Negative Association of Gulf War Illness Symptomatology with Predicted Binding Affinity of Anthrax Vaccine Antigen to Human Leukocyte (HLA) Class II Molecules
Abstract
:1. Introduction
1.1. Anthrax
1.2. Anthrax Vaccine
1.3. Gulf War Illness (Chronic Multisymptom Illness)
1.4. Iraq and Afghanistan Wars
1.5. Hypothesis of Persistent Anthrax Vaccine Antigen in GWI
1.6. Human Leukocyte Antigen (HLA)
1.7. HLA, Anthrax Vaccine, and GWI
1.8. This Study: Testing the GWI–Lack of HLA-II Protection Hypothesis
2. Materials and Methods
2.1. Participants
2.2. GWI Status and Severity
2.3. B. anthracis Protective Antigen (PA)
2.4. Human Leukocyte Antigen (HLA) Genotyping
2.5. PA-HLA-II Binding Affinities: In Silico Estimation of Predicted Binding Affinity Between PA Peptides and HLA-II Allele Motifs
2.6. Data Analysis
3. Results
3.1. Hits
3.2. Association of GWI Symptom Severity and
3.3. Candidate Vaccine Epitopes
4. Discussion
4.1. GWI, Anthrax Vaccination and HLA
4.2. Binding Affinity of PA Epitopes to HLA-II Molecules
4.3. Implications for Peptide-Based, Multi-Epitope Anthrax Vaccine Design
4.4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Georgopoulos, A.P.; James, L.M. Anthrax Vaccines in the 21st Century. Vaccines 2024, 12, 159. [Google Scholar] [CrossRef] [PubMed]
- James, L.M.; Carpenter, A.F.; Engdahl, B.E.; Johnson, R.A.; Lewis, S.M.; Georgopoulos, A.P. Anthrax Vaccination, Gulf War Illness, and Human Leukocyte Antigen (HLA). Vaccines 2024, 12, 613. [Google Scholar] [CrossRef]
- IOM Committee on the Development of a Consensus Case Definition for Chronic Multisymptom Illness in 1990–1991 Gulf War Veterans; Board on the Health of Select Populations; Institute of Medicine. Chronic Multisymptom Illness in Gulf War Veterans: Case Definitions Reexamined; National Academies Press: Washington, DC, USA, 2014. [Google Scholar]
- Taft, S.C.; Weiss, A.A. Toxicity of anthrax toxin is influenced by receptor expression. Clin. Vaccine Immunol. 2008, 15, 1330–1336. [Google Scholar] [CrossRef] [PubMed]
- Tsilibary, E.C.; Souto, E.P.; Kratzke, M.; James, L.M.; Engdahl, B.E.; Georgopoulos, A.P. Anthrax protective antigen 63 (PA63): Toxic effects in neural cultures and role in Gulf War Illness (GWI). Neurosci. Insights 2020, 15, 2633105520931966. [Google Scholar] [CrossRef] [PubMed]
- Georgopoulos, A.P.; James, L.M.; Mahan, M.Y.; Joseph, J.; Georgopoulos, A.; Engdahl, B.E. Reduced Human Leukocyte Antigen (HLA) protection in Gulf War Illness (GWI). eBioMedicine 2016, 3, 79–85. [Google Scholar] [CrossRef]
- Doganay, M.; Dinc, G.; Kutmanova, A.; Baillie, L. Human Anthrax: Update of the diagnosis and treatment. Diagnostics 2023, 13, 1056. [Google Scholar] [CrossRef]
- Hendricks, K.; Person, M.K.; Bradley, J.S.; Mongkolrattanothai, T.; Hupert, N.; Eichacker, P.; Friedlander, A.M.; Bower, W.A. Clinical features of patients hospitalized for all routes of Anthrax, 1880–2018: A Systematic Review. Clin. Infect. Dis. 2022, 75 (Suppl. S3), S341–S353. [Google Scholar] [CrossRef]
- Berger, T.; Kassirer, M.; Aran, A.A. Injectional anthrax—New presentation of an old disease. Euro Surveill. 2014, 19, 20877. [Google Scholar] [CrossRef] [PubMed]
- Johari, M.R. Anthrax—Biological Threat in the 21st Century. Malays. J. Med. Sci. 2002, 9, 1–2. [Google Scholar] [PubMed]
- Dizer, U.; Kenar, L.; Ortatatli, M.; Karayilanoglu, T. How To Weaponize Anthrax? Eastern J. Med. 2004, 9, 13–16. [Google Scholar]
- Institute of Medicine (US) Committee on Health Effects Associated with Exposures During the Gulf War. Gulf War and Health: Volume 1. Depleted Uranium, Sarin, Pyridostigmine Bromide, Vaccines; Fulco, C.E., Liverman, C.T., Sox, H.C., Eds.; National Academies Press (US): Washington, DC, USA, 2000. [Google Scholar]
- Puziss, M.; Manning, L.C.; Lynch, J.W.; Barclaye, E.; Abelow, I.; Wright, G.G. Large-scale production of protective antigen of Bacillus anthracis in anaerobic cultures. Appl. Microbiol. 1963, 11, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Taft, S.C.; Weiss, A.A. Neutralizing activity of vaccine-induced antibodies to two Bacillus anthracis toxin components, lethal factor and edema factor. Clin. Vaccine Immunol. 2008, 15, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Dumas, E.K.; Gross, T.; Larabee, J.; Pate, L.; Cuthbertson, H.; Charlton, S.; Hallis, B.; Engler, R.J.M.; Collins, L.C., Jr.; Spooner, C.E.; et al. Anthrax vaccine precipitated induces edema toxin-neutralizing, edema factor-specific antibodies in human recipients. Clin. Vaccine Immunol. 2017, 24, e00165-17. [Google Scholar] [CrossRef]
- Dumas, E.K.; Garman, L.; Cuthbertson, H.; Charlton, S.; Hallis, B.; Engler, R.J.M.; Choudhari, S.; Picking, W.D.; James, J.A.; Farris, A.D. Lethal factor antibodies contribute to lethal toxin neutralization in recipients of anthrax vaccine precipitated. Vaccine 2017, 35, 3416–3422. [Google Scholar] [CrossRef]
- Chen, L.; Schiffer, J.M.; Dalton, S.; Sabourin, C.L.; Niemuth, N.A.; Plikaytis, B.D.; Quinn, C.P. Comprehensive analysis and selection of anthrax vaccine adsorbed immune correlates of protection in rhesus macaques. Clin. Vaccine Immunol. 2014, 21, 1512–1520. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, P.C.; Broster, M.G.; Carman, J.A.; Manchee, R.J.; Melling, J. Development of antibodies to protective antigen and lethal factor components of anthrax toxin in humans and guinea pigs and their relevance to protective immunity. Infect. Immun. 1986, 52, 356–363. [Google Scholar] [CrossRef]
- Modi, T.; Gervais, D.; Smith, S.; Miller, J.; Subramaniam, S.; Thalassinos, K.; Shepherd, A. Characterization of the UK anthrax vaccine and human immunogenicity. Hum. Vaccines Immunother. 2021, 17, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Blum, J.S.; Wearsch, P.A.; Cresswell, P. Pathways of antigen processing. Annu. Rev. Immunol. 2013, 31, 443–473. [Google Scholar] [CrossRef] [PubMed]
- Medhasi, S.; Chantratita, N. Human Leukocyte Antigen (HLA) System: Genetics and Association with Bacterial and Viral Infections. J. Immunol. Res. 2022, 2022, 9710376. [Google Scholar] [CrossRef] [PubMed]
- Pishesha, N.; Harmand, T.J.; Ploegh, H.L. A guide to antigen processing and presentation. Nat. Rev. Immunol. 2022, 22, 751–764. [Google Scholar] [CrossRef] [PubMed]
- George, A.J.; Stark, J.; Chan, C. Understanding specificity and sensitivity of T-cell recognition. Trends Immunol. 2005, 26, 653–659. [Google Scholar] [CrossRef]
- Irvine, D.J.; Purbhoo, M.A.; Krogsgaard, M.; Davis, M.M. Direct observation of ligand recognition by T cells. Nature 2002, 419, 845–849. [Google Scholar] [CrossRef] [PubMed]
- Sloan-Lancaster, J.; Evavold, B.D.; Allen, P.M. Induction of T-cell anergy by altered T-cell-receptor ligand on live antigen-presenting cells. Nature 1993, 363, 156–159. [Google Scholar] [CrossRef]
- Fukuda, K.; Nisenbaum, R.; Stewart, G.; Thompson, W.W.; Robin, L.; Washko, R.M.; Noah, D.L.; Barrett, D.H.; Randall, B.; Herwaldt, B.L.; et al. Chronic multisymptom illness affecting Air Force veterans of the Gulf War. JAMA 1998, 280, 981–988. [Google Scholar] [CrossRef] [PubMed]
- McAndrew, L.M.; Helmer, D.A.; Phillips, L.A.; Chandler, H.K.; Ray, K.; Quigley, K.S. Iraq and Afghanistan Veterans report symptoms consistent with chronic multisymptom illness one year after deployment. J. Rehabil. Res. Dev. 2016, 53, 59–70. [Google Scholar] [CrossRef]
- McAndrew, L.M.; D’Andrea, E.; Lu, S.E.; Abbi, B.; Yan, G.W.; Engel, C.; Quigley, K.S. What pre-deployment and early post-deployment factors predict health function after combat deployment?: A prospective longitudinal study of Operation Enduring Freedom (OEF)/Operation Iraqi Freedom (OIF) soldiers. Health Qual. Life Outcomes 2013, 11, 73. [Google Scholar] [CrossRef] [PubMed]
- White, R.F.; Steele, L.; O’Callaghan, J.P.; Sullivan, K.; Binns, J.H.; Golomb, B.A.; Bloom, F.E.; Bunker, J.A.; Crawford, F.; Graves, J.C.; et al. Recent research on Gulf War illness and other health problems in veterans of the 1991 Gulf War: Effects of toxicant exposures during deployment. Cortex 2016, 74, 449–475. [Google Scholar] [CrossRef] [PubMed]
- Tsilibary, E.P.; Souto, E.P.; Kratzke, M.; James, L.M.; Engdahl, B.E.; Georgopoulos, A.P. Anthrax and Gulf War Illness (GWI): Evidence for the Presence of Harmful Anthrax Antigen PA63 In the Serum of Veterans with GWI. J. Neurol. Neuromed. 2019, 4, 1–9. [Google Scholar] [CrossRef]
- James, L.M.; Georgopoulos, A.P. At the root of 3 “Long” diseases: Persistent antigens inflicting chronic damage on the brain and other organs in gulf war illness, Long-COVID-19, and chronic fatigue syndrome. Neurosci. Insights 2022, 17, 26331055221114817. [Google Scholar] [CrossRef] [PubMed]
- Savransky, V.; Shearer, J.D.; Gainey, M.R.; Sanford, D.C.; Sivko, G.S.; Stark, G.V.; Li, N.; Ionin, B.; Lacy, M.J.; Skiadopoulos, M.H. Correlation between anthrax lethal toxin neutralizing antibody levels and survival in guinea pigs and nonhuman primates vaccinated with the AV7909 anthrax vaccine candidate. Vaccine 2017, 35, 4952–4959. [Google Scholar] [CrossRef]
- Ascough, S.; Ingram, R.J.; Chu, K.K.Y.; Moore, S.J.; Gallagher, T.; Dyson, H.; Doganay, M.; Metan, G.; Ozkul, Y.; Baillie, L. Impact of HLA polymorphism on the immune response to Bacillus anthracis protective antigen in vaccination versus natural infection. Vaccines 2022, 10, 1571. [Google Scholar] [CrossRef]
- Campbell, D.H.; Garvey, J.S. Nature of retained antigen and its role in immune mechanisms. Adv. Immunol. 1963, 3, 261–313. [Google Scholar] [CrossRef]
- Cano, P.; Klitz, E.; Mack, S.J.; Maiers, M.; Marsh, S.G.; Noreen, H.; Reed, E.F.; Senitzer, D.; Setterholm, M.; Smith, A.; et al. Common and well-documented HLA alleles: Report of the ad-hoc committee of the American society for histocompatiblity and immunogenetics. Hum. Immunol. 2007, 68, 392–417. [Google Scholar] [CrossRef] [PubMed]
- Reynisson, B.; Alvarez, B.; Paul, S.; Peters, B.; Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 2020, 48, W449–W454. [Google Scholar] [CrossRef] [PubMed]
- IEDB Analysis Resource. Available online: http://tools.iedb.org/mhci/ (accessed on 11 April 2024).
- Barquera, R.; Collen, E.; Di, D.; Buhler, S.; Teixeira, J.; Llamas, B.; Nunes, J.M.; Sanchez-Mazas, A. Binding affinities of 438 HLA proteins to complete proteomes of seven pandemic viruses and distributions of strongest and weakest HLA peptide binders in populations worldwide. HLA 2020, 96, 277–298. [Google Scholar] [CrossRef] [PubMed]
- Parren, P.W.; Burton, D.R. The antiviral activity of antibodies in vitro and in vivo. Adv. Immunol. 2001, 77, 195–262. [Google Scholar] [CrossRef] [PubMed]
- Burton, D.R. Antiviral neutralizing antibodies: From in vitro to in vivo activity. Nat. Rev. Immunol. 2023, 23, 720–734. [Google Scholar] [CrossRef] [PubMed]
- Jensen, P.E. Recent advances in antigen processing and presentation. Nat. Immunol. 2007, 8, 1041–1048. [Google Scholar] [CrossRef] [PubMed]
- Lafuente, E.M.; Reche, P.A. Prediction of MHC-peptide binding: A systematic and comprehensive overview. Curr. Pharm. Des. 2009, 15, 3209–3220. [Google Scholar] [CrossRef] [PubMed]
- Hoof, I.; Peters, B.; Sidney, J.; Pedersen, L.E.; Sette, A.; Lund, O.; Buus, S.; Nielsen, M. NetMHCpan, a method for MHC class I binding prediction beyond humans. Immunogenetics 2009, 61, 1–13. [Google Scholar] [CrossRef]
- Wang, P.; Sidney, J.; Dow, C.; Mothé, B.; Sette, A.; Peters, B. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput. Biol. 2008, 4, e1000048. [Google Scholar] [CrossRef]
- Charonis, S.A.; James, L.M.; Georgopoulos, A.P. SARS-CoV-2 in silico binding affinity to human leukocyte antigen (HLA) Class II molecules predicts vaccine effectiveness across variants of concern (VOC). Sci. Rep. 2022, 12, 8074. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, S.; Somani, V.K.; Gupta, S.; Garg, R.; Bhatnagar, R. Development of a novel multiepitope chimeric vaccine against anthrax. Med. Microbiol. Immunol. 2019, 208, 185–195. [Google Scholar] [CrossRef]
- Shamakh, A.; Kordbacheh, E. Immunoinformatic design of an epitope-based immunogen candidate against Bacillus anthracis. Inform. Med. Unlocked 2021, 24, 100574. [Google Scholar] [CrossRef]
- Sette, A.; Livingston, B.; McKinney, D.; Appella, E.; Fikes, J.; Sidney, J.; Newman, M.V.; Chesnut, R. The development of multi-epitope vaccines: Epitope identification, vaccine design and clinical evaluation. Biologicals 2001, 29, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Negahdaripour, M.; Nezafat, N.; Eslami, M.; Ghoshoon, M.B.; Shoolian, E.; Najafipour, S.; Morowvat, M.H.; Dehshahri, A.; Erfani, N.; Ghasemi, Y. Structural vaccinology considerations for in silico designing of a multi-epitope vaccine. Infect. Genet. Evol. 2018, 58, 96–109. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, V.; Rungta, T.; Goyal, K.; Singh, M.P. Designing a multi-epitope based vaccine to combat Kaposi Sarcoma utilizing immunoinformatics approach. Sci. Rep. 2019, 21, 2517. [Google Scholar] [CrossRef] [PubMed]
- Rashidian, E.; Gandabeh, Z.S.; Forouharmehr, A.; Nazifi, N.; Shams, N.; Jaydari, A. Immunoinformatics approach to engineer a potent poly-epitope fusion protein vaccine against Coxiella burnetii. Int. J. Pept. Res. Ther. 2020, 26, 2191–2201. [Google Scholar] [CrossRef]
- Maleki, A.; Russo, G.; Parasiliti Palumbo, G.A.V.; Pappalardo, F. In silico design of recombinant multi-epitope vaccine against influenza A virus. BMC Bioinform. 2022, 22 (Suppl. S14), 617. [Google Scholar] [CrossRef]
- Samad, A.; Ahammad, F.; Nain, Z.; Alam, R.; Imon, R.R.; Hasan, M.; Rahman, M.S. Designing a multi-epitope vaccine against SARS-CoV-2: An immunoinformatics approach. J. Biomol. Struct. Dyn. 2022, 40, 14–30. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Zhu, F.; Pan, P.; Wu, A.; Li, C. Development of multi-epitope vaccines against the monkeypox virus based on envelope proteins using immunoinformatics approaches. Front. Immunol. 2023, 14, 1112816. [Google Scholar] [CrossRef] [PubMed]
- Mahanty, S.; Prigent, A.; Garraud, O. Immunogenicity of infectious pathogens and vaccine antigens. BMC Immunol. 2015, 16, 31. [Google Scholar] [CrossRef] [PubMed]
- Jutras, B.L.; Lochhead, R.B.; Kloos, Z.A.; Biboy, J.; Strle, K.; Booth, C.J.; Govers, S.K.; Gray, J.; Schumann, P.; Vollmer, W.; et al. Borrelia burgdorferi peptidoglycan is a persistent antigen in patients with Lyme arthritis. Proc. Natl. Acad. Sci. USA 2019, 116, 13498–13507. [Google Scholar] [CrossRef] [PubMed]
- Dixon, F.J.; Mauer, P.H. Immunologic unresponsiveness induced by protein antigens. J. Exp. Med. 1955, 101, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Borrow, P. Mechanisms of viral clearance and persistence. J. Viral Hepat. 1997, 4 (Suppl. S2), 16–24. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.L.; Cauley, L.S.; Khanna, K.M.; Lefrançois, L. Persistent antigen presentation after acute vesicular stomatitis virus infection. J. Virol. 2007, 81, 2039–2046. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
James, L.M.; Georgopoulos, A.P. Negative Association of Gulf War Illness Symptomatology with Predicted Binding Affinity of Anthrax Vaccine Antigen to Human Leukocyte (HLA) Class II Molecules. Vaccines 2025, 13, 88. https://doi.org/10.3390/vaccines13010088
James LM, Georgopoulos AP. Negative Association of Gulf War Illness Symptomatology with Predicted Binding Affinity of Anthrax Vaccine Antigen to Human Leukocyte (HLA) Class II Molecules. Vaccines. 2025; 13(1):88. https://doi.org/10.3390/vaccines13010088
Chicago/Turabian StyleJames, Lisa M., and Apostolos P. Georgopoulos. 2025. "Negative Association of Gulf War Illness Symptomatology with Predicted Binding Affinity of Anthrax Vaccine Antigen to Human Leukocyte (HLA) Class II Molecules" Vaccines 13, no. 1: 88. https://doi.org/10.3390/vaccines13010088
APA StyleJames, L. M., & Georgopoulos, A. P. (2025). Negative Association of Gulf War Illness Symptomatology with Predicted Binding Affinity of Anthrax Vaccine Antigen to Human Leukocyte (HLA) Class II Molecules. Vaccines, 13(1), 88. https://doi.org/10.3390/vaccines13010088