Protective Efficacy of Decreasing Antigen Doses of a Chlamydia abortus Subcellular Vaccine Against Ovine Enzootic Abortion in a Pregnant Sheep Challenge Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Preparation of C. abortus Elementary Bodies and COMC Vaccine Antigen
2.3. Formulation of COMC Vaccine Preparations
2.4. Preparation of C. abortus Challenge Inoculum
2.5. Experimental Design
2.6. Sample Collection and Processing
2.7. Quantitative Real-Time PCR (qPCR)
2.8. Histopathological Examination and Immunohistochemical Analysis
2.9. Serological and Cellular Analyses
2.10. Statistical Analyses
3. Results
3.1. Pregnancy Outcome
3.2. Detection of C. abortus Infection
3.3. Histology and Immunohistochemical Analysis
3.4. Serological Responses
3.5. Cellular Responses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stamp, J.T.; McEwen, A.; Watt, J.A.; Nisbet, D.I. Enzootic abortion in ewes; transmission of the disease. Vet. Rec. 1950, 62, 251–254. [Google Scholar] [CrossRef]
- Longbottom, D.; Coulter, L.J. Animal chlamydioses and zoonotic implications. J. Comp. Pathol. 2003, 128, 217–244. [Google Scholar] [CrossRef]
- Rodolakis, A.; Laroucau, K. Chlamydiaceae and chlamydial infections in sheep or goats. Vet. Microbiol. 2015, 181, 107–118. [Google Scholar] [CrossRef]
- Borel, N.; Polkinghorne, A.; Pospischil, A. A Review on Chlamydial Diseases in Animals: Still a Challenge for Pathologists? Vet. Pathol. 2018, 55, 374–390. [Google Scholar] [CrossRef]
- Schautteet, K.; Vanrompay, D. Chlamydiaceae infections in pig. Vet. Res. 2011, 42, 29. [Google Scholar] [CrossRef]
- Nietfeld, J.C. Chlamydial infections in small ruminants. Vet. Clin. N. Am. Food Anim. Pract. 2001, 17, 301–314. [Google Scholar] [CrossRef] [PubMed]
- Pospischil, A.; Thoma, R.; Hilbe, M.; Grest, P.; Gebbers, J.O. Abortion in woman caused by caprine Chlamydophila abortus (Chlamydia psittaci serovar 1). Swiss Med. Wkly. 2002, 132, 64–66. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wen, Y.; Ding, H.; Zeng, H. Septic shock with Chlamydia abortus infection. Lancet Infect. Dis. 2022, 22, 912. [Google Scholar] [CrossRef]
- Johnson, F.W.; Matheson, B.A.; Williams, H.; Laing, A.G.; Jandial, V.; Davidson-Lamb, R.; Halliday, G.J.; Hobson, D.; Wong, S.Y.; Hadley, K.M.; et al. Abortion due to infection with Chlamydia psittaci in a sheep farmer’s wife. Br. Med. J. (Clin. Res. Ed.) 1985, 290, 592–594. [Google Scholar] [CrossRef]
- Buxton, D. Potential danger to pregnant women of Chlamydia psittaci from sheep. Vet. Rec. 1986, 118, 510–511. [Google Scholar] [CrossRef]
- Wong, S.Y.; Gray, E.S.; Buxton, D.; Finlayson, J.; Johnson, F.W. Acute placentitis and spontaneous abortion caused by Chlamydia psittaci of sheep origin: A histological and ultrastructural study. J. Clin. Pathol. 1985, 38, 707–711. [Google Scholar] [CrossRef] [PubMed]
- Rodolakis, A.; Salinas, J.; Papp, J. Recent advances on ovine chlamydial abortion. Vet. Res. 1998, 29, 275–288. [Google Scholar] [PubMed]
- Chapter 3.8.5. Enzootic Abortion of Ewes (Ovine Chlamydioses) (Infection with Chlamydia abortus). Available online: https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.08.05_ENZ_ABOR.pdf (accessed on 8 March 2024).
- Buxton, D.; Barlow, R.M.; Finlayson, J.; Anderson, I.E.; Mackellar, A. Observations on the pathogenesis of Chlamydia psittaci infection of pregnant sheep. J. Comp. Pathol. 1990, 102, 221–237. [Google Scholar] [CrossRef]
- Montbrau, C.; Fontseca, M.; March, R.; Sitja, M.; Benavides, J.; Ortega, N.; Caro, M.R.; Salinas, J. Evaluation of the efficacy of a new commercially available inactivated vaccine against ovine enzootic abortion. Front. Vet. Sci. 2020, 7, 593. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.E.; Jones, K.A.; Machell, J.; Brebner, J.; Anderson, I.E.; How, S. Efficacy trials with tissue-culture grown, inactivated vaccines against chlamydial abortion in sheep. Vaccine 1995, 13, 715–723. [Google Scholar] [CrossRef]
- Caro, M.R.; Ortega, N.; Buendia, A.J.; Gallego, M.C.; Del Rio, L.; Cuello, F.; Salinas, J. Protection conferred by commercially available vaccines against Chlamydophila abortus in a mouse model. Vet. Rec. 2001, 149, 492–493. [Google Scholar] [CrossRef] [PubMed]
- Garcia de la Fuente, J.N.; Gutierrez-Martin, C.B.; Ortega, N.; Rodriguez-Ferri, E.F.; del Rio, M.L.; Gonzalez, O.R.; Salinas, J. Efficacy of different commercial and new inactivated vaccines against ovine enzootic abortion. Vet. Microbiol. 2004, 100, 65–76. [Google Scholar] [CrossRef]
- Rodolakis, A.; Souriau, A. Response of goats to vaccination with temperature-sensitive mutants of Chlamydia psittaci obtained by nitrosoguanidine mutagenesis. Am. J. Vet. Res. 1986, 47, 2627–2631. [Google Scholar] [PubMed]
- Chalmers, W.S.; Simpson, J.; Lee, S.J.; Baxendale, W. Use of a live chlamydial vaccine to prevent ovine enzootic abortion. Vet. Rec. 1997, 141, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Longbottom, D.; Livingstone, M. Vaccination against chlamydial infections of man and animals. Vet. J. 2006, 171, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Rodolakis, A.; Bernard, F. Vaccination with temperature-sensitive mutant of Chlamydia psittaci against enzootic abortion of ewes. Vet. Rec. 1984, 114, 193–194. [Google Scholar] [CrossRef] [PubMed]
- Wilsmore, A.J.; Izzard, K.A.; Dagnall, G.J.; Wilsmore, B.C.; Woodland, R.M. Protection of ewes vaccinated with A22 strain Chlamydia psittaci (ovis) against challenge in pregnancy with homologous and heterologous strains of the organism. Br. Vet. J. 1990, 146, 349–353. [Google Scholar] [CrossRef] [PubMed]
- McEwen, A.D.; Stamp, J.T.; Littlejohn, A.I. Enzootic abortion in ewes. II. Immunization and infection experiments. Vet. Rec. 1951, 63, 197–201. [Google Scholar] [CrossRef] [PubMed]
- McEwen, A.; Foggie, A. Enzootic abortion of ewes. Comparative studies of different vaccines. Vet. Rec. 1954, 66, 393–397. [Google Scholar]
- Littlejohn, A.I.; Foggie, A.; McEwen, A. Enzootic abortion in ewes. Field trials of vaccine I. Vet. Rec. 1952, 64, 858–861. [Google Scholar]
- Aitken, I.D.; Clarkson, M.J.; Linklater, K. Enzootic abortion of ewes. Vet. Rec. 1990, 126, 136–138. [Google Scholar] [CrossRef]
- Linklater, K.A.; Dyson, D.A. Field studies on enzootic abortion of ewes in south east Scotland. Vet. Rec. 1979, 105, 387–389. [Google Scholar] [CrossRef]
- O’Neill, L.M.; Keane, O.M.; Ross, P.J.; Nally, J.E.; Seshu, J.; Markey, B. Evaluation of protective and immune responses following vaccination with recombinant MIP and CPAF from Chlamydia abortus as novel vaccines for enzootic abortion of ewes. Vaccine 2019, 37, 5428–5438. [Google Scholar] [CrossRef]
- Hechard, C.; Grepinet, O.; Rodolakis, A. Molecular cloning of the Chlamydophila abortus groEL gene and evaluation of its protective efficacy in a murine model by genetic vaccination. J. Med. Microbiol. 2004, 53, 861–868. [Google Scholar] [CrossRef]
- Ling, Y.; Liu, W.; Clark, J.R.; March, J.B.; Yang, J.; He, C. Protection of mice against Chlamydophila abortus infection with a bacteriophage-mediated DNA vaccine expressing the major outer membrane protein. Vet. Immunol. Immunopathol. 2011, 144, 389–395. [Google Scholar] [CrossRef]
- Zhang, F.; Li, S.; Yang, J.; Yang, L.; He, C. Induction of a protective immune response against swine Chlamydophila abortus infection in mice following co-vaccination of omp-1 DNA with recombinant MOMP. Zoonoses Public Health 2009, 56, 71–76. [Google Scholar] [CrossRef]
- Sargison, N.D.; Truyers, I.G.; Howie, F.E.; Thomson, J.R.; Cox, A.L.; Livingstone, M.; Longbottom, D. Identification of the 1B vaccine strain of Chlamydia abortus in aborted placentas during the investigation of toxaemic and systemic disease in sheep. N. Z. Vet. J. 2015, 63, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Laroucau, K.; Aaziz, R.; Vorimore, F.; Menard, M.F.; Longbottom, D.; Denis, G. Abortion storm induced by the live C. abortus vaccine 1B strain in a vaccinated sheep flock, mimicking a natural wild-type infection. Vet. Microbiol. 2018, 225, 31–33. [Google Scholar] [CrossRef]
- Livingstone, M.; Wattegedera, S.R.; Palarea-Albaladejo, J.; Aitchison, K.; Corbett, C.; Sait, M.; Wilson, K.; Chianini, F.; Rocchi, M.S.; Wheelhouse, N.; et al. Efficacy of Two Chlamydia abortus Subcellular Vaccines in a Pregnant Ewe Challenge Model for Ovine Enzootic Abortion. Vaccines 2021, 9, 898. [Google Scholar] [CrossRef] [PubMed]
- Longbottom, D.; Livingstone, M.; Aitchison, K.D.; Imrie, L.; Manson, E.; Wheelhouse, N.; Inglis, N.F. Proteomic characterisation of the Chlamydia abortus outer membrane complex (COMC) using combined rapid monolithic column liquid chromatography and fast MS/MS scanning. PLoS ONE 2019, 14, e0224070. [Google Scholar] [CrossRef]
- Caldwell, H.D.; Kromhout, J.; Schachter, J. Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect. Immun. 1981, 31, 1161–1176. [Google Scholar] [CrossRef] [PubMed]
- Batteiger, B.E.; Rank, R.G.; Bavoil, P.M.; Soderberg, L.S. Partial protection against genital reinfection by immunization of guinea-pigs with isolated outer-membrane proteins of the chlamydial agent of guinea-pig inclusion conjunctivitis. J. Gen. Microbiol. 1993, 139, 2965–2972. [Google Scholar] [CrossRef]
- Pal, S.; Theodor, I.; Peterson, E.M.; de la Maza, L.M. Immunization with an acellular vaccine consisting of the outer membrane complex of Chlamydia trachomatis induces protection against a genital challenge. Infect. Immun. 1997, 65, 3361–3369. [Google Scholar] [CrossRef] [PubMed]
- Sandbulte, J.; TerWee, J.; Wigington, K.; Sabara, M. Evaluation of Chlamydia psittaci subfraction and subunit preparations for their protective capacities. Vet. Microbiol. 1996, 48, 269–282. [Google Scholar] [CrossRef]
- Livingstone, M.; Aitchison, K.; Palarea-Albaladejo, J.; Chianini, F.; Rocchi, M.S.; Caspe, S.G.; Underwood, C.; Flockhart, A.; Wheelhouse, N.; Entrican, G.; et al. Evaluation of the Protective Efficacy of Different Doses of a Chlamydia abortus Subcellular Vaccine in a Pregnant Sheep Challenge Model for Ovine Enzootic Abortion. Animals 2024, 14, 3004. [Google Scholar] [CrossRef]
- Buxton, D.; Rae, A.G.; Maley, S.W.; Thomson, K.M.; Livingstone, M.; Jones, G.E.; Herring, A.J. Pathogenesis of Chlamydia psittaci infection in sheep: Detection of the organism in a serial study of the lymph node. J. Comp. Pathol. 1996, 114, 221–230. [Google Scholar] [CrossRef]
- Longbottom, D.; Livingstone, M.; Maley, S.; van der Zon, A.; Rocchi, M.; Wilson, K.; Wheelhouse, N.; Dagleish, M.; Aitchison, K.; Wattegedera, S.; et al. Intranasal infection with Chlamydia abortus induces dose-dependent latency and abortion in sheep. PLoS ONE 2013, 8, e57950. [Google Scholar] [CrossRef]
- Livingstone, M.; Wheelhouse, N.; Ensor, H.; Rocchi, M.; Maley, S.; Aitchison, K.; Wattegedera, S.; Wilson, K.; Sait, M.; Siarkou, V.; et al. Pathogenic outcome following experimental infection of sheep with Chlamydia abortus variant strains LLG and POS. PLoS ONE 2017, 12, e0177653. [Google Scholar] [CrossRef]
- Wattegedera, S.R.; Livingstone, M.; Maley, S.; Rocchi, M.; Lee, S.; Pang, Y.; Wheelhouse, N.M.; Aitchison, K.; Palarea-Albaladejo, J.; Buxton, D.; et al. Defining immune correlates during latent and active chlamydial infection in sheep. Vet. Res. 2020, 51, 75. [Google Scholar] [CrossRef]
- Tan, T.W.; Herring, A.J.; Anderson, I.E.; Jones, G.E. Protection of sheep against Chlamydia psittaci infection with a subcellular vaccine containing the major outer membrane protein. Infect. Immun. 1990, 58, 3101–3108. [Google Scholar] [CrossRef]
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020, 18, e3000410. [Google Scholar] [CrossRef]
- McClenaghan, M.; Herring, A.J.; Aitken, I.D. Comparison of Chlamydia psittaci isolates by DNA restriction endonuclease analysis. Infect. Immun. 1984, 45, 384–389. [Google Scholar] [CrossRef]
- Hobson, D.; Johnson, F.W.A.; Byng, R.E. The growth of the ewe abortion chlamydial agent in McCoy cell cultures. J. Comp. Pathol. 1977, 87, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Buendia, A.J.; Salinas, J.; Sanchez, J.; Gallego, M.C.; Rodolakis, A.; Cuello, F. Localization by immunoelectron microscopy of antigens of Chlamydia psittaci suitable for diagnosis or vaccine development. FEMS Microbiol. Lett. 1997, 150, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Aucouturier, J.; Dupuis, L.; Ganne, V. Adjuvants designed for veterinary and human vaccines. Vaccine 2001, 19, 2666–2672. [Google Scholar] [CrossRef]
- Anderson, I.E.; Baxter, T.A. Chlamydia psittaci: Inclusion morphology in cell culture and virulence in mice of ovine isolates. Vet. Rec. 1986, 119, 453–454. [Google Scholar] [CrossRef] [PubMed]
- Arif, E.D.; Saeed, N.M.; Rachid, S.K. Isolation and Identification of Chlamydia abortus from Aborted Ewes in Sulaimani Province, Northern Iraq. Pol. J. Microbiol. 2020, 69, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, M.; Wheelhouse, N.; Maley, S.W.; Longbottom, D. Molecular detection of Chlamydophila abortus in post-abortion sheep at oestrus and subsequent lambing. Vet. Microbiol. 2009, 135, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Premium Sheep & Goat Health Schemes. Available online: https://www.sruc.ac.uk/business-services/veterinary-laboratory-services/sheep-goat-health-schemes/premium-sheep-goat-health-schemes/ (accessed on 27 September 2024).
- Wilson, K.; Livingstone, M.; Longbottom, D. Comparative evaluation of eight serological assays for diagnosing Chlamydophila abortus infection in sheep. Vet. Microbiol. 2009, 135, 38–45. [Google Scholar] [CrossRef]
- Wattegedera, S.; Rocchi, M.; Sales, J.; Howard, C.J.; Hope, J.C.; Entrican, G. Antigen-specific peripheral immune responses are unaltered during normal pregnancy in sheep. J. Reprod. Immunol. 2008, 77, 171–178. [Google Scholar] [CrossRef]
- Caspe, S.G.; Livingstone, M.; Frew, D.; Aitchison, K.; Wattegedera, S.R.; Entrican, G.; Palarea-Albaladejo, J.; McNeilly, T.N.; Milne, E.; Sargison, N.D.; et al. The 1B vaccine strain of Chlamydia abortus produces placental pathology indistinguishable from a wild type infection. PLoS ONE 2020, 15, e0242526. [Google Scholar] [CrossRef]
- R Core Team. The R Project for Statistical Computing. Available online: https://www.r-project.org (accessed on 8 October 2024).
- Firth, D. Bias reduction of maximum likelihood estimates. Biometrika 1993, 80, 27–38. [Google Scholar] [CrossRef]
- Dunnett’s Test / Dunnett’s Method: Definition. Available online: https://www.statisticshowto.com/dunnetts-test/ (accessed on 8 October 2024).
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Sammin, D.J.; Markey, B.K.; Quinn, P.J.; McElroy, M.C.; Bassett, H.F. Comparison of Fetal and Maternal Inflammatory Responses in the Ovine Placenta after Experimental Infection with Chlamydophila abortus. J. Comp. Pathol. 2006, 135, 83–92. [Google Scholar] [CrossRef]
- Navarro, J.A.; Garcia de la Fuente, J.N.; Sanchez, J.; Martinez, C.M.; Buendia, A.J.; Gutierrez-Martin, C.B.; Rodriguez-Ferri, E.F.; Ortega, N.; Salinas, J. Kinetics of infection and effects on the placenta of Chlamydophila abortus in experimentally infected pregnant ewes. Vet. Pathol. 2004, 41, 498–505. [Google Scholar] [CrossRef]
- Watson, D.L.; Colditz, I.G.; Andrew, M.; Gill, H.S.; Altmann, K.G. Age-dependent immune response in Merino sheep. Res. Vet. Sci. 1994, 57, 152–158. [Google Scholar] [CrossRef]
- Těšický, M.; Vinkler, M. Trans-Species Polymorphism in Immune Genes: General Pattern or MHC-Restricted Phenomenon? J. Immunol. Res. 2015, 2015, 838035. [Google Scholar] [CrossRef] [PubMed]
- Perez-Hernandez, T.; Corripio-Miyar, Y.; Hernandez, J.N.; Machin, C.; Paz-Sanchez, Y.; Hayward, A.D.; Wright, H.W.; Price, D.R.G.; Matthews, J.B.; McNeilly, T.N.; et al. Differences in the protection elicited by a recombinant Teladorsagia circumcincta vaccine in weaned lambs of two Canarian sheep breeds. Vet. Parasitol. 2022, 306, 109722. [Google Scholar] [CrossRef]
- Machin, C.; Corripio-Miyar, Y.; Hernandez, J.N.; Perez-Hernandez, T.; Hayward, A.D.; Wright, H.W.; Price, D.R.G.; Matthews, J.B.; McNeilly, T.N.; Nisbet, A.J.; et al. Cellular and humoral immune responses associated with protection in sheep vaccinated against Teladorsagia circumcincta. Vet. Res. 2021, 52, 89. [Google Scholar] [CrossRef]
- Gonzalez, J.F.; Hernandez, J.N.; Machin, C.; Perez-Hernandez, T.; Wright, H.W.; Corripio-Miyar, Y.; Price, D.R.G.; Matthews, J.B.; McNeilly, T.N.; Nisbet, A.J. Impacts of breed type and vaccination on Teladorsagia circumcincta infection in native sheep in Gran Canaria. Vet. Res. 2019, 50, 29. [Google Scholar] [CrossRef] [PubMed]
- Rocchi, M.S.; Wattegedera, S.; Meridiani, I.; Entrican, G. Protective adaptive immunity to Chlamydophila abortus infection and control of ovine enzootic abortion (OEA). Vet. Microbiol. 2009, 135, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Worrall, S.; Sammin, D.J.; Bassett, H.F.; Reid, C.R.; Gutierrez, J.; Marques, P.X.; Nally, J.E.; O’Donovan, J.; Williams, E.J.; Proctor, A.; et al. Interferon-gamma expression in trophoblast cells in pregnant ewes challenged with Chlamydophila abortus. J. Reprod. Immunol. 2011, 90, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Graham, S.P.; Jones, G.E.; MacLean, M.; Livingstone, M.; Entrican, G. Recombinant ovine interferon gamma inhibits the multiplication of Chlamydia psittaci in ovine cells. J. Comp. Pathol. 1995, 112, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Entrican, G.; Wheelhouse, N.; Wattegedera, S.R.; Longbottom, D. New challenges for vaccination to prevent chlamydial abortion in sheep. Comp. Immunol. Microbiol. Infect. Dis. 2012, 35, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.; Quigley, B.L.; Timms, P. Seventy Years of Chlamydia Vaccine Research—Limitations of the Past and Directions for the Future. Front. Microbiol. 2019, 10, 70. [Google Scholar] [CrossRef]
Group 1 (Dose in µg) | Ewes | Mean Gestational Length | Number of Lambs | |||||
---|---|---|---|---|---|---|---|---|
No. Pregnant | No. Lambed (%) | No. Aborted (%) | Lambed | Aborted | Viable | Non-Viable | Dead | |
1 (20) | 19 | 18 (94.7) | 1 (5.3) | 144.1 | 134.0 | 26 | 0 | 4 2 |
2 (14) | 19 | 19 (100) | 0 (0) | 145.0 | - | 32 | 0 | 0 |
3 (10) | 21 | 21 (100) | 0 (0) | 144.3 | - | 30 | 1 3 | 1 3 |
4 (7) | 20 | 19 (95) | 1 (5) | 144.3 | 136.0 | 31 | 0 | 2 |
5 (5) | 18 | 16 (88.9) | 2 (11.1) | 144.9 | 139.5 | 25 4 | 1 4 | 2 5 |
6 (3.5) | 18 | 17 (94.4) | 1 (5.6) | 145.2 | 132.0 | 25 | 0 | 3 5 |
7 (2.5) | 21 | 18 (85.7) | 3 (14.3) | 143.7 | 143.7 | 31 | 0 | 5 |
8 | 18 | 12 (66.7) | 6 (33.3) | 142.7 | 136.3 | 23 | 0 | 10 5 |
9 | 6 | 6 (100) | 0 (0) | 147.2 | - | 6 | 0 | 0 |
Group 1 (Dose in µg) | Pregnancy Outcome 2 | No. Ewes | Lesions 3 | Smears 4 | Swab qPCR 5 | Swab qPCR Load 6 |
---|---|---|---|---|---|---|
1(20) | Lambed | 18 | 2+, 16− | 3+, 15− | 8+, 10− | 226 (1.96) |
Aborted | 1 | 1+ | 1+ | 1+ | n/a 7 | |
2 (14) | Lambed | 19 | 2+, 17− | 5+, 14− | 13+, 6− | 1452 (2.47) |
3 (10) | Lambed | 21 | 2+, 19− | 2+, 19− | 15+, 6− | 426 (1.77) |
4 (7) | Lambed | 19 | 0+, 19− | 0+, 19− | 11+, 8− | 190 (1.90) |
Aborted | 1 | 1+ | 1+ | 1+ | n/a 7 | |
5 (5) | Lambed | 16 | 3+, 13− | 3+, 13− | 11+, 5− | 422 (2.02) |
Aborted | 2 | 2+ | 2+ | 2+ | 4,378,573 (1.37) | |
6 (3.5) | Lambed | 17 | 3+, 14− | 4+, 13− | 12+, 5− | 688 (2.51) |
Aborted | 1 | 1+ | 1+ | 1+ | n/a 7 | |
7 (2.5) | Lambed | 18 | 2+, 16− | 5+, 13− | 16+, 2− | 1031 (2.15) |
Aborted | 3 | 3+ | 3+ | 3+ | 2,157,470 (3.88) | |
8 | Lambed | 12 | 7+, 5− | 8+, 4− | 12+, 0− | 77,531 (3.20) |
Aborted | 6 | 6+ | 6+ | 6+ | 4,357,997 (1.65) | |
9 | Lambed | 6 | 6− | 6− | 6− | 24 (1.16) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Livingstone, M.; Aitchison, K.; Palarea-Albaladejo, J.; Ciampi, F.; Underwood, C.; Paladino, A.; Chianini, F.; Entrican, G.; Wattegedera, S.R.; Longbottom, D. Protective Efficacy of Decreasing Antigen Doses of a Chlamydia abortus Subcellular Vaccine Against Ovine Enzootic Abortion in a Pregnant Sheep Challenge Model. Vaccines 2025, 13, 89. https://doi.org/10.3390/vaccines13010089
Livingstone M, Aitchison K, Palarea-Albaladejo J, Ciampi F, Underwood C, Paladino A, Chianini F, Entrican G, Wattegedera SR, Longbottom D. Protective Efficacy of Decreasing Antigen Doses of a Chlamydia abortus Subcellular Vaccine Against Ovine Enzootic Abortion in a Pregnant Sheep Challenge Model. Vaccines. 2025; 13(1):89. https://doi.org/10.3390/vaccines13010089
Chicago/Turabian StyleLivingstone, Morag, Kevin Aitchison, Javier Palarea-Albaladejo, Francesco Ciampi, Clare Underwood, Antonia Paladino, Francesca Chianini, Gary Entrican, Sean Ranjan Wattegedera, and David Longbottom. 2025. "Protective Efficacy of Decreasing Antigen Doses of a Chlamydia abortus Subcellular Vaccine Against Ovine Enzootic Abortion in a Pregnant Sheep Challenge Model" Vaccines 13, no. 1: 89. https://doi.org/10.3390/vaccines13010089
APA StyleLivingstone, M., Aitchison, K., Palarea-Albaladejo, J., Ciampi, F., Underwood, C., Paladino, A., Chianini, F., Entrican, G., Wattegedera, S. R., & Longbottom, D. (2025). Protective Efficacy of Decreasing Antigen Doses of a Chlamydia abortus Subcellular Vaccine Against Ovine Enzootic Abortion in a Pregnant Sheep Challenge Model. Vaccines, 13(1), 89. https://doi.org/10.3390/vaccines13010089