PubMed]
- Germain, R.N.; Meier-Schellersheim, M.; Nita-Lazar, A.; Fraser, I.D.C. Systems Biology in Immunology: A Computational Modeling Perspective. Annu. Rev. Immunol. 2011, 29, 527–585. [Google Scholar] [CrossRef] [PubMed]
- Fedele, G.; Trentini, F.; Schiavoni, I.; Abrignani, S.; Antonelli, G.; Baldo, V.; Baldovin, T.; Bandera, A.; Bonura, F.; Clerici, P.; et al. Evaluation of Humoral and Cellular Response to Four Vaccines against COVID-19 in Different Age Groups: A Longitudinal Study. Front. Immunol. 2022, 13, 1021396. [Google Scholar] [CrossRef]
- Leng, S.X.; Shaw, A.C. Fundamental and Frontier Research of Immune Responses to Influenza Vaccines in Human Aging: From Cross-Sectional and Longitudinal Studies to Clinical Trials and the Geroscience Perspective. Immun. Ageing 2023, 20, 69. [Google Scholar] [CrossRef]
- Kakugawa, T.; Doi, K.; Ohteru, Y.; Kakugawa, H.; Oishi, K.; Kakugawa, M.; Hirano, T.; Mimura, Y.; Matsunaga, K. Kinetics of COVID-19 mRNA Primary and Booster Vaccine-Associated Neutralizing Activity against SARS-CoV-2 Variants of Concern in Long-Term Care Facility Residents: A Prospective Longitudinal Study in Japan. Immun. Ageing 2023, 20, 42. [Google Scholar] [CrossRef]
- Karachaliou, M.; Moncunill, G.; Espinosa, A.; Castaño-Vinyals, G.; Rubio, R.; Vidal, M.; Jiménez, A.; Prados, E.; Carreras, A.; Cortés, B.; et al. SARS-CoV-2 Infection, Vaccination, and Antibody Response Trajectories in Adults: A Cohort Study in Catalonia. BMC Med. 2022, 20, 347. [Google Scholar] [CrossRef]
- Latifi, T.; Kachooei, A.; Jalilvand, S.; Zafarian, S.; Roohvand, F.; Shoja, Z. Correlates of Immune Protection against Human Rotaviruses: Natural Infection and Vaccination. Arch. Virol. 2024, 169, 72. [Google Scholar] [CrossRef]
- Corbett, K.S.; Nason, M.C.; Flach, B.; Gagne, M.; O’Connell, S.; Johnston, T.S.; Shah, S.N.; Edara, V.V.; Floyd, K.; Lai, L.; et al. Immune Correlates of Protection by mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. Science 2021, 373, eabj0299. [Google Scholar] [CrossRef]
- Satti, I.; McShane, H. Current Approaches toward Identifying a Correlate of Immune Protection from Tuberculosis. Expert Rev. Vaccines 2019, 18, 43–59. [Google Scholar] [CrossRef]
- Figueiredo, J.C.; Merin, N.M.; Hamid, O.; Choi, S.Y.; Lemos, T.; Cozen, W.; Nguyen, N.; Finster, L.J.; Foley, J.; Darrah, J.; et al. Longitudinal SARS-CoV-2 mRNA Vaccine-Induced Humoral Immune Responses in Patients with Cancer. Cancer Res. 2021, 81, 6273–6280. [Google Scholar] [CrossRef] [PubMed]
- Berry, M.T.; Khan, S.R.; Schlub, T.E.; Notaras, A.; Kunasekaran, M.; Grulich, A.E.; MacIntyre, C.R.; Davenport, M.P.; Khoury, D.S. Predicting Vaccine Effectiveness for Mpox. Nat. Commun. 2024, 15, 3856. [Google Scholar] [CrossRef] [PubMed]
- Hammershaimb, E.A.D.; Campbell, J.D. Vaccine Development. Pediatr. Clin. N. Am. 2024, 71, 529–549. [Google Scholar] [CrossRef] [PubMed]
- Boraschi, D.; Li, D.; Li, Y.; Italiani, P. In Vitro and In Vivo Models to Assess the Immune-Related Effects of Nanomaterials. Int. J. Environ. Res. Public Health 2021, 18, 11769. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, C.; Schildknecht, S. In Vitro Research Reproducibility: Keeping Up High Standards. Front. Pharmacol. 2019, 10, 1484. [Google Scholar] [CrossRef]
- Mattes, W.B. In Vitro to in Vivo Translation. Curr. Opin. Toxicol. 2020, 23–24, 114–118. [Google Scholar] [CrossRef]
- Albert-Vega, C.; Tawfik, D.M.; Trouillet-Assant, S.; Vachot, L.; Mallet, F.; Textoris, J. Immune Functional Assays, From Custom to Standardized Tests for Precision Medicine. Front. Immunol. 2018, 9, 2367. [Google Scholar] [CrossRef]
- Pondman, K.; Le Gac, S.; Kishore, U. Nanoparticle-Induced Immune Response: Health Risk versus Treatment Opportunity? Immunobiology 2023, 228, 152317. [Google Scholar] [CrossRef]
- Huh, D.; Kim, H.J.; Fraser, J.P.; Shea, D.E.; Khan, M.; Bahinski, A.; Hamilton, G.A.; Ingber, D.E. Microfabrication of Human Organs-on-Chips. Nat. Protoc. 2013, 8, 2135–2157. [Google Scholar] [CrossRef]
- Mead, B.E.; Karp, J.M. All Models Are Wrong, but Some Organoids May Be Useful. Genome Biol. 2019, 20, 66. [Google Scholar] [CrossRef]
- Jang, K.-J.; Otieno, M.A.; Ronxhi, J.; Lim, H.-K.; Ewart, L.; Kodella, K.R.; Petropolis, D.B.; Kulkarni, G.; Rubins, J.E.; Conegliano, D.; et al. Reproducing Human and Cross-Species Drug Toxicities Using a Liver-Chip. Sci. Transl. Med. 2019, 11, eaax5516. [Google Scholar] [CrossRef] [PubMed]
- Kroll, K.T.; Mata, M.M.; Homan, K.A.; Micallef, V.; Carpy, A.; Hiratsuka, K.; Morizane, R.; Moisan, A.; Gubler, M.; Walz, A.-C.; et al. Immune-Infiltrated Kidney Organoid-on-Chip Model for Assessing T Cell Bispecific Antibodies. Proc. Natl. Acad. Sci. USA 2023, 120, e2305322120. [Google Scholar] [CrossRef] [PubMed]
- Virgilio, E.; Tondo, G.; Montabone, C.; Comi, C. COVID-19 Vaccination and Late-Onset Myasthenia Gravis: A New Case Report and Review of the Literature. Int. J. Environ. Res. Public Health 2022, 20, 467. [Google Scholar] [CrossRef] [PubMed]
- Lázaro Hernández, C.; Llauradó Gayete, A.; Sánchez-Tejerina San José, D.; Cabirta, A.; Carpio, C.; Sotoca, J.; Salvadó Figueras, M.; Raguer Sanz, N.; Restrepo, J.; Juntas Morales, R. Síndrome de Guillain-Barré y trombocitopenia tras la vacunación contra el SARS-CoV-2 con Moderna. Descripción de un caso. Rev. Neurol. 2022, 75, 247. [Google Scholar] [CrossRef]
- Ruiz, J.T.; Luján, L.; Blank, M.; Shoenfeld, Y. Adjuvants- and Vaccines-Induced Autoimmunity: Animal Models. Immunol. Res. 2017, 65, 55–65. [Google Scholar] [CrossRef]
- Seida, I.; Seida, R.; Elsalti, A.; Mahroum, N. Vaccines and Autoimmunity—From Side Effects to ASIA Syndrome. Medicina 2023, 59, 364. [Google Scholar] [CrossRef]
- Guo, M.; Liu, X.; Chen, X.; Li, Q. Insights into New-Onset Autoimmune Diseases after COVID-19 Vaccination. Autoimmun. Rev. 2023, 22, 103340. [Google Scholar] [CrossRef]
- Mageau, A.; Tchen, J.; Ferré, V.M.; Nicaise-Roland, P.; Descamps, D.; Delory, N.; François, C.; Mendes, C.; Papo, T.; Goulenok, T.; et al. Impact of BNT162b2 mRNA Anti-SARS-CoV-2 Vaccine on Interferon-Alpha Production by Plasmacytoid Dendritic Cells and Autoreactive T Cells in Patients with Systemic Lupus Erythematosus: The COVALUS Project. J. Autoimmun. 2023, 134, 102987. [Google Scholar] [CrossRef]
- DiPiazza, A.T.; Graham, B.S.; Ruckwardt, T.J. T Cell Immunity to SARS-CoV-2 Following Natural Infection and Vaccination. Biochem. Biophys. Res. Commun. 2021, 538, 211–217. [Google Scholar] [CrossRef]
- Conklin, L.; Hviid, A.; Orenstein, W.A.; Pollard, A.J.; Wharton, M.; Zuber, P. Vaccine Safety Issues at the Turn of the 21st Century. BMJ Glob. Health 2021, 6, e004898. [Google Scholar] [CrossRef]
- Konstantinou, G.N. Explaining COVID-19 Postvaccination-Related Immune Thrombotic Thrombocytopenia: A Hypothesis-Generating in-Silico Approach. Hum. Vaccines Immunother. 2022, 18, 2050654. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Yuan, D.; Chen, D.G.; Ng, R.H.; Wang, K.; Choi, J.; Li, S.; Hong, S.; Zhang, R.; Xie, J.; et al. Multiple Early Factors Anticipate Post-Acute COVID-19 Sequelae. Cell 2022, 185, 881–895.e20. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, Z.; Wang, P.; Li, X.-M.; Shuai, Z.-W.; Ye, D.-Q.; Pan, H.-F. New-Onset Autoimmune Phenomena Post-COVID-19 Vaccination. Immunology 2022, 165, 386–401. [Google Scholar] [CrossRef] [PubMed]
- Loshaj-Shala, A.; Colzani, M.; Brezovska, K.; Poceva Panovska, A.; Suturkova, L.; Beretta, G. Immunoproteomic Identification of Antigenic Candidate Campylobacter Jejuni and Human Peripheral Nerve Proteins Involved in Guillain-Barré Syndrome. J. Neuroimmunol. 2018, 317, 77–83. [Google Scholar] [CrossRef]
- Shang, P.; Zhu, M.; Wang, Y.; Zheng, X.; Wu, X.; Zhu, J.; Feng, J.; Zhang, H.-L. Axonal Variants of Guillain–Barré Syndrome: An Update. J. Neurol. 2021, 268, 2402–2419. [Google Scholar] [CrossRef]
- Finsterer, J. Triggers of Guillain–Barré Syndrome: Campylobacter Jejuni Predominates. Int. J. Mol. Sci. 2022, 23, 14222. [Google Scholar] [CrossRef]
- Khanmohammadi, S.; Malekpour, M.; Jabbari, P.; Rezaei, N. Genetic Basis of Guillain-Barre Syndrome. J. Neuroimmunol. 2021, 358, 577651. [Google Scholar] [CrossRef]
- Kløve, S.; Genger, C.; Weschka, D.; Mousavi, S.; Bereswill, S.; Heimesaat, M.M. Toll-Like Receptor-4 Is Involved in Mediating Intestinal and Extra-Intestinal Inflammation in Campylobacter Coli-Infected Secondary Abiotic IL-10-/- Mice. Microorganisms 2020, 8, 1882. [Google Scholar] [CrossRef]
- Verstappen, G.M.; De Wolff, L.; Arends, S.; Heiermann, H.-M.; Van Sleen, Y.; Visser, A.; Terpstra, J.H.; Diavatopoulos, D.A.; Van Der Heiden, M.; Vissink, A.; et al. Immunogenicity and Safety of COVID-19 Vaccination in Patients with Primary Sjögren’s Syndrome. RMD Open 2022, 8, e002265. [Google Scholar] [CrossRef]
Treatment Groups | Percent Daughter T-Cells Proliferated (%) beyond the Established Gates | |||
---|---|---|---|---|
Day 0–Day 1 | Day 1–Day 2 | Day 2–Day 4 | Day 4–Day 6 | |
CFSE-stained T-cells only | 60.2 ± 1.7% | 11.5 ±14.1% | 0% | 0% |
Blank PLGA NPs | 51.4 ±6.5% | 56.6 ±4.4% | 89.0 ± 6.7% | 34.0 ±13.4% |
Measles Vaccine NPs + Adjuvants | 77.3 ± 6.8% | 65.5 ± 8.1% | 91.1 ± 0.2% | 87.5 ± 9.0% |
H1N1 Flu Vaccine NPs + Adjuvants | 52.5 ± 2.6% | 71.8 ± 15.1% | 84.6 ±6.6% | 86.0 ±3.8% |
Zika Vaccine NPs + Adjuvants | 55.9 ±1.5% | 74.1 ±7.0% | 98.3 ±3.1% | 85.2 ± 9.2% |
Canine coronavirus vaccine NPs + Adjuvants | 43.3 ± 0.38 | 72.5 ± 3.68% | 52.0 ±0.7% | 61.7 ± 8.8% |
Blank BSA MPs | 37.7 ± 5.5% | 50.7 ± 8.5% | 78.7 ± 3.4% | 31.5 ±6.4% |
N. gonorrhoeae FA1090 Vaccine MPs + Adjuvants | 45.6 ±6.4% | 68.8 ± 4.5% | 80.3 ± 3% | 85.0 ± 3.5% |
N. gonorrhoeae FA19 Vaccine MPs + Adjuvants | 29.3 ± 2.6% | 46.7 ± 4.3% | 66.9 ± 4% | 86.9 ± 9.1% |
N. gonorrhoeae CDC F62 Vaccine NPs + Adjuvants | 48.4 ± 13.7% | 67.5 ± 4.4% | 67.7 ± 5.4% | 79.0 ± 15.6% |
Treatment Groups | Percent T-Cells Proliferated as Days Progressed (%) | |||
---|---|---|---|---|
Day 1 | Day 2 | Day 4 | Day 6 | |
PLGA Blank NPs | 54 ± 2.6% | 12 ± 4.2% | 29 ± 0.6% | 31 ± 7.4% |
Zika vaccine MPs 200 µg + adjuvants | 57 ± 1.7% | 9 ± 0.8% | 26 ± 2.1% | 83 ± 8.9% |
Zika vaccine NPs 160 µg + adjuvants | 56 ± 1.5% | 18 ± 1.2% | 13 ± 9.3% | 81 ± 3.2% |
Zika vaccine NPs 120 µg + adjuvants | 54 ± 2.0% | 12 ± 2.2% | 19 ± 13.3% | 73 ± 5.0% |
Zika vaccine NPs 80 µg + adjuvants | 51 ± 2.5% | 21 ± 5.6% | 11 ± 12.8% | 65 ± 6.4% |
Zika vaccine NPs 40 µg + adjuvants | 52 ± 5.7% | 29 ± 1.7% | 0% | 67 ± 1.3% |
BSA Blank MPs | 52 ± 2.1% | 21 ± 1.8% | 10 ± 3.1% | 52 ± 3.2% |
GC FA19 vaccine MPs 200 µg + adjuvants | 29± 2.6% | 47 ± 4.3% | 28 ± 4.1% | 87 ± 9.1% |
GC FA19 vaccine MPs 160 µg + adjuvants | 28 ± 2.4% | 38 ± 5.1% | 31 ± 13.2% | 88 ± 12.8% |
GC FA19 vaccine MPs 120 µg + adjuvants | 25 ± 8.5% | 39 ± 2.2% | 25 ± 7.5% | 80 ± 17.0% |
GC FA19 vaccine MPs 80 µg + adjuvants | 23 ± 1.7% | 47 ± 4.1% | 50 ± 0.1% | 57 ± 1.2% |
GC FA19 vaccine MPs 40 µg + adjuvants | 19 ± 1.7% | 48 ± 3.3% | 60 ± 2% | 58 ± 6.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasupuleti, D.; Bagwe, P.; Ferguson, A.; Uddin, M.N.; D’Souza, M.J.; Zughaier, S.M. Evaluating Nanoparticulate Vaccine Formulations for Effective Antigen Presentation and T-Cell Proliferation Using an In Vitro Overlay Assay. Vaccines 2024, 12, 1049. https://doi.org/10.3390/vaccines12091049
Pasupuleti D, Bagwe P, Ferguson A, Uddin MN, D’Souza MJ, Zughaier SM. Evaluating Nanoparticulate Vaccine Formulations for Effective Antigen Presentation and T-Cell Proliferation Using an In Vitro Overlay Assay. Vaccines. 2024; 12(9):1049. https://doi.org/10.3390/vaccines12091049
Chicago/Turabian StylePasupuleti, Dedeepya, Priyal Bagwe, Amarae Ferguson, Mohammad N. Uddin, Martin J. D’Souza, and Susu M. Zughaier. 2024. "Evaluating Nanoparticulate Vaccine Formulations for Effective Antigen Presentation and T-Cell Proliferation Using an In Vitro Overlay Assay" Vaccines 12, no. 9: 1049. https://doi.org/10.3390/vaccines12091049
APA StylePasupuleti, D., Bagwe, P., Ferguson, A., Uddin, M. N., D’Souza, M. J., & Zughaier, S. M. (2024). Evaluating Nanoparticulate Vaccine Formulations for Effective Antigen Presentation and T-Cell Proliferation Using an In Vitro Overlay Assay. Vaccines, 12(9), 1049. https://doi.org/10.3390/vaccines12091049