Changes in Attitudes towards Influenza and Pneumococcal Vaccination during the Subsiding COVID-19 Pandemic—Results of a Longitudinal Survey Study among Risk Groups in Germany between 2021 and 2023
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Setting
2.2. Sample Recruitment and Survey Conduction
2.3. Survey Development
2.4. Variables
2.4.1. Vaccination Attitude
2.4.2. Risk Perception
2.4.3. Vaccination Knowledge
2.4.4. Psychological Antecedents of Vaccination (5C)
2.5. Analyses
3. Results
3.1. Survey Participants
3.2. Temporal Trends in Vaccination Rates, Vaccination Attitude, Risk Perception and Vaccination Knowledge
3.3. Predictors of Vaccination Attitude
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rose, N.; Storch, J.; Mikolajetz, A.; Lehmann, T.; Reinhart, K.; Pletz, M.W.; Forstner, C.; Vollmar, H.C.; Freytag, A.; Fleischmann-Struzek, C. Preventive effects of influenza and pneumococcal vaccination in the elderly—Results from a population-based retrospective cohort study. Hum. Vaccines Immunother. 2021, 17, 1844–1852. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Gondar, O.; Vila-Corcoles, A.; Rodriguez-Blanco, T.; Gomez-Bertomeu, F.; Figuerola-Massana, E.; Raga-Luria, X.; Hospital-Guardiola, I. Effectiveness of the 23-valent pneumococcal polysaccharide vaccine against community-acquired pneumonia in the general population aged >/= 60 years: 3 years of follow-up in the CAPAMIS study. Clin. Infect. Dis. 2014, 58, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, C.; Rezza, G.; Ricciardi, W. Strategies in recommending influenza vaccination in Europe and US. Hum. Vaccines Immunother. 2018, 14, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Perniciaro, S.; van der Linden, M. Pneumococcal vaccine uptake and vaccine effectiveness in older adults with invasive pneumococcal disease in Germany: A retrospective cohort study. Lancet Reg. Health–Eur. 2021, 7, 100126. [Google Scholar] [CrossRef] [PubMed]
- Sprenger, R.; Hackl, D.; Kossack, N.; Schiffner-Rohe, J.; Wohlleben, J.; von Eiff, C. Pneumococcal vaccination rates in immunocompromised patients in Germany: A retrospective cohort study to assess sequential vaccination rates and changes over time. PLoS ONE 2022, 17, e0265433. [Google Scholar] [CrossRef] [PubMed]
- Del Riccio, M.; Lina, B.; Caini, S.; Staadegaard, L.; Wiegersma, S.; Kynčl, J.; Combadière, B.; MacIntyre, C.R.; Paget, J. Letter to the editor: Increase of influenza vaccination coverage rates during the COVID-19 pandemic and implications for the upcoming influenza season in northern hemisphere countries and Australia. Eurosurveillance 2021, 26, 2101143. [Google Scholar] [CrossRef]
- Rieck, T.; Steffen, A.; Feig, M.; Siedler, A. Impfquoten bei Erwachsenen in Deutschland—Aktuelles aus der KV-Impfsurveillance. Epidemiol. Bull. 2021, 50, 3–22. [Google Scholar] [CrossRef]
- Miranda-García, M.A.; Hoffelner, M.; Stoll, H.; Ruhaltinger, D.; Cichutek, K.; Siedler, A.; Bekeredjian-Ding, I. A 5-year look-back at the notification and management of vaccine supply shortages in Germany. Eurosurveillance 2022, 27, 2100167. [Google Scholar] [CrossRef]
- Soveri, A.; Karlsson, L.C.; Antfolk, J.; Maki, O.; Karlsson, L.; Karlsson, H.; Nolvi, S.; Karukivi, M.; Lindfelt, M.; Lewandowsky, S. Spillover effects of the COVID-19 pandemic on attitudes to influenza and childhood vaccines. BMC Public Health 2023, 23, 764. [Google Scholar] [CrossRef]
- Lunz Trujillo, K.; Green, J.; Safarpour, A.; Lazer, D.; Lin, J.; Motta, M. COVID-19 Spillover Effects onto General Vaccine Attitudes. Public Opin. Q. 2024, 88, 97–122. [Google Scholar] [CrossRef]
- Kong, G.; Lim, N.A.; Chin, Y.H.; Ng, Y.P.M.; Amin, Z. Effect of COVID-19 Pandemic on Influenza Vaccination Intention: A Meta-Analysis and Systematic Review. Vaccines 2022, 10, 606. [Google Scholar] [CrossRef] [PubMed]
- Leuchter, R.K.; Jackson, N.J.; Mafi, J.N.; Sarkisian, C.A. Association between COVID-19 Vaccination and Influenza Vaccination Rates. N. Engl. J. Med. 2022, 386, 2531–2532. [Google Scholar] [CrossRef] [PubMed]
- Lan, C.; Chen, Y.C.; Chang, Y.I.; Chuang, P.C. Impact of COVID-19 Outbreak on Influenza and Pneumococcal Vaccination Uptake: A Multi-Center Retrospective Study. Vaccines 2023, 11, 986. [Google Scholar] [CrossRef] [PubMed]
- Breuker, C.; Guedj, A.M.; Allan, M.; Coinus, L.; Molinari, N.; Chapet, N.; Roubille, F.; Le Quintrec, M.; Duhalde, V.; Jouglen, J.; et al. The COVID-19 Pandemic Led to a Small Increase in Changed Mentality Regarding Infection Risk without Any Change in Willingness to Be Vaccinated in Chronic Diseases Patients. J. Clin. Med. 2021, 10, 3967. [Google Scholar] [CrossRef]
- Loubet, P.; Rouvière, J.; Merceron, A.; Launay, O.; Sotto, A.; on behalf of the AVNIR Group. Patients’ Perception and Knowledge about Influenza and Pneumococcal Vaccination during the COVID-19 Pandemic: An Online Survey in Patients at Risk of Infections. Vaccines 2021, 9, 1372. [Google Scholar] [CrossRef]
- Schmid, P.; Rauber, D.; Betsch, C.; Lidolt, G.; Denker, M.L. Barriers of Influenza Vaccination Intention and Behavior—A Systematic Review of Influenza Vaccine Hesitancy, 2005–2016. PLoS ONE 2017, 12, e0170550. [Google Scholar] [CrossRef]
- Sharma, A.; Minh Duc, N.T.; Luu Lam Thang, T.; Nam, N.H.; Ng, S.J.; Abbas, K.S.; Huy, N.T.; Marušić, A.; Paul, C.L.; Kwok, J.; et al. A Consensus-Based Checklist for Reporting of Survey Studies (CROSS). J. Gen. Intern. Med. 2021, 36, 3179–3187. [Google Scholar] [CrossRef]
- Askelson, N.M.; Campo, S.; Lowe, J.B.; Smith, S.; Dennis, L.K.; Andsager, J. Using the theory of planned behavior to predict mothers’ intentions to vaccinate their daughters against HPV. J. Sch. Nurs. 2010, 26, 194–202. [Google Scholar] [CrossRef]
- Betsch, C.; Schmid, P.; Heinemeier, D.; Korn, L.; Holtmann, C.; Böhm, R. Beyond confidence: Development of a measure assessing the 5C psychological antecedents of vaccination. PLoS ONE 2018, 13, e0208601. [Google Scholar] [CrossRef]
- Brewer, N.T.; Chapman, G.B.; Gibbons, F.X.; Gerrard, M.; McCaul, K.D.; Weinstein, N.D. Meta-analysis of the relationship between risk perception and health behavior: The example of vaccination. Health Psychol. 2007, 26, 136–145. [Google Scholar] [CrossRef]
- Jones, D.; Story, D.; Clavisi, O.; Jones, R.; Peyton, P. An Introductory Guide to Survey Research in Anaesthesia. Anaesth. Intensive Care 2006, 34, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Burns, K.E.A.; Duffett, M.; Kho, M.E.; Meade, M.O.; Adhikari, N.K.J.; Sinuff, T.; Cook, D.J. A guide for the design and conduct of self-administered surveys of clinicians. Can. Med. Assoc. J. 2008, 179, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Yanagida, T. misty: Miscellaneous Functions ‘T. Yanagida’. 2022. Available online: https://CRAN.R-project.org/package=misty (accessed on 18 September 2024).
- Raykov, T. Estimation of Composite Reliability for Congeneric Measures. Appl. Psychol. Meas. 1997, 21, 173–184. [Google Scholar] [CrossRef]
- Oehlert, G.W. A Note on the Delta Method. Am. Stat. 1992, 46, 27–29. [Google Scholar] [CrossRef]
- Graham, J.W.; Taylor, B.J.; Olchowski, A.E.; Cumsille, P.E. Planned missing data designs in psychological research. Psychol. Methods 2006, 11, 323–343. [Google Scholar] [CrossRef] [PubMed]
- Rhemtulla, M.; Hancock, G.R. Planned missing data designs in educational psychology research. Educ. Psychol. 2016, 51, 305–316. [Google Scholar] [CrossRef]
- Enders, C.K. Analyzing structural equation models with missing data. Struct. Equ. Model. Second Course 2006, 2, 493–519. [Google Scholar]
- Enders, C.K. The performance of the full information maximum likelihood estimator in multiple regression models with missing data. Educ. Psychol. Meas. 2001, 61, 713–740. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Rosseel, Y. lavaan: An R Package for Structural Equation Modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef]
- Kwetkat, A.; Heppner, H.J.; Endre, A.S.; Leischker, A.H. Current recommendations for vaccination in older adults. MMW Fortschr. Med. 2021, 163, 42–49. [Google Scholar] [CrossRef]
- Achterbergh, R.C.A.; McGovern, I.; Haag, M. Co-Administration of Influenza and COVID-19 Vaccines: Policy Review and Vaccination Coverage Trends in the European Union, UK, US, and Canada between 2019 and 2023. Vaccines 2024, 12, 216. [Google Scholar] [CrossRef] [PubMed]
- Skyles, T.J.; Stevens, H.P.; Obray, A.M.; Jensen, J.L.; Miner, D.S.; Bodily, R.J.; Nielson, B.U.; Poole, B.D. Changes in Attitudes and Barriers to Seasonal Influenza Vaccination from 2007 to 2023. J. Community Health 2024, 49, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Liu, X.; Yan, D.; Zhou, Y.; Ding, C.; Chen, L.; Lan, L.; Huang, C.; Jiang, D.; Zhang, X.; et al. Global influenza vaccination rates and factors associated with influenza vaccination. Int. J. Infect. Dis. 2022, 125, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Du, P.; Jin, S.; Lu, S.; Wang, L.; Ma, X.; Wang, J.; Huang, R.; Luo, Q.; Yang, S.; Feng, X. Strategies to increase the coverage of influenza and pneumonia vaccination in older adults: A systematic review and network meta-analysis. Age Ageing 2024, 53, afae035. [Google Scholar] [CrossRef] [PubMed]
- Dillard, J.P.; Shen, L. Pro-Vaccination Flu and COVID-19 Messages: Evidence of Congenial Targeted and Spillover Effects. COVID 2024, 4, 363–377. [Google Scholar] [CrossRef]
- Domnich, A.; Grassi, R.; Fallani, E.; Ciccone, R.; Bruzzone, B.; Panatto, D.; Ferrari, A.; Salvatore, M.; Cambiaggi, M.; Vasco, A.; et al. Acceptance of COVID-19 and Influenza Vaccine Co-Administration: Insights from a Representative Italian Survey. J. Pers. Med. 2022, 12, 139. [Google Scholar] [CrossRef]
Variables | Descriptive Statistics |
---|---|
Female gender, n (%) | 276 (49.2) |
Age in years, mean ± SD | 52.6 ± 13.0 |
Education level, n (%) | |
Low | 111 (20.4) |
Intermediate | 223 (41.1) |
High | 209 (38.5) |
Employment status, n (%) | |
Unemployed | 232 (42.7) |
Employed | 311 (57.3) |
Health insurance, n (%) | |
Private | 64 (11.8) |
Statutory | 476 (87.7) |
Not answered | 3 (0.5) |
Comorbidities | |
Cancer, n (%) | 157 (28.9) |
Type 1 diabetes, n (%) | 55 (10.1) |
Type 2 diabetes, n (%) | 74 (13.6) |
Chronic heart failure, n (%) | 67 (12.3) |
Chronic bronchitis, n (%) | 70 (12.9) |
Chronic renal failure, n (%) | 56 (10.3) |
Chronic liver disease, n (%) | 47 (8.7) |
Chronic neurological disease, n (%) | 1 (0.2) |
Overweight, n (%) | 19 (3.5) |
Severe rheumatic disease, n (%) | 52 (9.6) |
Severe psoriasis, n (%) | 50 (9.2) |
HIV infection, n (%) | 81 (14.9) |
Asplenia, n (%) | 0 (0.0) |
Autoimmune disease, n (%) | 2 (0.4) |
Vaccination status influenza, n (%) | |
Vaccinated (2021) | 226 (41.6) |
Vaccinated (2023) * | 103 (39.6) |
Vaccination status pneumococci, n (%) | |
Vaccinated (2021) | 87 (16.0) |
Vaccinated (2023) * | 46 (17.7) |
Influenza | Pneumococcal | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2021 | 2023 | Change | 2021 | 2023 | Change | |||||||||||||||
M1 | SE | M2 | SE | M2 − M1 | SE | p-Value | M1 | SE | M2 | SE | M2 − M1 | SE | p-Value | |||||||
Vaccination Attitude | 3.384 | 0.043 | 3.382 | 0.049 | −0.002 | 0.033 | 0.958 | 3.116 | 0.043 | 3.055 | 0.046 | −0.061 | 0.036 | 0.094 | ||||||
Danger Disease | 2.472 | 0.046 | 2.767 | 0.055 | 0.294 | 0.044 | <0.001 * | 2.671 | 0.058 | 2.716 | 0.058 | 0.045 | 0.050 | 0.374 | ||||||
Risk to Get | 3.206 | 0.049 | 3.364 | 0.051 | 0.158 | 0.045 | <0.001 * | 2.495 | 0.050 | 2.687 | 0.056 | 0.193 | 0.048 | <0.001 * | ||||||
Danger Vaccination | 1.952 | 0.038 | 2.015 | 0.038 | 0.063 | 0.034 | 0.064 | 2.040 | 0.039 | 2.030 | 0.038 | −0.010 | 0.036 | 0.787 | ||||||
Effectiveness Vaccination | 4.092 | 0.036 | 3.909 | 0.040 | −0.183 | 0.037 | <0.001 * | 4.078 | 0.036 | 3.870 | 0.040 | −0.208 | 0.037 | <0.001 * | ||||||
Vaccination Knowledge | 0.757 | 0.021 | 0.773 | 0.026 | 0.016 | 0.025 | 0.516 | 0.467 | 0.024 | 0.514 | 0.028 | 0.047 | 0.022 | 0.035 * |
2021 | 2023 | Change | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
β1 | SE | p-Value | β2 | SE | p-Value | β2 − β1 | SE | p-Value | ||||
Danger of disease | 0.204 | 0.036 | <0.001 * | 0.164 | 0.057 | 0.004 * | −0.033 | 0.055 | 0.555 | |||
Risk to get disease | 0.224 | 0.041 | <0.001 * | 0.337 | 0.061 | <0.001 * | 0.150 | 0.067 | 0.025 * | |||
Danger of vaccination | −0.083 | 0.040 | 0.036 * | 0.052 | 0.067 | 0.434 | 0.168 | 0.100 | 0.092 | |||
Effectiveness of vaccination | 0.150 | 0.049 | 0.002 * | 0.078 | 0.071 | 0.270 | −0.076 | 0.108 | 0.479 | |||
Vaccination knowledge | 0.125 | 0.036 | <0.001 * | 0.059 | 0.047 | 0.209 | −0.160 | 0.137 | 0.244 | |||
COVID-19 | ||||||||||||
Danger of vaccination | 0.011 | 0.042 | 0.792 | −0.004 | 0.073 | 0.959 | −0.016 | 0.094 | 0.866 | |||
Effectiveness of vaccination | −0.140 | 0.050 | 0.005 * | −0.095 | 0.063 | 0.130 | 0.065 | 0.090 | 0.471 | |||
Vaccination attitude | 0.243 | 0.041 | <0.001 * | 0.232 | 0.063 | <0.001 * | −0.034 | 0.071 | 0.629 | |||
Confidence | 0.193 | 0.050 | <0.001 * | 0.088 | 0.057 | 0.122 | −0.114 | 0.092 | 0.217 | |||
Calculation | −0.028 | 0.026 | 0.273 | −0.022 | 0.042 | 0.589 | 0.002 | 0.059 | 0.978 | |||
Constraints | −0.053 | 0.032 | 0.092 | −0.034 | 0.053 | 0.520 | 0.016 | 0.077 | 0.837 | |||
Complacency | −0.038 | 0.037 | 0.300 | −0.102 | 0.055 | 0.066 | −0.102 | 0.085 | 0.231 | |||
Collective responsibility | 0.030 | 0.044 | 0.492 | 0.093 | 0.055 | 0.090 | 0.078 | 0.070 | 0.270 |
2021 | 2023 | Change | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
β1 | SE | p-Value | β2 | SE | p-Value | β2 − β1 | SE | p-Value | ||||
Danger of disease | 0.180 | 0.052 | <0.001 * | 0.218 | 0.069 | 0.002 * | 0.051 | 0.061 | 0.407 | |||
Risk to get disease | 0.210 | 0.050 | <0.001 * | 0.238 | 0.068 | <0.001 * | 0.030 | 0.063 | 0.639 | |||
Danger of vaccination | −0.068 | 0.052 | 0.190 | −0.061 | 0.059 | 0.302 | 0.000 | 0.090 | 0.997 | |||
Effectiveness of vaccination | 0.076 | 0.077 | 0.320 | 0.093 | 0.079 | 0.235 | 0.024 | 0.121 | 0.841 | |||
Vaccination knowledge | 0.230 | 0.043 | <0.001 * | 0.077 | 0.05 | 0.124 | −0.305 | 0.114 | 0.008 * | |||
COVID-19 | ||||||||||||
Danger of vaccination | −0.012 | 0.057 | 0.839 | 0.112 | 0.067 | 0.092 | 0.126 | 0.089 | 0.156 | |||
Effectiveness of vaccination | −0.053 | 0.076 | 0.480 | −0.050 | 0.071 | 0.480 | 0.011 | 0.109 | 0.916 | |||
Vaccination attitude | 0.161 | 0.050 | 0.001 * | 0.258 | 0.06 | <0.001 * | 0.064 | 0.069 | 0.355 | |||
Confidence | 0.107 | 0.053 | 0.044 * | 0.132 | 0.065 | 0.042 | 0.039 | 0.092 | 0.674 | |||
Calculation | −0.062 | 0.030 | 0.042 * | −0.038 | 0.042 | 0.360 | 0.022 | 0.052 | 0.670 | |||
Constraints | −0.109 | 0.035 | 0.002 * | −0.024 | 0.043 | 0.576 | 0.092 | 0.058 | 0.113 | |||
Complacency | −0.076 | 0.043 | 0.078 | −0.039 | 0.048 | 0.424 | 0.045 | 0.075 | 0.552 | |||
Collective responsibility | 0.010 | 0.051 | 0.838 | 0.076 | 0.060 | 0.207 | 0.070 | 0.075 | 0.355 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Born, S.; Schwarzkopf, D.; Rose, N.; Pletz, M.W.; Reinhart, K.; Fleischmann-Struzek, C. Changes in Attitudes towards Influenza and Pneumococcal Vaccination during the Subsiding COVID-19 Pandemic—Results of a Longitudinal Survey Study among Risk Groups in Germany between 2021 and 2023. Vaccines 2024, 12, 1080. https://doi.org/10.3390/vaccines12091080
Born S, Schwarzkopf D, Rose N, Pletz MW, Reinhart K, Fleischmann-Struzek C. Changes in Attitudes towards Influenza and Pneumococcal Vaccination during the Subsiding COVID-19 Pandemic—Results of a Longitudinal Survey Study among Risk Groups in Germany between 2021 and 2023. Vaccines. 2024; 12(9):1080. https://doi.org/10.3390/vaccines12091080
Chicago/Turabian StyleBorn, Sebastian, Daniel Schwarzkopf, Norman Rose, Mathias W. Pletz, Konrad Reinhart, and Carolin Fleischmann-Struzek. 2024. "Changes in Attitudes towards Influenza and Pneumococcal Vaccination during the Subsiding COVID-19 Pandemic—Results of a Longitudinal Survey Study among Risk Groups in Germany between 2021 and 2023" Vaccines 12, no. 9: 1080. https://doi.org/10.3390/vaccines12091080
APA StyleBorn, S., Schwarzkopf, D., Rose, N., Pletz, M. W., Reinhart, K., & Fleischmann-Struzek, C. (2024). Changes in Attitudes towards Influenza and Pneumococcal Vaccination during the Subsiding COVID-19 Pandemic—Results of a Longitudinal Survey Study among Risk Groups in Germany between 2021 and 2023. Vaccines, 12(9), 1080. https://doi.org/10.3390/vaccines12091080