Safety, Immunogenicity, and Efficacy of Cytomegalovirus Vaccines: A Systematic Review of Randomized Controlled Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol Registration
2.2. Data Source and Search Approach
2.3. Eligibility Criteria
- Compared any CMV vaccine to a placebo in transplant recipients or healthy individuals.
- Compared two or more groups using a randomized controlled trial (RCT) design, one of which received a placebo as a control and the other any CMV vaccine as an intervention.
- Released results on the immunogenicity (a humoral or cell-mediated reaction), safety (any possible adverse effects), and efficacy (laboratory-confirmed CMV) of a CMV vaccine.
2.4. Data Extraction and Quality Assessment
3. Results
3.1. Study Selection
3.2. Study Characteristics and Quality Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zuhair, M.; Smit, G.S.A.; Wallis, G.; Jabbar, F.; Smith, C.; Devleesschauwer, B.; Griffiths, P. Estimation of the worldwide seroprevalence of cytomegalovirus: A systematic review and meta-analysis. Rev. Med. Virol. 2019, 29, e2034. [Google Scholar] [CrossRef] [PubMed]
- La Rosa, C.; Diamond, D.J. The immune response to human CMV. Future Virol. 2012, 7, 279–293. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Megli, C.J.; Coyne, C.B. Infections at the maternal–fetal interface: An overview of pathogenesis and defence. Nat. Rev. Microbiol. 2022, 20, 67–82. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, P.; Reeves, M. Pathogenesis of human cytomegalovirus in the immunocompromised host. Nat. Rev. Microbiol. 2021, 19, 759–773. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Teira, P.; Battiwalla, M.; Ramanathan, M.; Barrett, A.J.; Ahn, K.W.; Chen, M.; Green, J.S.; Saad, A.; Antin, J.H.; Savani, B.N.; et al. Early cytomegalovirus reactivation remains associated with increased transplant-related mortality in the current era: A CIBMTR analysis. Blood 2016, 127, 2427–2438. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sia, I.G.; Patel, R. New strategies for prevention and therapy of cytomegalovirus infection and disease in solid-organ transplant recipients. Clin. Microbiol. Rev. 2000, 13, 83–121. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, S.J.; Wang, S.C.; Chen, Y.C. Antiviral Agents as Therapeutic Strategies Against Cytomegalovirus Infections. Viruses 2019, 12, 21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schleiss, M.R. Cytomegalovirus vaccines under clinical development. J. Virus Erad. 2016, 2, 198–207. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J. Clin. Epidemiol. 2021, 134, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A Revised Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Plotkin, S.; Friedman, H.; Fleisher, G.; Dafoe, D.; Grossman, R.; Smiley, M.L.; Starr, S.; Wlodaver, C.; Friedman, A.; Barker, C. Towne-vaccine-induced prevention of cytomegalovirus disease after renal transplants. Lancet 1984, 1, 528–530. [Google Scholar] [CrossRef] [PubMed]
- Sachs, G.; Simmons, R.; Balfour, H. Cytomegalovirus vaccine: Persistence of humoral immunity following immunization of renal transplant candidates. Vaccine 1984, 2, 215–218. [Google Scholar] [CrossRef]
- Balfour, H.H., Jr.; Welo, P.K.; Sachs, G.W. Cytomegalovirus vaccine trial in 400 renal transplant candidates. Transplant. Proc. 1985, 17, 81. [Google Scholar]
- Plotkin, S.; Starr, S.; Friedman, H.; Brayman, K.; Harris, S.; Jackson, S.; Tustin, N.B.; Grossman, R.; Dafoe, D.; Barker, C. Effect of Towne Live Virus-Vaccine On Cytomegalovirus Disease After Renal-Transplant—A Controlled Trial. Ann. Intern. Med. 1991, 114, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, S.A.; Higgins, R.; Kurtz, J.B.; Morris Peter, J.; Campbell Darrell, A., Jr.; Sho, P.E.; Thomas, C.; Spector Cornell, D.; Wayne, M. Multicenter trial of Towne strain attenuated virus vaccine in seronegative renal transplant recipients. Transplantation 1994, 58, 1176–1178. [Google Scholar] [PubMed]
- Kharfan-Dabaja, M.; Boeckh, M.; Wilck, M.; Langston, A.; Chu, A.; Wloch, M.K.; Guterwill, D.F.; Smith, L.R.; Rolland, A.P.; Kenney, R.T. A novel therapeutic cytomegalovirus DNA vaccine in allogeneic haemopoietic stem-cell transplantation: A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Infect. Dis. 2012, 12, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Vincenti, F.; Budde, K.; Merville, P.; Shihab, F.; Ram Peddi, V.; Shah, M.; Wyburn, K.; Cassuto-Viguier, E.; Weidemann, A.; Lee, M.; et al. A randomized, phase 2 study of ASP0113, a DNA-based vaccine, for the prevention of CMV in CMV-seronegative kidney transplant recipients receiving a kidney from a CMV-seropositive donor. Am. J. Transplant. 2018, 18, 2945–2954. [Google Scholar] [CrossRef] [PubMed]
- Ljungman, P.; Bermudez, A.; Logan, A.C.; Kharfan-Dabaja, M.A.; Chevallier, P.; Martino, R.; Wulf, G.; Selleslag, D.; Kakihana, K.; Langston, A.; et al. A randomised, placebo-controlled phase 3 study to evaluate the efficacy and safety of ASP0113, a DNA-based CMV vaccine, in seropositive allogeneic haematopoietic cell transplant recipients. EClin. Med. 2021, 33, 100787. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, P.; Stanton, A.; McCarrell, E.; Smith, C.; Osman, M.; Harber, M.; Davenport, A.; Jones, G.; Wheeler, D.C.; O’Beirne, J.; et al. Cytomegalovirus glycoprotein-B vaccine with MF59 adjuvant in transplant recipients: A phase 2 randomised placebo-controlled trial. Lancet 2011, 377, 1256–1263. [Google Scholar] [CrossRef]
- Aldoss, I.; La Rosa, C.; Baden, L.R.; Longmate, J.; Ariza-Heredia, E.J.; Rida, W.N.; Lingaraju, C.R.; Zhou, Q.; Martinez, J.; Kaltcheva, T.; et al. Poxvirus Vectored Cytomegalovirus Vaccine to Prevent Cytomegalovirus Viremia in Transplant Recipients: A Phase 2, Randomized Clinical Trial. Ann. Intern. Med. 2020, 172, 306–316. [Google Scholar] [CrossRef]
- Nakamura, R.; La Rosa, C.; Yang, D.; Hill, J.; Rashidi, A.; Choe, H.; Zhou, Q.; Lingaraju, C.; Kaltcheva, T.; Longmate, J.; et al. A phase II randomized, placebo-controlled, multicenter trial to evaluate the efficacy of cytomegalovirus PepVax vaccine in preventing cytomegalovirus reactivation and disease after allogeneic hematopoietic stem cell transplant. Haematologica 2024, 109, 1994–1999. [Google Scholar] [CrossRef] [PubMed]
- Pass, R.; Duliegè, A.; Boppana, S.; Sekulovich, R.; Percell, S.; Britt, W.; Burke, R.L. A subunit cytomegalovirus vaccine based on recombinant envelope glycoprotein B and a new adjuvant. J. Infect. Dis. 1999, 180, 970–997. [Google Scholar] [CrossRef] [PubMed]
- Drulak, M.W.; Malinoski, F.J.; Fuller, S.A.; Stewart, S.S.; Hoskin, S.; Duliege, A.M.; Sekulovich, R.; Burke, R.; Winston, S. Vaccination of seropositive subjects with CHIRON CMV gB subunit vaccine combined with MF59 adjuvant for production of CMV immune globulin. Viral Immunol. 2000, 13, 49–56. [Google Scholar] [CrossRef]
- Bernstein, D.I.; Schleiss, M.R.; Berencsi, K.; Gonczol, E.; Dickey, M.; Khoury, P.; Sekulovich, R.; Burke, R.; Winston, S. Effect of previous or simultaneous immunization with canarypox expressing cytomegalovirus (CMV) glycoprotein B (gB) on response to subunit gB vaccine plus MF59 in healthy CMV-seronegative adults. J. Infect. Dis. 2002, 185, 686–690. [Google Scholar] [CrossRef]
- Pass, R.; Zhang, C.; Evans, A.; Simpson, T.; Andrews, W.; Huang, M.; Corey, L.; Hill, J.; Davis, E.; Flanigan, C.; et al. Vaccine Prevention of Maternal Cytomegalovirus Infection. N. Engl. J. Med. 2009, 360, 1191–1199. [Google Scholar] [CrossRef]
- Sabbaj, S.; Pass, R.F.; Goepfert, P.A.; Glycoprotein Pichon, S. B vaccine is capable of boosting both antibody and CD4 T-cell responses to cytomegalovirus in chronically infected women. J. Infect. Dis. 2011, 203, 1534–1541. [Google Scholar] [CrossRef]
- Bernstein, D.I.; Munoz, F.M.; Callahan, S.T.; Rupp, R.; Wootton, S.H.; Edwards, K.M.; Turley, C.B.; Stanberry, L.R.; Patel, S.M.; Mcneal, M.M.; et al. Safety and efficacy of a cytomegalovirus glycoprotein B (gB) vaccine in adolescent girls: A randomized clinical trial. Vaccine 2016, 34, 313–319. [Google Scholar] [CrossRef]
- Berencsi, K.; Gyulai, Z.; Gonczol, E.; Pincus, S.; Cox, W.I.; Michelson, S.; Kari, L.; Meric, C.; Cadoz, M.; Zahradnik, J.; et al. A canarypox vector-expressing cytomegalovirus (CMV) phosphoprotein 65 induces long-lasting cytotoxic T cell responses in human CMV-seronegative subjects. J. Infect. Dis. 2001, 183, 1171–1179. [Google Scholar] [CrossRef]
- Bernstein, D.I.; Reap, E.A.; Katen, K.; Watson, A.; Smith, K.; Norberg, P.; Olmsted, R.A.; Hoeper, A.; Morris, J.; Negri, S.; et al. Randomized, double-blind, Phase 1 trial of an alphavirus replicon vaccine for cytomegalovirus in CMV seronegative adult volunteers. Vaccine 2009, 28, 484–493. [Google Scholar]
- Schwendinger, M.; Thiry, G.; De Vos, B.; Leroux-Roels, G.; Bruhwyler, J.; Huygens, A.; Ganeff, C.; Buchinger, H.; Orlinger, K.K.; Pinschewer, D.D.; et al. A Randomized Dose-Escalating Phase I Trial of a Replication-Deficient Lymphocytic Choriomeningitis Virus Vector-Based Vaccine Against Human Cytomegalovirus. J. Infect. Dis. 2022, 225, 1399–1410. [Google Scholar] [CrossRef]
- Heineman, T.; Schleiss, M.; Bernstein, D.; Spaete, R.; Yan, L.; Duke, G.; Prichard, M.; Wang, Z.; Yan, Q.; Sharp, M.A.; et al. A phase 1 study of 4 live, recombinant human cytomegalovirus Towne/Toledo chimeric vaccines. J. Infect. Dis. 2006, 193, 1350–1360. [Google Scholar] [CrossRef] [PubMed]
- Adler, S.P.; Lewis, N.; Conlon, A.; Christiansen, M.P.; Al-Ibrahim, M.; Rupp, R.; Fu, T.-M.; Bautista, O.; Tang, H.; Wang, D.; et al. Phase 1 Clinical Trial of a Conditionally Replication-Defective Human Cytomegalovirus (CMV) Vaccine in CMVSeronegative Subjects. J. Infect. Dis. 2019, 220, 411–419. [Google Scholar] [CrossRef]
- Murata, S.; Oshima, N.; Iwasa, T.; Fukao, Y.; Sawata, M. Safety, Tolerability, and Immunogenicity of V160, a Conditionally Replication-Defective Cytomegalovirus Vaccine, in Healthy Japanese Men in a Randomized, Controlled Phase 1 Study. Antibodies 2023, 12, 22. [Google Scholar] [CrossRef]
- Bonate, P.L.; Van Sant, C.; Cho, K.; Zook, E.C.; Smith, L.R.; Boutsaboualoy, S.; Ye, M.; Wang, X.; Wu, R.; Koester, A.; et al. Pharmacokinetics and Immunogenicity of ASP0113 in CMV-Seronegative Dialysis Patients and CMV-Seronegative and-Seropositive Healthy Subjects. Clin. Pharmacol. Drug Dev. 2020, 9, 444–455. [Google Scholar] [CrossRef]
- Langley, J.M.; Gantt, S.; Halperin, S.A.; Ward, B.; McNeil, S.; Ye, L.; Cai, Y.; Smith, B.; Anderson, D.E.; Mitoma, F.D. An enveloped virus-like particle alum-adjuvanted cytomegalovirus vaccine is safe and immunogenic: A first-in-humans Canadian Immunization Research Network (CIRN) study. Vaccine 2024, 42, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Fierro, C.; Brune, D.; Shaw, M.; Schwartz, H.; Knightly, C.; Lin, J.; Carfi, A.; Natenshon, A.; Kalidindi, S.; Reuter, C.; et al. Safety and Immunogenicity of a Messenger RNA-Based Cytomegalovirus Vaccine in Healthy Adults: Results From a Phase 1, Randomized, Clinical Trial. J. Infect. Dis. 2024, 230, e668–e678. [Google Scholar] [CrossRef] [PubMed]
- Mihalić, A.; Železnjak, J.; Lisnić, B.; Jonjić, S.; Juranić Lisnić, V.; Brizić, I. Immune surveillance of cytomegalovirus in tissues. Cell Mol. Immunol. 2024, 21, 959–981. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rieder, F.; Steininger, C. Cytomegalovirus vaccine: Phase II clinical trial results. Clin. Microbiol. Infect. 2014, 20, 95–102. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Anderholm, K.M.; Bierle, C.J.; Schleiss, M.R. Cytomegalovirus Vaccines: Current Status and Future Prospects. Drugs 2016, 76, 1625–1645. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Plotkin, S.A.; Boppana, S.B. Vaccination against the human cytomegalovirus. Vaccine 2019, 37, 7437–7442. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Scarpini, S.; Morigi, F.; Betti, L.; Dondi, A.; Biagi, C.; Lanari, M. Development of a Vaccine against Human Cytomegalovirus: Advances, Barriers, and Implications for the Clinical Practice. Vaccines 2021, 9, 551. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Esposito, S.; Chiopris, G.; Messina, G.; D’Alvano, T.; Perrone, S.; Principi, N. Prevention of Congenital Cytomegalovirus Infection with Vaccines: State of the Art. Vaccines 2021, 9, 523. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Limaye, A.P.; Babu, T.M.; Boeckh, M. Progress and Challenges in the Prevention, Diagnosis, and Management of Cytomegalovirus Infection in Transplantation. Clin. Microbiol. Rev. 2020, 34, e00043-19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kharfan-Dabaja, M.A.; Nishihori, T. Vaccine therapy for cytomegalovirus in the setting of allogeneic hematopoietic cell transplantation. Expert Rev. Vaccines 2015, 14, 341–350. [Google Scholar] [CrossRef] [PubMed]
(a) | ||||||||
First Author Year Country | Type of Vaccine | N Study Population | Characteristics of the Population | Study ID (NCT) * Phase Blind Trial | N Experimental Arm | N Control Arm | Endpoints | Funding |
Plotkin 1984 USA [11] | Towne live attenuated | 91 | CMV+ and CMV− (31.9% CMV+) Renal transplant candidates | Double-blind | 53 | 38 | Safety Efficacy | National Institutes of Health and Hassel Foundation |
Sachs 1984 USA [12] | Towne live attenuated | 370 | Age > 12y CMV+ and CMV− Renal transplant candidates | Double-blind | 176 | 194 | Immunogenicity | Merck, Sharp, and Dohme and the National Institutes of Health |
Balfour 1985 USA [13] | Towne live attenuated | 400 | Age > 12y CMV+ and CMV− Renal transplant candidates | Double-blind | 198 | 202 | Safety Immunogenicity | National Institutes of Health |
Plotkin 1991 USA [14] | Towne live attenuated | 237 | CMV+ and CMV− (39.2% CMV+) Renal transplant candidates | Double-blind | 124 | 113 | Safety Efficacy | National Institutes of Health and Food and Drug Administration |
Plotkin 1994 USA UK [15] | Towne live attenuated | 177 | 100% CMV− Renal transplant candidates | Double-blind | 89 | 88 | Immunogenicity Efficacy | Orphan Drug Program of the FDA |
Kharfan-Dabaja 2012 USA [16] | TransVax DNA plasmid | 108 | Age: 25–63 (mean: 50) M: 48% 100% CMV+ Undergoing HSCT | NCT00285259 Phase 2 Double-blind | 54 | 54 | Safety Immunogenicity Efficacy | Vical and US National Institute of Allergy and Infectious Diseases |
Vincenti 2018 USA [17] | ASP0113 DNA plasmid | 149 | Age ≥18 (mean: 49.3) M: 73% 100% CMV− Renal transplant recipients | NCT01974206 Phase 2 Double-blind | 75 | 74 | Safety Immunogenicity Efficacy | Astellas Pharma Global Development, Inc. |
Ljungman 2021 USA [18] | ASP0113 DNA plasmid | 514 | Age ≥18 (range: 44–62) M: 57.9% 100% CMV+ HSCT recipients | NCT01877655 Phase 3 Double-blind | 251 | 263 | Safety Immunogenicity Efficacy | Astellas Pharma Global Development, Inc. |
Griffiths 2011 UK [19] | gB/MF59 recombinant subunit | 140 | Age >18 M: 59% CMV+ and CMV− (50% CMV+) Renal or liver transplant candidates | NCT00299260 Phase 2 Double-blind | 67 | 73 | Safety Immunogenicity Efficacy | National Institute of Allergy and Infectious Diseases |
Aldoss 2020 USA [20] | Triplex vector (poxvirus) | 102 | Age: 46–66 M: 63.7% 100% CMV+ HSCT recipients | NCT02506933 Phase 2 Double-blind | 51 | 51 | Safety Immunogenicity Efficacy | National Cancer Institute and Helocyte Inc. |
Nakamura 2024 USA [21] | Pep vax (peptide-based) | 61 | Age: 18–75 M: 70.5% 100% CMV+ Undergoing HSCT | NCT02396134 Phase 2 | 32 | 29 | Immunogenicity Efficacy | National Cancer Institute and Helocyte Inc. |
(b) | ||||||||
First Author Year Country Ref | Type of Vaccine | N Study Population | Characteristics of the Population | Study ID (NCT) Phase Blind Trial | N Experimental Arm | N Control Arm | Endpoints | Funding |
Pass 1999 USA [22] | gB/MF59 gB/Alum recombinant subunit | 46 | Age: 21–50 M: 37% 100% CMV− | Phase 1 Double-blind | 40 30 gB/MF59 10 gB/Alum | 6 | Safety Immunogenicity | Chiron Vaccines |
Drulak 2000 USA [23] | CHIRON gB/F59 recombinant subunit | 114 | 100% CMV+ | Group 1 blind | 97 | 14 | Safety Immunogenicity | Not reported |
Bernstein 2002 USA [24] | gB/MF59 recombinant subunit ALVAC-gB vector (canarypox virus) | 105 | Age: 18–45 100% CMV− | 90 32 gB/MF59 32 ALVAC-gB, gB/MF59 26 gB/MF59 + ALVAC-CMVgB | 15 | Safety Immunogenicity | National Institutes of Health | |
Pass 2009 USA [25] | gB/MF59 recombinant subunit | 464 | Age: 14–40 (median: 20) F: 100% 100% CMV− | NCT00125502 Phase 2 Double-blind | 234 | 230 | Safety Efficacy | Sanofi Pasteur, University of Alabama at Birmingham grant from the National Institute of Allergy and Infectious Diseases and from the National Center for Research Resources |
Sabbaj 2011 USA [26] | gB/MF59 recombinant subunit | 150 | Age: 14–40 (median: 26) F: 100% 100% CMV+ | Phase 1 Double-blind | 120 | 30 | Immunogenicity | Sanofi Pasteur and Public Health Service grant from the National Institutes of Health National Center for Research Resources |
Bernstein 2016 USA [27] | gB/MF59 recombinant subunit | 409 | Age: 12–18 (median: 15) F: 100% 100% CMV− | NCT00133497 Phase 2 Double-blind | 195 | 207 | Safety Immunogenicity Efficacy | Federal funds from the NIAID/NIH/HHS and from the Biomedical Advanced Research and Development Authority, Department of Health and Human Services |
Berencsi 2001 USA [28] | ALVAC-pp65 vector (canarypox virus) | 27 | Age: 18–35 M: 18.5% CMV+ and CMV− (15% CMV+) | Phase 1 | 14 | 9 | Safety Immunogenicity | Aventis Pasteur |
Bernstein 2009 USA [29] | Alphavirus replicon vector | 40 | Age: 18–45 M: 37.5% 100% CMV− | NCT00439803 Phase 1 Double-blind | 32 | 8 | Safety Immunogenicity | AlphaVax |
Schwendinger 2020 USA [30] | HB-101 vector (LCMV) | 54 | Age: 18–45 (30.4 ± 7.5) 4:5 male/female ratio 100% CMV− | NCT02798692 Phase 1 Double-blind | 42 | 12 | Safety Immunogenicity | Hookipa Pharma, Inc. Austrian Research Promotion Agency |
Heineman 2006 USA [31] | Towne/Toledo chimeric live attenuated | 25 | Heathy volunteers Age: 18–60 100% CMV+ M: 68% | Phase 1 Double-blind | 20 | 5 | Safety Immunogenicity Efficacy | MedImmune Vaccines National Institute of Allergy and Infectious Diseases |
Adler 2019 USA [32] | V160 live attenuated | 190 | Age > 18, mean: 44.1 (±14.6) M: 42.6% CMV+ and CMV− (50% CMV+) | NCT01986010 Phase 1 Double-blind | 145 | 43 | Safety Immunogenicity | Merck Sharp & Dohme Corp |
Murata 2023 Japan [33] | V160 live attenuated | 18 | Age: 20–64 (mean 36.4) M: 100% CMV+ and CMV− (50% CMV+) | NCT03840174 Phase 1 Double-blind | 12 | 6 | Safety Immunogenicity | Merck Sharp & Dohme LLC, |
Bonate 2020 USA [34] | ASP0113 DNA plasmid | 44 | Mean age: 40.7 ± 12.0 M: 72.7% CMV+ and CMV− (33% CMV+) | NCT02103426 Phase 1b Subject-blind | 37 | 7 | Safety Immunogenicity | Astellas Pharma Global Development, Inc. |
Langley 2024 Canada [35] | VBI-1501/Alum VBI-1501 virus-like particles | 128 | Age: 18–40 M: 41% 100% CMV− | NCT02826798 Phase 1 Double-blind | 77 VBI-1501/Alum 25 VBI-1501 | 26 | Safety Immunogenicity | VBI Vaccines |
Fierro 2024 USA [36] | m-RNA-1647 | 154 | Age: 18–49 M: 36.6% CMV+ and CMV− (48% CMV+) | NCT03382405 Phase 1 Double-blind | 118 | 36 | Safety Immunogenicity | Moderna |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiavarini, M.; Genga, A.; Ricciotti, G.M.; D’Errico, M.M.; Barbadoro, P. Safety, Immunogenicity, and Efficacy of Cytomegalovirus Vaccines: A Systematic Review of Randomized Controlled Trials. Vaccines 2025, 13, 85. https://doi.org/10.3390/vaccines13010085
Chiavarini M, Genga A, Ricciotti GM, D’Errico MM, Barbadoro P. Safety, Immunogenicity, and Efficacy of Cytomegalovirus Vaccines: A Systematic Review of Randomized Controlled Trials. Vaccines. 2025; 13(1):85. https://doi.org/10.3390/vaccines13010085
Chicago/Turabian StyleChiavarini, Manuela, Anita Genga, Giorgia Maria Ricciotti, Marcello Mario D’Errico, and Pamela Barbadoro. 2025. "Safety, Immunogenicity, and Efficacy of Cytomegalovirus Vaccines: A Systematic Review of Randomized Controlled Trials" Vaccines 13, no. 1: 85. https://doi.org/10.3390/vaccines13010085
APA StyleChiavarini, M., Genga, A., Ricciotti, G. M., D’Errico, M. M., & Barbadoro, P. (2025). Safety, Immunogenicity, and Efficacy of Cytomegalovirus Vaccines: A Systematic Review of Randomized Controlled Trials. Vaccines, 13(1), 85. https://doi.org/10.3390/vaccines13010085