Immunosuppressive Therapy Modifies Anti-Spike IgG Subclasses Distribution After Four Doses of mRNA Vaccination in a Cohort of Kidney Transplant Recipients
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Sample Collection
2.2. Patient Selection
2.3. Control Group Selection
2.4. SARS-CoV-2 Serology Analysis
2.5. Assessment of Cell-Mediated Immunity
2.6. Assessment of Serum Neutralizing Activity of ACE2-RBD
2.7. Measurement of IgG Subclasses
2.8. Statistical Analysis
3. Results
3.1. Naïve Kidney Transplant Recipients Have a Lower Response Rate After Fourth Dose of mRNA Vaccine than Dialysis Patients
3.2. Kinetics of Anti-Spike IgG Subclasses After Vaccination Against SARS-CoV-2 in Naïve Kidney Transplant and Dialysis Patient
3.3. Effect of Immunosuppressive Therapy on the Kinetics of Anti-Spike IgG Subclasses
3.4. Correlation of Anti-Spike IgG Titers and Subclasses with SNA. Factors Associated with SNA
3.5. Impact of Infection Before the Fourth Dose on the Vaccine-Induced Immune Response
3.6. Correlation Between Humoral Immunity and Incidence of Breakthrough Infection After the Fourth Vaccine Dose
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Wratil, P.R.; Stern, M.; Priller, A.; Willmann, A.; Almanzar, G.; Vogel, E.; Feuerherd, M.; Cheng, C.-C.; Yazici, S.; Christa, C.; et al. Three exposures to the spike protein of SARS-CoV-2 by either infection or vaccination elicit superior neutralizing immunity to all variants of concern. Nat. Med. 2022, 28, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Muecksch, F.; Wang, Z.; Cho, A.; Gaebler, C.; Ben Tanfous, T.; DaSilva, J.; Bednarski, E.; Ramos, V.; Zong, S.; Johnson, B.; et al. Increased memory B cell potency and breadth after a SARS-CoV-2 mRNA boost. Nature 2022, 607, 128–134. [Google Scholar] [CrossRef]
- Pérez-Flores, I.; Juarez, I.; Meneses, A.S.A.; Lopez-Gomez, A.; Romero, N.C.; Rodriguez-Cubillo, B.; de la Higuera, M.A.M.; Peix-Jiménez, B.; Gonzalez-Garcia, R.; Baos-Muñoz, E.; et al. Role of mTOR inhibitor in the cellular and humoral immune response to a booster dose of SARS-CoV-2 mRNA-1273 vaccine in kidney transplant recipients. Front. Immunol. 2023, 14, 1111569. [Google Scholar] [CrossRef]
- Korobova, Z.R.; Zueva, E.V.; Arsentieva, N.A.; Batsunov, O.K.; Liubimova, N.E.; Khamitova, I.V.; Kuznetsova, R.N.; Rubinstein, A.A.; Savin, T.V.; Stanevich, O.V.; et al. Changes in Anti-SARS-CoV-2 IgG Subclasses over Time and in Association with Disease Severity. Viruses 2022, 14, 941. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, W.; Zhang, L.; Li, J.; Bai, S.; Wang, Y.; Zhang, B.; Zheng, Q.; Chen, M.; Zhao, W.; Wu, J. The kinetics of IgG subclasses and contributions to neutralizing activity against SARS-CoV-2 wild-type strain and variants in healthy adults immunized with inactivated vaccine. Immunology 2022, 167, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Poolchanuan, P.; Matsee, W.; Sengyee, S.; Siripoon, T.; Dulsuk, A.; Phunpang, R.; Pisutsan, P.; Piyaphanee, W.; Luvira, V.; Chantratita, N. Dynamics of Different Classes and Subclasses of Antibody Responses to Severe Acute Respiratory Syndrome Coronavirus 2 Variants after Coronavirus Disease 2019 and CoronaVac Vaccination in Thailand. mSphere 2023, 8, e0046522. [Google Scholar] [CrossRef]
- Irrgang, P.; Gerling, J.; Kocher, K.; Lapuente, D.; Steininger, P.; Habenicht, K.; Wytopil, M.; Beileke, S.; Schäfer, S.; Zhong, J.; et al. Class switch toward noninflammatory, spike-specific IgG4 antibodies after repeated SARS-CoV-2 mRNA vaccination. Sci. Immunol. 2023, 8, eade2798. [Google Scholar] [CrossRef] [PubMed]
- Vidarsson, G.; Dekkers, G.; Rispens, T. IgG Subclasses and Allotypes: From Structure to Effector Functions. Front. Immunol. 2014, 5, 520. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iles, J.K.; Zmuidinaite, R.; Sadee, C.; Gardiner, A.; Lacey, J.; Harding, S.; Wallis, G.; Patel, R.; Roblett, D.; Heeney, J.; et al. Determination of IgG1 and IgG3 SARS-CoV-2 Spike Protein and Nucleocapsid Binding—Who Is Binding Who and Why? Int. J. Mol. Sci. 2022, 23, 6050. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rispens, T.; Huijbers, M.G. The unique properties of IgG4 and its roles in health and disease. Nat. Rev. Immunol. 2023, 23, 763–778. [Google Scholar] [CrossRef] [PubMed]
- Pincetic, A.; Bournazos, S.; DiLillo, D.J.; Maamary, J.; Wang, T.T.; Dahan, R.; Fiebiger, B.-M.; Ravetch, J.V. Type I and type II Fc receptors regulate innate and adaptive immunity. Nat. Immunol. 2014, 15, 707–716. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Taeye, S.W.; Bentlage, A.E.H.; Mebius, M.M.; Meesters, J.I.; Lissenberg-Thunnissen, S.; Falck, D.; Sénard, T.; Salehi, N.; Wuhrer, M.; Schuurman, J.; et al. FcγR Binding and ADCC Activity of Human IgG Allotypes. Front. Immunol. 2020, 11, 740. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nimmerjahn, F.; Ravetch, J.V. Antibody-mediated modulation of immune responses. Immunol. Rev. 2010, 236, 265–275. [Google Scholar] [CrossRef]
- Fitzpatrick, E.A.; Wang, J.; Strome, S.E. Engineering of Fc Multimers as a Protein Therapy for Autoimmune Disease. Front. Immunol. 2020, 11, 496. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jefferis, R.; Lefranc, M.P. Human immunoglobulin allotypes: Possible implications for immunogenicity. MAbs 2009, 1, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Idusogie, E.E.; Presta, L.G.; Gazzano-Santoro, H.; Totpal, K.; Wong, P.Y.; Ultsch, M.; Meng, Y.G.; Mulkerrin, M.G. Mapping of the C1q Binding Site on Rituxan, a Chimeric Antibody with a Human IgG1 Fc. J. Immunol. 2000, 164, 4178–4184. [Google Scholar] [CrossRef] [PubMed]
- Massa, F.; Cremoni, M.; Gérard, A.; Grabsi, H.; Rogier, L.; Blois, M.; Couzin, C.; Ben Hassen, N.; Rouleau, M.; Barbosa, S.; et al. Safety and cross-variant immunogenicity of a three-dose COVID-19 mRNA vaccine regimen in kidney transplant recipients. EBioMedicine 2021, 73, 103679. [Google Scholar] [CrossRef] [PubMed]
- Benning, L.; Morath, C.; Bartenschlager, M.; Kim, H.; Reineke, M.; Beimler, J.; Buylaert, M.; Nusshag, C.; Kälble, F.; Reichel, P.; et al. Neutralizing antibody response against the B.1.617.2 (delta) and the B.1.1.529 (omicron) variants after a third mRNA SARS-CoV-2 vaccine dose in kidney transplant recipients. Am. J. Transplant. 2022, 22, 1873–1883. [Google Scholar] [CrossRef] [PubMed]
- Alejo, J.L.; Mitchell, J.M.; Chiang, T.P.-Y.; Abedon, A.T.B.; Boyarsky, B.J.; Avery, R.K.; Tobian, A.A.; Levan, M.L.J.; Massie, A.B.; Garonzik-Wang, J.M.; et al. Antibody Response to a Fourth Dose of a SARS-CoV-2 Vaccine in Solid Organ Transplant Recipients: A Case Series. Transplantation 2021, 105, e280–e281. [Google Scholar] [CrossRef] [PubMed]
- Benotmane, I.; Bruel, T.; Planas, D.; Fafi-Kremer, S.; Schwartz, O.; Caillard, S. A fourth dose of the mRNA-1273 SARS-CoV-2 vaccine improves serum neutralization against the Delta variant in kidney transplant recipients. Kidney Int. 2022, 101, 1073–1076. [Google Scholar] [CrossRef]
- Caillard, S.; Thaunat, O.; Benotmane, I.; Masset, C.; Blancho, G. Antibody Response to a Fourth Messenger RNA COVID-19 Vaccine Dose in Kidney Transplant Recipients: A Case Series. Ann. Intern. Med. 2022, 175, 455–456. [Google Scholar] [CrossRef] [PubMed]
- Midtvedt, K.; Midtvedt, K.; Vaage, J.T.; Vaage, J.T.; Heldal, K.; Heldal, K.; Munthe, L.A.; Munthe, L.A.; Lund-Johansen, F.; Lund-Johansen, F.; et al. Fourth dose of the SARS-CoV-2 vaccine in kidney transplant recipients with previously impaired humoral antibody response. Am. J. Transplant. 2022, 22, 2704–2706. [Google Scholar] [CrossRef]
- Yoshimura, M.; Sakamoto, A.; Ozuru, R.; Kurihara, Y.; Itoh, R.; Ishii, K.; Shimizu, A.; Chou, B.; Nabeshima, S.; Hiromatsu, K. The appearance of anti-spike receptor binding domain immunoglobulin G4 responses after repetitive immunization with messenger RNA-based COVID-19 vaccines. Int. J. Infect. Dis. 2023, 139, 1–5. [Google Scholar] [CrossRef]
- Sheehan, J.; Ardizzone, C.M.; Khanna, M.; Trauth, A.J.; Hagensee, M.E.; Ramsay, A.J. Dynamics of Serum-Neutralizing Antibody Responses in Vaccinees through Multiple Doses of the BNT162b2 Vaccine. Vaccines 2023, 11, 1720. [Google Scholar] [CrossRef] [PubMed]
- Naranbhai, V.; Garcia-Beltran, W.F.; Chang, C.C.; Mairena, C.B.; Thierauf, J.C.; Kirkpatrick, G.; Onozato, M.L.; Cheng, J.; Denis, K.J.S.; Lam, E.C.; et al. Comparative Immunogenicity and Effectiveness of mRNA-1273, BNT162b2, and Ad26.COV2.S COVID-19 Vaccines. J. Infect. Dis. 2021, 225, 1141–1150. [Google Scholar] [CrossRef] [PubMed]
- Hendrikx, L.H.; Schure, R.-M.; Öztürk, K.; de Rond, L.G.; de Greeff, S.; Sanders, E.A.; Berbers, G.A.; Buisman, A.-M. Different IgG-subclass distributions after whole-cell and acellular pertussis infant primary vaccinations in healthy and pertussis infected children. Vaccine 2011, 29, 6874–6880. [Google Scholar] [CrossRef]
- Buhre, J.S.; Pongracz, T.; Künsting, I.; Lixenfeld, A.S.; Wang, W.; Nouta, J.; Lehrian, S.; Schmelter, F.; Lunding, H.B.; Dühring, L.; et al. mRNA vaccines against SARS-CoV-2 induce comparably low long-term IgG Fc galactosylation and sialylation levels but increasing long-term IgG4 responses compared to an adenovirus-based vaccine. Front. Immunol. 2023, 13, 1020844. [Google Scholar] [CrossRef]
- Bobrovitz, N.; Ware, H.; Ma, X.; Li, Z.; Hosseini, R.; Cao, C.; Selemon, A.; Whelan, M.; Premji, Z.; Issa, H.; et al. Protective effectiveness of previous SARS-CoV-2 infection and hybrid immunity against the omicron variant and severe disease: A systematic review and meta-regression. Lancet Infect. Dis. 2023, 23, 556–567. [Google Scholar] [CrossRef]
- A Goyins, K.; Yu, J.-J.; Papp, S.B.; Beddard, R.; Murthy, A.K.; Chambers, J.P.; Arulanandam, B.P. Isotyping and quantitation of the humoral immune response to SARS-CoV-2. Exp. Biol. Med. 2022, 247, 1055–1060. [Google Scholar] [CrossRef]
- Zong, K.; Peng, D.; Yang, H.; Huang, Z.; Luo, Y.; Wang, Y.; Xiang, S.; Li, T.; Mou, T.; Wu, Z. Risk Factors for Weak Antibody Response of SARS-CoV-2 Vaccine in Adult Solid Organ Transplant Recipients: A Systemic Review and Meta-Analysis. Front. Immunol. 2022, 13, 888385. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Gartshteyn, Y.; Ricker; Inzerillo, S.; Murray, S.; Khalili, L.; Askanase, A. The Use of COVID-19 Vaccines in Patients with SLE. Curr. Rheumatol. Rep. 2021, 23, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kalkeri, R.; Zhu, M.; Cloney-Clark, S.; Plested, J.S.; Parekh, A.; Gorinson, D.; Cai, R.; Mahato, S.; Ramanathan, P.; Aurelia, L.C.; et al. Altered IgG4 antibody response to repeated mRNA versus recombinant protein SARS-CoV-2 vaccines. J. Infect. 2024, 88, 106119. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Blumberg, E.A.; Danziger-Isakov, L.; Kotton, C.N.; Halasa, N.B.; Ison, M.G.; Avery, R.K.; Green, M.; Allen, U.D.; Edwards, K.M.; et al. Influenza Vaccination in the Organ Transplant Recipient: Review and Summary Recommendations. Am. J. Transplant. 2011, 11, 2020–2030. [Google Scholar] [CrossRef] [PubMed]
- Karaba, A.H.; Hage, C.; Sengsouk, I.; Balasubramanian, P.; Segev, D.L.; Tobian, A.A.A.R.; Werbel, W.A. Antibody Response to Respiratory Syncytial Virus Vaccination in Immunocompromised Persons. JAMA 2024. [Google Scholar] [CrossRef] [PubMed]
KTR (N = 146) | Naïve KTR (N = 91) | Infected KTR (N = 55) | DP (N = 23) | |
---|---|---|---|---|
Gender (male), N (%) | 91 (62.3) | 55 (60.4) | 36 (65.5) | 13 (56.5) |
Ethnicity, N (%) | ||||
Caucasian | 125 (85.6) | 79 (86.8) | 46 (83.6) | 19 (82.6) |
Hispanic | 20 (13.7) | 12 (13.2) | 8 (14.6) | 3 (13.0) |
Others | 1 (0.7) | 0 (0) | 1 (1.8) | 1 (4.4) |
Age | ||||
years (mean, SD) | 57 (15.0) | 60.4 (15.5) | 54.4 (13.5) | 56 (13) |
>60 y, N (%) | 73 (50.0) | 53 (58.2) | 19 (35.2) | 12 (52.1) |
Diabetes, N (%) | 51 (34.9) | 32 (35.1) | 19 (35.2) | 8 (34.7) |
HBP, N (%) | 132 (90.4) | 82 (90.1) | 50 (90.9) | 23 (100) |
Cardiovascular disease, N (%) | 34 (23.3) | 21 (23.1) | 13 (23.6) | 8 (34.7) |
Chronic lung disease, N (%) | 27 (18.5) | 16 (17.6) | 11 (20) | 5 (21.7) |
Time since transplantation | ||||
years (median, IQR) | 9.2 (4.0–15.8) | 9.5 (4.4–17.0) | 8.0 (3.8–13.7) | |
<5 years, N (%) | 41 (28.1) | 24 (26.4) | 17 (30.9) | |
Previous Transplant, | ||||
N (%) | 19 (13.0) | 12 (13.2) | 7 (12.7) | |
Immunosuppressive drug, N (%) | ||||
Steroids | 73 (50.0) | 44 (48.3) | 29 (52.7) | |
CNI | 120 (82.2) | 69 (75.8) | 51 (92.7) | |
MPA | 111 (76.0) | 70 (76.9) | 41 (74.5) | |
mTORi | 41 (28.1) | 26 (28.6) | 15 (27.2) | |
Thymoglobulin | 82 (56.1) | 53 (58.2) | 29 (52.7) | |
Immunosuppressive protocol, N (%) | ||||
MPA + CNI | 102 (69.8) | 64 (70.3) | 38 (69.1) | |
MPA + mTORi | 19 (13.1) | 13 (14.3) | 6 (10.9) | |
mTORi + CNI | 25 (17.1) | 14 (15.4) | 11 (20.0) | |
eGFR (mL/min/1.73 m2), median (IQR) | ||||
Stages CKD, N (%) | ||||
>60 mL/min/1.73 m2 | 49 (33.5) | 26 (28.6) | 23 (41.8) | |
30–60 | 71 (48.6) | 47 (51.6) | 24 (43.6) | |
<30 | 26 (17.9) | 18 (19.8) | 8 (14.6) | |
Cells count, 1 × 103/mm3, median (IQR) | ||||
Lymphocyte | 1.52 (1.13–2.03) | 1.54 (1.06–2.06) | 1.70 (1.20–2.37) | 1.62 (1.21–2.12) |
CD4+ T-cells | 0.54 (0.38–0.74) | 0.55 (0.35–0.77) | 0.59 (0.38–0.78) | |
CD8+ T-cells | 0.48 (0.34–1.02) | 0.45 (0.29–0.78) | 0.56 (0.33–0.86) | |
Lymphocyte > 1 × 103/mm3, N (%) | 107 (73.2) | 70 (76.9) | 37 (67.3) | 20 (91.3) |
P1 | P2 | P3 | P4 | |
---|---|---|---|---|
IgG1 OD (450 nm) KTR DP | 0.0043 [0.0028–0.0067] n.d. | 0.0147 a [0.0044–0.0251] n.d. | 0.0117 [0.0035–0.1069] 0.0490 [0.0290–0.0845] | 0.0470 b [0.0103–0.1669] 0.0170 c [0.0065–0.0320] |
IgG2 OD (450 nm) KTR DP | 0.0020 [0.0010–0.0035] n.d. | 0.0083 a [0.005–0.0183] n.d. | 0.0095 [0.0038–0.0226] 0.0260 [0.0218–0.0495] | 0.0062 [0.0034–0.0214] 0.0530 [0.0123–0.0754] |
IgG3 OD (450 nm) KTR DP | 0.0227 [0.0108–0.03725] n.d. | 0.0323 d [0.0115–0.0703] n.d. | 0.0215 [0.0105–0.121] 0.0330 [0.0120–0.0470] | 0.0160 [0.007–0.0775] 0.0415 [0.0284–0.0641] |
IgG4 OD (450 nm) KTR DP | 0.0060 [0.0010–0.0093] n.d. | 0.0052 [0.0024–0.011] n.d. | 0.0070 e [0.0019–0.0371] 0.7808 [0.0363–1.1873] | 0.0285 f [0.0048–0.1860] 0.8755 [0.1826–1.4783] |
SNA > 65% | Univariate | Multivariate | ||
---|---|---|---|---|
OR (CI 95%) | p | OR (CI 95%) | p | |
Diabetes | 1.81 (0.64–5.07) | 0.200 | ||
Age >60 years | 0.67 (0.48–0.95) | 0.077 | 0.49 (0.15–1.55) | 0.227 |
Gender male | 0.90 (0.58–1.39) | 0.671 | ||
Steroids | 0.54 (0.36–0.80) | 0.019 | 0.83 (0.24–2.77) | 0.764 |
CNI | 0.98 (0.71–1.36) | 0.939 | ||
MPA | 0.89 (0.69–1.16) | 0.490 | 0.52 (0.13–2.03) | 0.350 |
mTORi | 5.20 (0.77–35.17) | 0.027 | 4.29 (1.21–15.17) | 0.024 |
Thymoglobulin | 0.67 (0.47–0.95) | 0.073 | 0.92 (0.25–3.30) | 0.902 |
eGFR > 30 mL/min | 3.03 (0.87–10.55) | 0.072 | 2.89 (0.31–26.68) | 0.349 |
<5 years since transplantation | 0.93 (0.68–1.26) | 0.685 | ||
Previous transplant | 1.85 (0.49–6.87) | 0.353 | ||
Lymphocyte > 1 × 103/mm3 | 0.97 (0.35–2.63) | 0.953 |
SARS-CoV-2 Infection Before 4th Dose | Naïve KTR (N = 91) | Infected KTR (N = 55) | p |
---|---|---|---|
IgG SARS-CoV-2 (BAU/mL) | 516.9 (39.6–2263.5) | 3389.1 (1707.6–8427.1) | <0.001 |
SNA (%) | 30.0 (7.9–62.9) | 74.4 (51.3–82.4) | <0.001 |
IgG1 (OD 450 nm) | 0.047 (0.006–0.193) | 0.078 (0.017–0.176) | 0.450 |
IgG2 (OD 450 nm) | 0.006 (0.002–0.022) | 0.026 (0.003–0.056) | 0.241 |
IgG3 (OD 450 nm) | 0.016 (0.006–0.077) | 0.098 (0.055–0.222) | <0.001 |
IgG4 (OD 450 nm) | 0.028 (0.003–0.214) | 0.155 (0.056–0.912) | 0.003 |
IFNy-CD4 (%) | 0.28 (0.02–0.56) | 0.31 (0.09–0.55) | 0.608 |
IFNy-CD8 (%) | 0.15 (0.01–0.48) | 0.30 (0.15–0.83) | 0.005 |
SARS-CoV-2 Infection After 4th Dose | Naïve KTR (N = 66) | Infected KTR (N = 25) | p |
---|---|---|---|
IgG SARS-CoV-2 (BAU/mL) | 1429.7 (63.8–2870.4) | 121.6 (1.0–869.6) | 0.005 |
SNA (%) | 45.8 (8.5–69.4) | 20.3 (1.9–46.1) | 0.012 |
IgG1 (OD 450 mm) | 0.050 (0.006–0.205) | 0.039 (0.000–0.060) | 0.009 |
IgG2 (OD 450 mm) | 0.005 (0.002–0.037) | 0.002 (0.000–0.006) | 0.006 |
IgG3 (OD 450 mm) | 0.017 (0.006–0.095) | 0.000 (0.000–0.014) | <0.001 |
IgG4 (OD 450 mm) | 0.032 (0.003–0.367) | 0.001 (0.000–0.012) | <0.001 |
IFNy-CD4 (%) | 0.28 (0.00–0.56) | 0.30 (0.09–0.64) | 0.373 |
IFNy-CD8 (%) | 0.17 (0.00–0.68) | 0.12 (0.00–0.46) | 0.421 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juarez, I.; Pérez-Flores, I.; Aiffil Meneses, A.S.; Lopez-Gomez, A.; Calvo Romero, N.; Rodríguez-Cubillo, B.; Moreno de la Higuera, M.A.; Peix-Jiménez, B.; Gonzalez-Garcia, R.; Amorós-Pérez, B.; et al. Immunosuppressive Therapy Modifies Anti-Spike IgG Subclasses Distribution After Four Doses of mRNA Vaccination in a Cohort of Kidney Transplant Recipients. Vaccines 2025, 13, 123. https://doi.org/10.3390/vaccines13020123
Juarez I, Pérez-Flores I, Aiffil Meneses AS, Lopez-Gomez A, Calvo Romero N, Rodríguez-Cubillo B, Moreno de la Higuera MA, Peix-Jiménez B, Gonzalez-Garcia R, Amorós-Pérez B, et al. Immunosuppressive Therapy Modifies Anti-Spike IgG Subclasses Distribution After Four Doses of mRNA Vaccination in a Cohort of Kidney Transplant Recipients. Vaccines. 2025; 13(2):123. https://doi.org/10.3390/vaccines13020123
Chicago/Turabian StyleJuarez, Ignacio, Isabel Pérez-Flores, Arianne S. Aiffil Meneses, Ana Lopez-Gomez, Natividad Calvo Romero, Beatriz Rodríguez-Cubillo, María Angeles Moreno de la Higuera, Belén Peix-Jiménez, Raquel Gonzalez-Garcia, Beatriz Amorós-Pérez, and et al. 2025. "Immunosuppressive Therapy Modifies Anti-Spike IgG Subclasses Distribution After Four Doses of mRNA Vaccination in a Cohort of Kidney Transplant Recipients" Vaccines 13, no. 2: 123. https://doi.org/10.3390/vaccines13020123
APA StyleJuarez, I., Pérez-Flores, I., Aiffil Meneses, A. S., Lopez-Gomez, A., Calvo Romero, N., Rodríguez-Cubillo, B., Moreno de la Higuera, M. A., Peix-Jiménez, B., Gonzalez-Garcia, R., Amorós-Pérez, B., Rivas-Pardo, B., Baos-Muñoz, E., Arribi Vilela, A., Gómez Del Moral, M., Sánchez-Fructuoso, A. I., & Martínez-Naves, E. (2025). Immunosuppressive Therapy Modifies Anti-Spike IgG Subclasses Distribution After Four Doses of mRNA Vaccination in a Cohort of Kidney Transplant Recipients. Vaccines, 13(2), 123. https://doi.org/10.3390/vaccines13020123