Vaccines in Dermatology—Present and Future: A Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion Criteria
- Conditions targeted: vaccines designed to prevent or treat dermatological conditions.
- Population: studies investigating the efficacy and safety of dermatological vaccines in human populations without known underlying health conditions, as well as animal populations specifically for acne vulgaris research.
- Study types: clinical trials and randomized controlled trials (RCTs). For acne vulgaris specifically, the inclusion criteria were expanded to include review articles due to the absence of clinical trials or RCTs found in the database search.
- Publication date: studies published within the last 10 years (January 2013 to June 2024).
- Language: studies published in English to ensure accessibility.
2.3. Exclusion Criteria
- Irrelevant conditions: vaccines not targeting dermatological conditions;
- Population: studies focusing on the efficacy of vaccines in special populations, such as those involving stem cell transplant recipients, individuals with diabetes, or those who are immunodeficient (to ensure generalizability of findings to the broader population without underlying health conditions);
- Type of vaccine: studies evaluating dermatological vaccines that were co-administered with other vaccines were excluded to avoid confounding effects on vaccine efficacy and safety outcomes.
3. Vaccines
3.1. Acne vulgaris
3.1.1. The Challenges of Assessing Acne Vaccines
3.1.2. Vaccine Platforms
3.2. HPV
3.2.1. Vaccine Platforms
3.2.2. Indications and Contraindications
3.3. Varicella Zoster and Herpes Zoster
3.3.1. Vaccine Platforms
3.3.2. Indications and Contraindications
3.4. Melanoma
Vaccine Platforms
3.5. Atopic Dermatitis
Vaccine Platforms
3.6. Warts
Vaccine Platforms
3.7. Mucocutaneous candidiasis
Vaccine Platforms
3.8. Buruli ulcer
Vaccine Platforms
3.9. Leprosy
Vaccine Platforms
3.10. Leishmaniasis
Vaccine Platforms
3.11. Smallpox
3.11.1. Vaccine Platforms
3.11.2. Indications and Contraindications
3.12. Mpox
Vaccine Platforms
3.13. Hand, Foot, and Mouth Disease (HFMD)
Vaccine Platforms
3.14. Group B Streptococcus (Streptococcus agalactiae)
Vaccine Platforms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vaccine-Preventable Diseases. Available online: https://www.who.int/teams/immunization-vaccines-and-biologicals/diseases (accessed on 7 July 2024).
- Oon, H.H.; Lim, D.Z.J.; Barbieri, J.S.; Dréno, B.; Goh, C.L.; Layton, A.M.; Rocha, M.; See, J.-A.; Thiboutot, D.; Zouboulis, C.C.; et al. A Call for Action to Tackle the Increasing Global Burden and Challenges of Acne. J. Eur. Acad. Dermatol. Venereol. 2023, 37, e1430–e1431. [Google Scholar] [CrossRef] [PubMed]
- Dreno, B.; Dekio, I.; Baldwin, H.; Demessant, A.L.; Dagnelie, M.A.; Khammari, A.; Corvec, S. Acne microbiome: From phyla to phylotypes. J. Eur. Acad. Dermatol. Venereol. 2024, 38, 657–664. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, J.; Watterson, S.; Layton, A.M.; Bjourson, A.J.; Barnard, E.; McDowell, A. Propionibacterium acnes and Acne Vulgaris: New Insights from the Integration of Population Genetic, Multi-Omic, Biochemical and Host-Microbe Studies. Microorganisms 2019, 7, 128. [Google Scholar] [CrossRef]
- Lehmann, H.P.; Robinson, K.A.; Andrews, J.S.; Holloway, V.; Goodman, S.N. Acne Therapy: A Methodologic Review. J. Am. Acad. Dermatol. 2002, 47, 231–240. [Google Scholar] [CrossRef]
- Safety, Tolerability, and Immunogenicity of ORI-A-ce001 for the Treatment of Acne Vulgaris. Clin. Trials Gov. 2021. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT05131373 (accessed on 16 July 2024).
- Study to Evaluate Safety, Efficacy and Immunogenicity of Acne mRNA Vaccine in Adults with Moderate to Severe Acne. Clin. Trials Gov. 2024. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT06316297 (accessed on 16 July 2024).
- Layton, A.M.; Eady, E.A.; Thiboutot, D.M.; Tan, J.; ACORN Outcomes Identification Group. Identifying What to Measure in Acne Clinical Trials: First Steps Towards Development of a Core Outcome Set. J. Investig. Dermatol. 2017, 137, 1784–1786. [Google Scholar] [CrossRef] [PubMed]
- Bruggemann, H.; Henne, A.; Hoster, F.; Liesegang, H.; Wiezer, A.; Strittmatter, A.; Hujer, S.; Dürre, P.; Gottschalk, G. The complete genome sequence of Propionibacterium acnes, a commensal of human skin. Science 2004, 305, 671–673. [Google Scholar] [CrossRef]
- Mayslich, C.; Grange, P.A.; Dupin, N. Cutibacterium acnes as an Opportunistic Pathogen: An Update of Its Virulence-Associated Factors. Microorganisms 2021, 9, 303. [Google Scholar] [CrossRef]
- Nakatsuji, T.; Liu, Y.T.; Huang, C.P.; Gallo, R.L.; Huang, C.M. Antibodies elicited by inactivated Propionibacterium acnes-based vaccines exert protective immunity and attenuate the IL-8 production in human sebocytes: Relevance to therapy for acne vulgaris. J. Investig. Dermatol. 2008, 128, 2451–2457. [Google Scholar] [CrossRef]
- Christensen, G.J.M.; Brüggemann, H. Bacterial skin commensals and their role as host guardians. Benef. Microbes 2014, 5, 201–215. [Google Scholar] [CrossRef] [PubMed]
- Nakatsuji, T.; Liu, Y.-T.; Huang, C.-P.; Gallo, R.L.; Huang, C.-M. Vaccination Targeting a Surface Sialidase of P. acnes: Implication for New Treatment of Acne Vulgaris. PLoS ONE 2008, 3, e1551. [Google Scholar] [CrossRef]
- Winter, C.; Schwegmann-Wessels, C.; Cavanagh, D.; Neumann, U.; Herrler, G. Sialic acid is a receptor determinant for infection of cells by avian Infectious bronchitis virus. J. Gen. Virol. 2006, 87, 1209–1216. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.-F.; Nakatsuji, T.; Zhu, W.; Gallo, R.L.; Huang, C.-M. Passive Immunoprotection Targeting a Secreted CAMP Factor of Propionibacterium acnes as a Novel Immunotherapeutic for Acne Vulgaris. Vaccine 2011, 29, 3230–3238. [Google Scholar] [CrossRef] [PubMed]
- Rasko, D.A.; Moreira, C.G.; Li, D.R.; Reading, N.C.; Ritchie, J.M.; Waldor, M.K.; Williams, N.; Taussig, R.; Wei, S.G.; Roth, M.; et al. Targeting QseC Signaling and Virulence for Antibiotic Development. Science 2008, 321, 1078–1080. [Google Scholar] [CrossRef]
- Wang, Y.; Hata, T.R.; Yun, L.T.; Kao, M.S.; Zouboulis, C.C.; Gallo, R.L.; Huang, C.M. The Anti-Inflammatory Activities of Propionibacterium acnes CAMP Factor-Targeted Acne Vaccines. J. Investig. Dermatol. 2018, 138, 2355–2364. [Google Scholar] [CrossRef] [PubMed]
- Hajam, I.A.; Katiki, M.; McNally, R.; Lázaro-Díez, M.; Kolar, S.; Chatterjee, A.; Gonzalez, C.; Paulchakrabarti, M.; Choudhury, B.; Caldera, J.R.; et al. Functional divergence of a bacterial enzyme promotes healthy or acneic skin. Nat. Commun. 2023, 14, 8061. [Google Scholar] [CrossRef] [PubMed]
- Rook, A.; Wilkinson, D.; Ebling, J. Viral Infections. In Rook’s Textbook of Dermatology, 10th ed.; Griffiths, C.E.M., Barker, J., Bleiker, T.O., Hussain, W., Simpson, R.C., Eds.; Wiley-Blackwell: Oxford, UK, 2004; Volume 1, pp. 25.61–25.65. [Google Scholar]
- Choi, Y.J.; Park, J.S. Clinical Significance of Human Papillomavirus Genotyping. J. Gynecol. Oncol. 2016, 27, e21. [Google Scholar] [CrossRef]
- Baandrup, L.; Blomberg, M.; Dehlendorff, C.; Sand, C.; Andersen, K.K.; Kjaer, S.K. Significant Decrease in the Incidence of Genital Warts in Young Danish Women after Implementation of a National Human Papillomavirus Vaccination Program. Sex. Transm. Dis. 2013, 40, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Kabaca, C.; Giray, B.; Uzun, M.G.; Akis, S.; Purut, Y.E.; Peker, E.K.; Cetiner, H.; Ergen, E.B. The Meaning of High-Risk HPV Other Than Type 16/18 in Women with Negative Cytology: Is It Really Safe to Wait for 1 Year? Diagn. Cytopathol. 2021, 49, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Loo, S.K.; Tang, W.Y. Warts (non-genital). BMJ Clin. Evid. 2014, 2014, 1710. [Google Scholar] [PubMed] [PubMed Central]
- Dochez, C.; Bogers, J.J.; Verhelst, R.; Rees, H. HPV Vaccines to Prevent Cervical Cancer and Genital Warts: An Update. Vaccine 2014, 32, 1595–1601. [Google Scholar] [CrossRef]
- Markowitz, L.E.; Schiller, J.T. Human Papillomavirus Vaccines. J. Infect. Dis. 2021, 224 (Suppl. S2), S367–S378. [Google Scholar] [CrossRef] [PubMed]
- FUTURE II Study Group. Quadrivalent Vaccine Against Human Papillomavirus to Prevent High-Grade Cervical Lesions. N. Engl. J. Med. 2007, 356, 1915–1920. [Google Scholar] [CrossRef]
- Garland, S.M.; Hernandez-Avila, M.; Wheeler, C.M.; Perez, G.; Harper, D.M.; Leodolter, S.; Tang, G.W.K.; Ferris, D.G.; Steben, M.; Bryan, J.; et al. Quadrivalent Vaccine Against Human Papillomavirus to Prevent Anogenital Diseases. N. Engl. J. Med. 2007, 356, 1928–1943. [Google Scholar] [CrossRef] [PubMed]
- Luna, J.; Plata, M.; Gonzalez, M.; Correa, A.; Maldonado, I.; Nossa, C.; Radley, D.; Vuocolo, S.; Haupt, R.M.; Saah, A. Long-Term Follow-Up Observation of the Safety, Immunogenicity, and Effectiveness of Gardasil™ in Adult Women. PLoS ONE 2013, 8, e83431. [Google Scholar] [CrossRef]
- Harper, D.M.; Franco, E.L.; Wheeler, C.M.; Moscicki, A.B.; Romanowski, B.; Roteli-Martins, C.M.; Jenkins, D.; Schuind, A.; Costa Clemens, S.A.; Dubin, G.; et al. Sustained Efficacy Up to 4.5 Years of a Bivalent L1 Virus-Like Particle Vaccine Against Human Papillomavirus Types 16 and 18: Follow-Up from a Randomised Control Trial. Lancet 2006, 367, 1247–1255. [Google Scholar] [CrossRef] [PubMed]
- Harper, D.M.; Franco, E.L.; Wheeler, C.; Ferris, D.G.; Jenkins, D.; Schuind, A.; Zahaf, T.; Innis, B.; Naud, P.; De Carvalho, N.S.; et al. Efficacy of a Bivalent L1 Virus-Like Particle Vaccine in Prevention of Infection with Human Papillomavirus Types 16 and 18 in Young Women: A Randomised Controlled Trial. Lancet 2004, 364, 1757–1765. [Google Scholar] [CrossRef]
- Paavonen, J.; Jenkins, D.; Bosch, F.X.; Naud, P.; Salmeron, J.; Wheeler, C.M.; Chow, S.N.; Apter, D.L.; Kitchener, H.C.; Castellsague, X.; et al. Efficacy of a Prophylactic Adjuvanted Bivalent L1 Virus-Like-Particle Vaccine Against Infection with Human Papillomavirus Types 16 and 18 in Young Women: An Interim Analysis of a Phase III Double-Blind, Randomised Controlled Trial. Lancet 2007, 369, 2161–2170. [Google Scholar] [CrossRef] [PubMed]
- Lehtinen, M.; Paavonen, J.; Wheeler, C.M.; Jaisamrarn, U.; Garland, S.M.; Castellsagué, X.; Skinner, S.R.; Apter, D.; Naud, P.; Salmerón, J.; et al. Overall Efficacy of HPV-16/18 AS04-Adjuvanted Vaccine Against Grade 3 or Greater Cervical Intraepithelial Neoplasia: 4-Year End-of-Study Analysis of the Randomised, Double-Blind PATRICIA Trial. Lancet Oncol. 2012, 13, 89–99. [Google Scholar] [CrossRef]
- Nofal, A.; Nofal, H.; Alwirshiffani, E.; ElGhareeb, M.I. Treatment Response and Tolerability of Intralesional Quadrivalent versus Bivalent Human Papillomavirus Vaccine for Recalcitrant Warts: A Randomized Controlled Trial. J. Am. Acad. Dermatol. 2023, 89, 1051–1052. [Google Scholar] [CrossRef] [PubMed]
- Kuan, L.Y.; Chua, S.H.; Pan, J.Y.; Yew, Y.W.; Tan, W.P. The Quadrivalent Human Papillomavirus Vaccine in Recalcitrant Non-genital Warts: A Retrospective Study. Ann. Acad. Med. Singap. 2020, 49, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, A.; Matsumoto, K.; Mitsuishi, T. Three cases of recalcitrant cutaneous warts treated with quadrivalent human papillomavirus (HPV) vaccine: The HPV type may not determine the outcome. Br. J. Dermatol. 2020, 182, 1285–1287. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Singh, O.; Brar, S.K.; Gill, S.K. Efficacy and Safety of Intralesional Quadrivalent Human Papillomavirus Vaccine as Immunotherapy in Management of Recalcitrant Genital Warts in a Tertiary Health Care Centre of North India. Natl. J. Physiol. Pharm. Pharmacol. 2021, 11, 540–543. [Google Scholar] [CrossRef]
- Nofal, A.; Marei, A.; Ibrahim, A.M.; Nofal, E.; Nabil, M. Intralesional Versus Intramuscular Bivalent Human Papillomavirus Vaccine in the Treatment of Recalcitrant Common Warts. J. Am. Acad. Dermatol. 2020, 82, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Choi, W.; Shim, E. Cost-Effectiveness of Human Papillomavirus Vaccination in the UK: Two Versus Single-Dose of Nonavalent HPV Vaccination. Am. J. Prev. Med. 2024, 67, 231–240. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Human Papillomavirus Vaccines: WHO Position Paper (2022 Update). Wkly. Epidemiol. Rec. 2022, 97, pp. 645–672. Available online: https://www.who.int/publications/i/item/who-wer9750-645-672. (accessed on 16 July 2024).
- Macartney, K.K.; Chiu, C.; Georgousakis, M.; Brotherton, J.M. Safety of Human Papillomavirus Vaccines: A Review. Drug Saf. 2013, 36, 393–412. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). FDA Licensure of Bivalent Human Papillomavirus Vaccine (HPV2, Cervarix) for Use in Females and Updated HPV Vaccination Recommendations from the Advisory Committee on Immunisation Practices (ACIP). MMWR Morb. Mortal. Wkly. Rep. 2010, 59, 626. [Google Scholar] [PubMed]
- Narducci, A.; Einarson, A.; Bozzo, P. Human Papillomavirus Vaccine and Pregnancy. Can. Fam. Physician 2012, 58, 268–269. [Google Scholar] [PubMed] [PubMed Central]
- Gershon, A.A.; Breuer, J.; Cohen, J.I.; Cohrs, R.J.; Gershon, M.D.; Gilden, D.; Grose, C.; Hambleton, S.; Kennedy, P.G.; Oxman, M.N.; et al. Varicella zoster virus infection. Nat. Rev. Dis. Primers. 2015, 1, 15016. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.; Goldust, M.; Wollina, U. Herpes zoster: A Review of Clinical Manifestations and Management. Viruses 2022, 14, 192. [Google Scholar] [CrossRef]
- Cohen, J.I. Clinical Practice: Herpes Zoster. N. Engl. J. Med. 2013, 369, 255–263. [Google Scholar] [CrossRef]
- Volpi, A.; Gross, G.; Hercogova, J.; Johnson, R.W. Current Management of Herpes Zoster: The European View. Am. J. Clin. Dermatol. 2005, 6, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Gabutti, G.; Bolognesi, N.; Sandri, F.; Florescu, C.; Stefanati, A. Varicella zoster virus vaccines: An update. ImmunoTargets and therapy 2019, 8, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Lo Presti, C.; Curti, C.; Montana, M.; Bornet, C.; Vanelle, P. Chickenpox: An Update. Med. Mal. Infect. 2019, 49, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Maltz, F.; Fidler, B. Shingrix: A New Herpes Zoster Vaccine. P T. 2019, 44, 406–433. [Google Scholar] [PubMed] [PubMed Central]
- Zeevaert, R.; Thiry, N.; Maertens, C.; Roberfroid, D. Efficacy and Safety of the Recombinant Zoster Vaccine: A Systematic Review and Meta-Analysis. Vaccine X 2023, 15, 100397. [Google Scholar] [CrossRef] [PubMed]
- Casabona, G.; Habib, M.A.; Povey, M.; Riise Bergsaker, M.A.; Flodmark, C.E.; Espnes, K.A.; Tøndel, C.; Silfverdal, S.A. Randomised Controlled Trial Showed Long-Term Efficacy, Immunogenicity, and Safety of Varicella Vaccines in Norwegian and Swedish Children. Acta Paediatr. 2022, 111, 391–400. [Google Scholar] [CrossRef]
- Liese, J.G.; Cohen, C.; Rack, A.; Pirzer, K.; Eber, S.; Blum, M.; Greenberg, M.; Streng, A. The Effectiveness of Varicella Vaccination in Children in Germany: A Case-Control Study. Pediatr. Infect. Dis. J. 2013, 32, 998–1004. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.S.; Choi, J.H.; Choi, J.Y.; Eom, J.S.; Kim, S.I.; Pai, H.; Peck, K.R.; Sohn, J.W.; Cheong, H.J. Immunogenicity and Safety of a Live Attenuated Zoster Vaccine (ZOSTAVAX™) in Korean Adults. J. Korean Med. Sci. 2016, 31, 13–17. [Google Scholar] [CrossRef]
- Lal, H.; Cunningham, A.L.; Godeaux, O.; Chlibek, R.; Díez-Domingo, J.; Hwang, S.J.; Levin, M.J.; McElhaney, J.E.; Poder, A.; Puig-Barberà, J.; et al. Efficacy of an Adjuvanted Herpes Zoster Subunit Vaccine in Older Adults. N. Engl. J. Med. 2015, 372, 208–2096. [Google Scholar] [CrossRef]
- Cunningham, A.L.; Lal, H.; Kovac, M.; Chlibek, R.; Hwang, S.J.; Díez-Domingo, J.; Godeaux, O.; Levin, M.J.; McElhaney, J.E.; Puig-Barberà, J.; et al. Efficacy of the Herpes Zoster Subunit Vaccine in Adults 70 Years of Age or Older. N. Engl. J. Med. 2016, 375, 1019–1032. [Google Scholar] [CrossRef]
- World Health Organisation. Varicella and Herpes Zoster Vaccines: WHO Position Paper, June 2014. WHO. 2014. Available online: https://www.who.int/publications/i/item/who-wer-8925-265-288 (accessed on 16 July 2024).
- Gray, S.J.; Cathie, K. Fifteen-minute consultation: Chickenpox vaccine-should parents immunise their children privately? Arch. Dis. Child. Educ. Pract. Ed. 2019, 104, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.K.; Bridges, C.B.; Harriman, K.H. Advisory Committee on Immunisation Practices. Advisory Committee on Immunisation Practices Recommended Immunisation Schedule for Adults Aged 19 Years or Older: United States. Ann. Intern. Med. 2016, 164, 184. [Google Scholar] [CrossRef] [PubMed]
- Macartney, K.; Heywood, A.; McIntyre, P. Vaccines for Post-Exposure Prophylaxis Against Varicella (Chickenpox) in Children and Adults. Cochrane Database Syst. Rev. 2014. [CrossRef]
- Senders, S.D.; Bundick, N.D.; Li, J.; Zecca, C.; Helmond, F.A. Evaluation of Immunogenicity and Safety of VARIVAX™ New Seed Process (NSP) in Children. Hum. Vaccin. Immunother. 2018, 14, 442–449. [Google Scholar] [CrossRef]
- Dubey, A.P.; Faridi, M.M.A.; Mitra, M.; Kaur, I.R.; Dabas, A.; Choudhury, J.; Mukherjee, M.; Mishra, D. Safety and Immunogenicity of Bio Pox™, a Live Varicella Vaccine (Oka Strain) in Indian Children: A Comparative Multicentric, Randomized Phase II/III Clinical Trial. Hum. Vaccin. Immunother. 2017, 13, 2032–2037. [Google Scholar] [CrossRef] [PubMed]
- Hao, B.; Chen, Z.; Zeng, G.; Huang, L.; Luan, C.; Xie, Z.; Chen, J.; Bao, M.; Tian, X.; Xu, B.; et al. Efficacy, Safety, and Immunogenicity of Live Attenuated Varicella Vaccine in Healthy Children in China: Double-Blind, Randomized, Placebo-Controlled Clinical Trial. Clin. Microbiol. Infect. 2019, 25, 1026–1031. [Google Scholar] [CrossRef]
- Ohfuji, S.; Ito, K.; Inoue, M.; Ishibashi, M.; Kumashiro, H.; Hirota, Y.; Kayano, E.; Ota, N. Safety of Live Attenuated Varicella-Zoster Vaccine in Patients with Underlying Illnesses Compared with Healthy Adults: A Prospective Cohort Study. BMC Infect. Dis. 2019, 19, 95. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Chen, Z.; Song, Y.; Tan, J.; Jia, N.; You, W.; Yuan, H.; Feng, G.; Li, C.; Luan, C.; et al. Immunogenicity and Safety of a Live-Attenuated Varicella Vaccine in a Healthy Population Aged 13 Years and Older: A Randomized, Double-Blind, Controlled Study. Vaccine 2024, 42, 396–401. [Google Scholar] [CrossRef]
- Choi, U.Y.; Kim, K.H.; Lee, J.; Eun, B.W.; Kim, D.H.; Ma, S.H.; Kim, C.S.; Lapphra, K.; Tangsathapornpong, A.; Kosalaraksa, P.; et al. Immunogenicity and Safety Profiles of a New MAV/06 Strain Varicella Vaccine in Healthy Children: A Multinational, Multicenter, Randomized, Double-Blinded, Active-Controlled Phase III Study. Vaccine 2021, 39, 1758–1764. [Google Scholar] [CrossRef]
- Food and Drug Administration. Shingrix [Package Insert]; US Department of Health and Human Services: Silver Spring, MD, USA, 2021; revised 07/2021. Available online: https://www.fda.gov/media/108597/download. (accessed on 16 July 2024).
- Bhatia, S.; Tykodi, S.S.; Thompson, J.A. Treatment of metastatic melanoma: An overview. Oncology 2009, 23, 488–496. [Google Scholar] [PubMed] [PubMed Central]
- Ott, P.A.; Hu, Z.; Keskin, D.B.; Shukla, S.A.; Sun, J.; Bozym, D.J.; Zhang, W.; Luoma, A.; Giobbie-Hurder, A.; Peter, L.; et al. An Immunogenic Personal Neoantigen Vaccine for Patients with Melanoma. Nature 2017, 547, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Gainor, J.F.; Patel, M.R.; Weber, J.S.; Gutierrez, M.; Bauman, J.E.; Clarke, J.M.; Julian, R.; Scott, A.J.; Geiger, J.L.; Kirtane, K.; et al. T Cell Responses to Individualized Neoantigen Therapy mRNA-4157 (V940) Alone or in Combination With Pembrolizumab in the Phase 1 KEYNOTE-603 Study. Cancer Discov. 2024, 14, 2209–2223. [Google Scholar] [CrossRef] [PubMed]
- Butterfield, L.H.; Vujanovic, L.; Santos, P.M.; Maurer, D.M.; Gambotto, A.; Lohr, J.; Li, C.; Waldman, J.; Chandran, U.; Lin, Y.; et al. Multiple Antigen-Engineered DC Vaccines with or without IFNα to Promote Antitumor Immunity in Melanoma. J. Immunother. Cancer 2019, 7, 113. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Kim, H.; Blackwell, C.M.; Slingluff, C.L., Jr. Long-Term Outcomes of Helper Peptide Vaccination for Metastatic Melanoma. Ann. Surg. 2015, 262, 456–464. [Google Scholar] [CrossRef]
- Lugović-Mihić, L.; Meštrović-Štefekov, J.; Potočnjak, I.; Cindrić, T.; Ilić, I.; Lovrić, I.; Skalicki, L.; Bešlić, I.; Pondeljak, N. Atopic Dermatitis: Disease Features, Therapeutic Options, and a Multidisciplinary Approach. Life 2023, 13, 1419. [Google Scholar] [CrossRef] [PubMed]
- Meylan, P.; Lang, C.; Mermoud, S.; Johannsen, A.; Norrenberg, S.; Hohl, D.; Vial, Y.; Prod’hom, G.; Greub, G.; Kypriotou, M.; et al. Skin Colonization by Staphylococcus aureus Precedes the Clinical Diagnosis of Atopic Dermatitis in Infancy. J. Investig. Dermatol. 2017, 137, 2497–2504. [Google Scholar] [CrossRef] [PubMed]
- Clowry, J.; Irvine, A.D.; McLoughlin, R.M. Next-Generation Anti–Staphylococcus aureus Vaccines: A Potential New Therapeutic Option for Atopic Dermatitis? J. Allergy Clin. Immunol. 2019, 143, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Harkins, C.P.; McAleer, M.A.; Bennett, D.; McHugh, M.; Fleury, O.M.; Pettigrew, K.A.; Oravcová, K.; Parkhill, J.; Proby, C.M.; Dawe, R.S.; et al. The Widespread Use of Topical Antimicrobials Enriches for Resistance in Staphylococcus aureus Isolated from Atopic Dermatitis Patients. Br. J. Dermatol. 2018, 179, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Nakatsuji, T.; Chen, T.H.; Narala, S.; Chun, K.A.; Two, A.M.; Yun, T.; Shafiq, F.; Kotol, P.F.; Bouslimani, A.; Melnik, A.V.; et al. Antimicrobials from Human Skin Commensal Bacteria Protect Against Staphylococcus aureus and Are Deficient in Atopic Dermatitis. Sci. Transl. Med. 2017, 9, eaah4680. [Google Scholar] [CrossRef]
- Begier, E.; Seiden, D.J.; Patton, M.; Zito, E.; Severs, J.; Cooper, D.; Eiden, J.; Gruber, W.C.; Jansen, K.U.; Anderson, A.S.; et al. SA4Ag, a 4-Antigen Staphylococcus aureus Vaccine, Rapidly Induces High Levels of Bacteria-Killing Antibodies. Vaccine 2017, 35(8), 1132–1139. [Google Scholar] [CrossRef]
- Xu, X.; Zhu, H.; Lv, H. Safety of Staphylococcus aureus Four-Antigen and Three-Antigen Vaccines in Healthy Adults: A Meta-Analysis of Randomized Controlled Trials. Hum. Vaccin. Immunother. 2018, 14, 314–321. [Google Scholar] [CrossRef]
- El-Zein, M.; Parent, M.E.; Benedetti, A.; Rousseau, M.C. Does BCG Vaccination Protect Against the Development of Childhood Asthma? A Systematic Review and Meta-Analysis of Epidemiological Studies. Int. J. Epidemiol. 2010, 39, 469–486. [Google Scholar] [CrossRef] [PubMed]
- Freyne, B.; Curtis, N. Does Neonatal BCG Vaccination Prevent Allergic Disease in Later Life? Arch. Dis. Child. 2014, 99, 182–184. [Google Scholar] [CrossRef]
- Arnoldussen, D.L.; Linehan, M.; Sheikh, A. BCG Vaccination and Allergy: A Systematic Review and Meta-Analysis. J. Allergy Clin. Immunol. 2011, 127, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Herz, U.; Gerhold, K.; Grüber, C.; Braun, A.; Wahn, U.; Renz, H.; Paul, K. BCG Infection Suppresses Allergic Sensitization and Development of Increased Airway Reactivity in an Animal Model. J. Allergy Clin. Immunol. 1998, 102(5), 867–874. [Google Scholar] [CrossRef] [PubMed]
- Freyne, B.; Marchant, A.; Curtis, N. BCG-Associated Heterologous Immunity, a Historical Perspective: Experimental Models and Immunological Mechanisms. Trans. R. Soc. Trop. Med. Hyg. 2015, 109, 46–51. [Google Scholar] [CrossRef]
- Pittet, L.F.; Messina, N.L.; Gardiner, K.; Freyne, B.; Abruzzo, V.; Francis, K.L.; Morrison, C.; Zufferey, C.; Vuillermin, P.; Allen, K.J.; et al. Prevention of Infant Eczema by Neonatal Bacillus Calmette-Guérin Vaccination: The MIS BAIR Randomized Controlled Trial. Allergy 2021, 77, 956–965. [Google Scholar] [CrossRef] [PubMed]
- Thøstesen, L.M.; Kjærgaard, J.; Pihl, G.T.; Birk, N.M.; Nissen, T.N.; Aaby, P.; Jensen, A.K.G.; Olesen, A.W.; Stensballe, L.G.; Jeppesen, D.L.; et al. Neonatal BCG Vaccination and Atopic Dermatitis Before 13 Months of Age: A Randomized Clinical Trial. Allergy 2017, 73, 498–504. [Google Scholar] [CrossRef]
- Ockenfels, H.M. Therapeutic management of cutaneous and genital warts. J. Dtsch. Dermatol. Ges. 2016, 14, 892–899. [Google Scholar] [CrossRef] [PubMed]
- Al-Eitan, L.N.; Alghamdi, M.A.; Tarkhan, A.H.; Al-Qarqaz, F.A. Genome-wide identification of methylated CpG sites in nongenital cutaneous warts. BMC Med. Genom. 2020, 13, 100. [Google Scholar] [CrossRef] [PubMed]
- Sterling, J.C.; Gibbs, S.; Haque Hussain, S.S.; Mohd Mustapa, M.F.; Handfield-Jones, S.E. British Association of Dermatologists’ guidelines for the management of cutaneous warts. Br. J. Dermatol. 2014, 171, 696–712. [Google Scholar] [CrossRef]
- El-Komy, M.H.M.; Shamma, S.G.; Bedair, N.I. The efficacy and safety of intralesional Candida vaccine versus topical diphencyproprobenone in immunotherapy of verruca vulgaris: A randomized comparative study. Arch Dermatol. Res. 2023, 315, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Nofal, A.; El-Arab, R.E.; Nasr, M.; Alakad, R. Intralesional Measles, Mumps, and Rubella Vaccine Versus Intralesional Candida Antigen in the Treatment of Common and Plantar Warts. J. Cutaneous Med. Surg. 2021, 25, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Rageh, R.M.; Hewedy, E.S.; Hegab, D.S. Intralesional injection of Candida albicans antigen versus measles, mumps, and rubella vaccine for treatment of plantar warts. Acta Dermatovenerol. Alp Pannonica Adriat. 2021, 30, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Nofal, A.; Alakad, R.; Fouda, I.; Fawzy, M.M. Intralesional antigen immunotherapy in the treatment of periungual warts. J. Cutaneous Med. Surg. 2021, 25, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Eldahshan, R.M.; Ashry, W.M.O.; Elsaie, M.L. Comparative study between intralesional injection of MMR, BCG, and Candida albicans antigen in the treatment of multiple recalcitrant warts. J. Cosmet. Dermatol. 2022, 21, 1120–1126. [Google Scholar] [CrossRef] [PubMed]
- Talapko, J.; Juzbašić, M.; Matijević, T.; Pustijanac, E.; Bekić, S.; Kotris, I.; Škrlec, I. Candida albicans: The virulence factors and clinical manifestations of infection. J. Fungi 2021, 7, 79. [Google Scholar] [CrossRef]
- Denning, D.W.; Kneale, M.; Sobel, J.D.; Rautemaa-Richardson, R. Global burden of recurrent vulvovaginal candidiasis: A systematic review. Lancet Infect. Dis. 2018, 18, e339–e347. [Google Scholar] [CrossRef] [PubMed]
- Aballéa, S.; Guelfucci, F.; Wagner, J.; Khemiri, A.; Dietz, J.P.; Sobel, J.; Toumi, M. Subjective health status and health-related quality of life among women with recurrent vulvovaginal candidosis (RVVC) in Europe and the USA. Health Qual. Life Outcomes 2013, 11, 169. [Google Scholar] [CrossRef] [PubMed]
- Howley, M.M.; Carter, T.C.; Browne, M.L.; Romitti, P.A.; Cunniff, C.M.; Druschel, C.M.; National Birth Defects Prevention Study. Fluconazole use and birth defects in the National Birth Defects Prevention Study. Am. J. Obstet. Gynecol. 2016, 214, 657.e1–657.e6579. [Google Scholar] [CrossRef]
- Marchaim, D.; Lemanek, L.; Bheemreddy, S.; Kaye, K.S.; Sobel, J.D. Fluconazole-resistant Candida albicans vulvovaginitis. Obstet. Gynecol. 2012, 120, 1407–1414. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.E., Jr.; Schwartz, M.M.; Schmidt, C.S.; Sobel, J.D.; Nyirjesy, P.; Schodel, F.; Marchus, E.; Lizakowski, M.; DeMontigny, E.A.; Hoeg, J.; et al. A Fungal Immunotherapeutic Vaccine (NDV-3A) for Treatment of Recurrent Vulvovaginal Candidiasis—A Phase 2 Randomized, Double-Blind, Placebo-Controlled Trial. Clin. Infect. Dis. 2018, 66, 1928–1936. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). BCG vaccines: WHO position paper—February 2018. Wkly Epidemiol Rec. 2018, 93, 73–96. Available online: https://www.who.int/publications/i/item/who-wer9308-73-96 (accessed on 10 September 2024).
- Pluschke, G.; Röltgen, K. Buruli Ulcer—Mycobacterium Ulcerans Disease; Springer Nature: Cham, Switzerland, 2019; pp. 2–3. [Google Scholar] [CrossRef]
- Yamazaki-Nakashimada, M.A.; Unzueta, A.; Gámez-González, L.B.; González-Saldaña, N.; Sorensen, R.U. BCG: A vaccine with multiple faces. Hum. Vaccines Immunother. 2020, 16, 1841–1850. [Google Scholar] [CrossRef]
- Pittet, L.F.; Tebruegge, M.; Dutta, B.; Donath, S.; Messina, N.; Casalaz, D.; Hanekom, W.A.; Britton, W.J.; Robins-Browne, R.; Curtis, N.; et al. Mycobacterium Ulcerans-Specific Immune Response after Immunisation with Bacillus Calmette-Guérin (BCG) Vaccine. Vaccine 2020, 39, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Portaels, F.; Aguiar, J.; Debacker, M.; Steunou, C.; Zinsou, C.; Guédénon, A.; Meyers, W.M. Prophylactic Effect of Mycobacterium Bovis BCG Vaccination against Osteomyelitis in Children with Mycobacterium Ulcerans Disease (Buruli Ulcer). Clin. Diagn. Lab. Immunol. 2002, 9, 1389–1391. [Google Scholar] [CrossRef] [PubMed]
- Phillips, R.O.; Phanzu, D.M.; Beissner, M.; Badziklou, K.; Luzolo, E.K.; Sarfo, F.S.; Halatoko, W.A.; Amoako, Y.; Frimpong, M.; Kabiru, A.M.; et al. Effectiveness of routine BCG vaccination on buruli ulcer disease: A case-control study in the Democratic Republic of Congo, Ghana and Togo. PLoS Negl. Trop. Dis. 2015, 9, e3457. [Google Scholar] [CrossRef]
- Orujyan, D.; Narinyan, W.; Rangarajan, S.; Rangchaikul, P.; Prasad, C.; Saviola, B.; Venketaraman, V. Protective efficacy of BCG vaccine against Mycobacterium leprae and non-tuberculous mycobacterial infections. Vaccines 2022, 10, 390. [Google Scholar] [CrossRef] [PubMed]
- Gomes, R.R.; Antunes, D.E.; Santos; Fávaro, E.; Oliveira, D.B.; Bernardes, M. BCG Vaccine and Leprosy Household Contacts: Protective Effect and Probability to Becoming Sick during Follow-Up. Vaccine 2019, 37, 6510–6517. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Sarkar, T.; Patra, A.; Ghosh, A.; Dutta, J.; Sen, I.; Tarafder, D. BCG Vaccination: Effects on the Patterns of Pediatric Leprosy. J Family Med. Prim. Care. 2020, 9, 3673. [Google Scholar] [CrossRef] [PubMed]
- Merle, C.S.; Cunha, S.S.; Rodrigues, L.C. BCG vaccination and leprosy protection: Review of current evidence and status of BCG in leprosy control. Expert Rev. Vaccines 2010, 9, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, S.H.E.; Weiner, J.; von Reyn, C.F. Novel Approaches to Tuberculosis Vaccine Development. Int. J. Infect. Dis. 2016, 56, 263–267. [Google Scholar] [CrossRef]
- Gupta, S.K.; Kumari, S. Chronic Recalcitrant Erythema Nodosum Leprosum: Therapeutic Dilemma and Role of Mycobacterium Indicus Pranii Vaccine. An. Bras. Dermatol. 2021, 97, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Duthie, M.S.; Pena, M.T.; Ebenezer, G.J.; Gillis, T.P.; Sharma, R.; Cunningham, K.; Polydefkis, M.; Maeda, Y.; Makino, M.; Truman, R.W.; et al. LepVax, a Defined Subunit Vaccine That Provides Effective Pre-Exposure and Post-Exposure Prophylaxis of M. Leprae Infection. npj Vaccines 2018, 3, 12. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation (WHO). Leishmaniasis. Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 23 January 2025).
- Torres-Guerrero, E.; Quintanilla-Cedillo, M.R.; Ruiz-Esmenjaud, J.; Arenas, R. Leishmaniasis: A Review. F1000Research 2017, 6, 750. [Google Scholar] [CrossRef]
- Kumar, P.; Chatterjee, M.; Das, N.K. Post Kala-Azar Dermal Leishmaniasis. Indian J. Dermatol. 2021, 66, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Aronson, N.; Herwaldt, B.L.; Libman, M.; Pearson, R.; Lopez-Velez, R.; Weina, P.; Carvalho, E.; Ephros, M.; Jeronimo, S.; Magill, A. Diagnosis and Treatment of Leishmaniasis: Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH). Am. J. Trop. Med. Hyg. 2017, 96, 24–45. [Google Scholar] [CrossRef] [PubMed]
- Knight, C.A.; Harris, D.R.; Alshammari, S.O.; Gugssa, A.; Young, T.; Lee, C.M. Leishmaniasis: Recent Epidemiological Studies in the Middle East. Front. Microbiol. 2023, 13, 1052478. [Google Scholar] [CrossRef]
- Osman, M.; Mistry, A.; Keding, A.; Gabe, R.; Cook, E.; Forrester, S.; Wiggins, R.; Marco, S.D.; Stefano, C.; Siani, L.; et al. A Third Generation Vaccine for Human Visceral Leishmaniasis and Post Kala Azar Dermal Leishmaniasis: First-In-Human Trial of ChAd63-KH. PLoS Negl. Trop. Dis. 2017, 11, e0005527. [Google Scholar] [CrossRef]
- Zhang, W.W.; Karmakar, S.; Gannavaram, S.; Dey, R.; Lypaczewski, P.; Ismail, N.; Siddiqui, A.; Simonyan, V.; Oliveira, F.; Coutinho-Abreu, I.V.; et al. A second generation leishmanization vaccine with a markerless attenuated Leishmania major strain using CRISPR gene editing. Nat. Commun. 2020, 11, 3461. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Fernandez, T.; Volpedo, G.; Gannavaram, S.; Bhattacharya, P.; Dey, R.; Abhay, S.; Matlashewski, G.; Nakhasi, H.L. Revival of Leishmanization and Leishmanin. Front. Cell Infect. Microbiol. 2021, 11, 639801. [Google Scholar] [CrossRef] [PubMed]
- Ayala, A.; Llanes, A.; Lleonart, R.; Restrepo, C.M. Advances in Leishmania Vaccines: Current Development and Future Prospects. Pathogens 2024, 13, 812. [Google Scholar] [CrossRef]
- Mayrink, W.; Mendonca-Mendes, A.; de Paula, J.C.; Siqueira, L.M.V.; Marrocos, S.d.R.; Dias, E.S.; de Andrade, H.M.; Machado-Coelho, G.L.L. Cluster Randomised Trial to Evaluate the Effectiveness of a Vaccine against Cutaneous Leishmaniasis in the Caratinga Microregion, South-East Brazil. Trans. R. Soc. Trop. Med. Hyg. 2013, 107, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Bumb, R.A.; Prasad, N.; Khandelwal, K.; Aara, N.; Mehta, R.D.; Ghiya, B.C.; Salotra, P.; Wei, L.; Peters, S.; Satoskar, A.R. Long-term efficacy of single-dose radiofrequency-induced heat therapy vs. intralesional antimonials for cutaneous leishmaniasis in India. Br. J. Dermatol. 2013, 168, 1114–1119. [Google Scholar] [CrossRef]
- Coler, R.N.; Duthie, M.S.; Hofmeyer, K.A.; Guderian, J.; Jayashankar, L.; Vergara, J.; Rolf, T.; Misquith, A.; Laurance, J.D.; Raman, V.S.; et al. From Mouse to Man: Safety, Immunogenicity and Efficacy of a Candidate Leishmaniasis Vaccine LEISH-F3+GLA-SE. Clin. Transl. Immunol. 2015, 4, e35. [Google Scholar] [CrossRef] [PubMed]
- Walker, P.S.; Scharton-Kersten, T.; Rowton, E.D.; Hengge, U.; Bouloc, A.; Udey, M.C.; Vogel, J.C. Genetic Immunization with Glycoprotein 63 cDNA Results in a Helper T Cell Type 1 Immune Response and Protection in a Murine Model of Leishmaniasis. Hum. Gene Ther. 1998, 9, 1899–1907. [Google Scholar] [CrossRef] [PubMed]
- Dumonteil, E. DNA Vaccines Induce Partial Protection against Leishmania mexicana. Vaccine 2003, 21, 2161–2168. [Google Scholar] [CrossRef]
- Younis, B.M.; Osman, M.; Khalil, E.A.G.; Santoro, F.; Furini, S.; Wiggins, R.; Keding, A.; Carraro, M.; Musa, A.E.A.; Abdarahaman, M.A.A.; et al. Safety and Immunogenicity of ChAd63-KH Vaccine in Post-Kala-Azar Dermal Leishmaniasis Patients in Sudan. Mol. Ther. 2021, 29, 2366–2377. [Google Scholar] [CrossRef]
- Martínez-Rodrigo, A.; Dias, D.S.; Ribeiro, F.; Roatt, B.M.; Mas, A.; Carrión, J.; Eduardo; Domínguez-Bernal, G. Immunization with the HisAK70 DNA Vaccine Induces Resistance against Leishmania Amazonensis Infection in BALB/c Mice. Vaccines 2019, 7, 183. [Google Scholar] [CrossRef]
- Das, S.; Freier, A.; Boussoffara, T.; Das, S.; Oswald, D.; Losch, F.O.; Selka, M.; Sacerdoti-Sierra, N.; Schönian, G.; Karl-Heinz, W.; et al. Modular Multiantigen T Cell Epitope–Enriched DNA Vaccine against Human Leishmaniasis. Sci. Transl. Med. 2014, 6, 234ra56. [Google Scholar] [CrossRef]
- Qin, F.; Xia, F.; Chen, H.; Cui, B.; Feng, Y.; Zhang, P.; Chen, J.; Luo, M. A Guide to Nucleic Acid Vaccines in the Prevention and Treatment of Infectious Diseases and Cancers: From Basic Principles to Current Applications. Front. Cell. Dev. Biol. 2021, 9, 633776. [Google Scholar] [CrossRef] [PubMed]
- Dinc, R. Leishmania Vaccines: The Current Situation with Its Promising Aspect for the Future. Korean, J. Parasitol. 2022, 60, 379–391. [Google Scholar] [CrossRef]
- Duthie, M.S.; Hoeven, N.V.; MacMillen, Z.; Picone, A.; Mohamath, R.; Erasmus, J.; Hsu, F.-C.; Stinchcomb, D.T.; Reed, S.G. Heterologous Immunization with Defined RNA and Subunit Vaccines Enhances T Cell Responses That Protect against Leishmania Donovani. Front. Immunol. 2018, 9, 2420. [Google Scholar] [CrossRef]
- Lafleur, A.; Daffis, S.; Mowbray, C.; Arana, B. Immunotherapeutic Strategies as Potential Treatment Options for Cutaneous Leishmaniasis. Vaccines 2024, 12, 1179. [Google Scholar] [CrossRef]
- Berche, P. Life and Death of Smallpox. Presse. Méd. 2022, 51, 104117. [Google Scholar] [CrossRef] [PubMed]
- Parrino, J.; Graham, B. Smallpox Vaccines: Past, Present, and Future. J. Allergy Clin. Immunol. 2006, 118, 1320–1326. [Google Scholar] [CrossRef]
- Wang, X.; Gu, Z.; Sheng, S.; Song, R.; Jin, R. The Current State and Progress of Mpox Vaccine Research. China CDC Wkly. 2024, 6, 118–125. [Google Scholar] [CrossRef] [PubMed]
- CDC: About Smallpox Vaccines. Available online: https://www.cdc.gov/smallpox/hcp/vaccines/index.html (accessed on 14 January 2025).
- Frey, S.E.; Winokur, P.L.; Hill, H.; Goll, J.B.; Chaplin, P.; Belshe, R.B. Phase II Randomized, Double-Blinded Comparison of a Single High Dose (5×108 TCID50) of Modified Vaccinia Ankara Compared to a Standard Dose (1 × 108 TCID50) in Healthy Vaccinia-Naïve Individuals. Vaccine 2014, 32, 2732–2739. [Google Scholar] [CrossRef] [PubMed]
- von Sonnenburg, F.; Perona, P.; Darsow, U.; Ring, J.; von Krempelhuber, A.; Vollmar, J.; Roesch, S.; Baedeker, N.; Kollaritsch, H.; Chaplin, P. Safety and Immunogenicity of Modified Vaccinia Ankara as a Smallpox Vaccine in People with Atopic Dermatitis. Vaccine 2014, 32, 5696–5702. [Google Scholar] [CrossRef]
- Frey, S.E.; Winokur, P.L.; Salata, R.A.; El-Kamary, S.S.; Turley, C.B.; Walter Jr, E.B.; Hay, C.M.; Newman, F.K.; Hill, H.R.; Zhang, Y.; et al. Safety and Immunogenicity of IMVAMUNE® Smallpox Vaccine Using Different Strategies for a Post Event Scenario. Vaccine 2013, 31, 3025–3033. [Google Scholar] [CrossRef] [PubMed]
- Pittman, P.R.; Hahn, M.; Lee, H.S.; Koca, C.; Samy, N.; Schmidt, D.; Hornung, J.; Weidenthaler, H.; Heery, C.R.; Meyer, T.P.H.; et al. Phase 3 Efficacy Trial of Modified Vaccinia Ankara as a Vaccine against Smallpox. N. Engl. J. Med. 2019, 381, 1897–1908. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.H.; Kang, Y.M.; Kim, G.; Choe, P.G.; Song, J.S.; Lee, K.H.; Seong, B.L.; Park, W.B.; Kim, N.J.; Oh, M. An Open-Label, Single Arm, Phase III Clinical Study to Evaluate the Efficacy and Safety of CJ Smallpox Vaccine in Previously Vaccinated Healthy Adults. Vaccine 2013, 31, 5239–5242. [Google Scholar] [CrossRef] [PubMed]
- Kenner, J.; Cameron, F.; Empig, C.; Jobes, D.V.; Gurwith, M. LC16m8: An Attenuated Smallpox Vaccine. Vaccine 2006, 24, 7009–7022. [Google Scholar] [CrossRef] [PubMed]
- Walsh, S.R.; Wilck, M.B.; Dominguez, D.J.; Zablowsky, E.; Bajimaya, S.; Gagne, L.S.; Verrill, K.A.; Kleinjan, J.A.; Patel, A.; Zhang, Y.; et al. Safety and Immunogenicity of Modified Vaccinia Ankara in Hematopoietic Stem Cell Transplant Recipients: A Randomized, Controlled Trial. J. Infect. Dis. 2013, 207, 1888–1897. [Google Scholar] [CrossRef] [PubMed]
- Overton, E.T.; Lawrence, S.J.; Stapleton, J.T.; Weidenthaler, H.; Schmidt, D.; Koenen, B.; Silbernagl, G.; Nopora, K.; Chaplin, P. A Randomized Phase II Trial to Compare Safety and Immunogenicity of the MVA-BN Smallpox Vaccine at Various Doses in Adults with a History of AIDS. Vaccine 2020, 38, 2600–2607. [Google Scholar] [CrossRef] [PubMed]
- Garde, V.; Harper, D.; Fairchok, M.P. Tertiary Contact Vaccinia in a Breastfeeding Infant. JAMA 2004, 291, 725. [Google Scholar] [CrossRef]
- Yan, K.; Tang, L.K.; Xiao, F.F.; Zhang, P.; Lu, C.M.; Hu, L.Y.; Wang, L.S.; Cheng, G.Q.; Zhou, W.H. Monkeypox and the perinatal period: What does maternal-fetal medicine need to know? World J. Pediatr. 2023, 19, 213–223. [Google Scholar] [CrossRef]
- Rao, A.K.; Petersen, B.W.; Whitehill, F.; Razeq, J.H.; Isaacs, S.N.; Merchlinsky, M.J.; Campos-Outcalt, D.; Morgan, R.L.; Damon, I.; Sánchez, P.J.; et al. Use of JYNNEOS (Smallpox and Monkeypox Vaccine, Live, Nonreplicating) for Preexposure Vaccination of Persons at Risk for Occupational Exposure to Orthopoxviruses: Recommendations of the Advisory Committee on Immunization Practices—United States, 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Fernández, D.E.; Fernández-Quezada, D.; Antonio, F.; Carrillo-Ballesteros, F.J.; Ortega-Prieto, A.M.; Jimenez-Guardeño, J.M.; Regla-Nava, J.A. Human Monkeypox: A Comprehensive Overview of Epidemiology, Pathogenesis, Diagnosis, Treatment, and Prevention Strategies. Pathogens 2023, 12, 947. [Google Scholar] [CrossRef]
- Cowen, E.W.; Tkaczyk, E.R.; Norton, S.A.; Leslie, K.S. Mpox—A Rapidly Evolving Disease. JAMA Dermatol. 2023, 159, 424. [Google Scholar] [CrossRef]
- Poland, G.A.; Kennedy, R.B.; Tosh, P.K. Prevention of monkeypox with vaccines: A rapid review. Lancet Infect. Dis. 2022, 22, e349–e358. [Google Scholar] [CrossRef]
- Li, E.T.; Guo, X.P.; Hong, D.X.; Gong, Q.Z.; Xie, W.Y.; Li, T.T.; Wang, J.; Chuai, X.; Chiu, S. Duration of humoral immunity from smallpox vaccination and its cross-reaction with Mpox virus. Signal Transduct. Target. Ther. 2023, 8, 350. [Google Scholar] [CrossRef] [PubMed]
- Fine, P.E.M.; Jezek, Z.; Grab, B.; Dixon, H. The transmission potential of monkeypox virus in human populations. Int. J. Epidemiol. 1988, 17, 643–650. [Google Scholar] [CrossRef]
- Bertran, M.; Andrews, N.; Davison, C.; Dugbazah, B.; Boateng, J.; Lunt, R.; Hardstaff, J.; Green, M.; Blomquist, P.; Turner, C.; et al. Effectiveness of one dose of MVA-BN smallpox vaccine against mpox in England using the case-coverage method: An observational study. Lancet Infect. Dis. 2023, 23, 828–835. [Google Scholar] [CrossRef]
- Morales, M.L.; Barbas del Buey, J.F.; García, M.A.; Largo, N.C.; Juliá, A.N.; Torres, M.C.V.; Bueno, S.J.; Peña, A.A.; Montalbán, E.G.; Martínez, J.I.; et al. Post-exposure vaccine effectiveness and contact management in the mpox outbreak, Madrid, Spain, May to August 2022. Euro. Surveill. 2023, 28, 2200883. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, K.; Zhou, H. Immunogenic Proteins and Potential Delivery Platforms for Mpox Virus Vaccine Development: A Rapid Review. Int. J. Biol. Macromol. 2023, 245, 125515. [Google Scholar] [CrossRef] [PubMed]
- Mucker, E.M.; Golden, J.W.; Hammerbeck, C.D.; Kishimori, J.M.; Royals, M.; Joselyn, M.D.; Ballantyne, J.; Nalca, A.; Hooper, J.W. A nucleic acid-based orthopoxvirus vaccine targeting the vaccinia virus L1, A27, B5, and A33 proteins protects rabbits against lethal rabbitpox virus aerosol challenge. J. Virol. 2022, 96, e0150421. [Google Scholar] [CrossRef]
- Golden, J.W.; Josleyn, M.D.; Hooper, J.W. Targeting the vaccinia virus L1 protein to the cell surface enhances production of neutralizing antibodies. Vaccine 2008, 26, 3507–3515. [Google Scholar] [CrossRef]
- Fang, Z.; Monteiro, V.S.; Renauer, P.A.; Shang, X.; Suzuki, K.; Ling, X.; Bai, M.; Xiang, Y.; Levchenko, A.; Booth, C.J.; et al. Polyvalent MRNA Vaccination Elicited Potent Immune Response to Monkeypox Virus Surface Antigens. Cell Res. 2023, 33, 407–410. [Google Scholar] [CrossRef]
- Zhang, N.; Cheng, X.; Zhu, Y.; Mo, O.; Yu, H.; Zhu, L.; Zhang, J.; Kuang, L.; Gao, Y.; Cao, R.; et al. Multi-Valent MRNA Vaccines against Monkeypox Enveloped or Mature Viron Surface Antigens Demonstrate Robust Immune Response and Neutralizing Activity. Sci. China Life Sci. 2023, 66, 2329–2341. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Aldaz-Carroll, L.; Ortiz, A.M.; Whitbeck, J.C.; Alexander, E.; Lou, H.; Davis, H.L.; Braciale, T.J.; Eisenberg, R.J.; Cohen, G.H.; et al. A Protein-Based Smallpox Vaccine Protects Mice from Vaccinia and Ectromelia Virus Challenges When given as a Prime and Single Boost. Vaccine 2007, 25, 1214–1224. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Ji, W.; Li, D.; Li, Z.; Chen, Y.; Dai, B.; Han, S.; Chen, S.; Jin, Y.; Duan, G. Current Status of Hand-Foot-And-Mouth Disease. J. Biomed. Sci. 2023, 30, 15. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Liu, L.; Mo, Z.; Wang, X.; Xia, J.; Liang, Z.; Zhang, Y.; Li, Y.; Mao, Q.; Wang, J.; et al. An Inactivated Enterovirus 71 Vaccine in Healthy Children. N. Engl. J. Med. 2014, 370, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Xu, W.; Xia, J.; Liang, Z.; Liu, Y.; Zhang, X.; Tan, X.; Wang, L.; Mao, Q.; Wu, J.; et al. Efficacy, Safety, and Immunogenicity of an Enterovirus 71 Vaccine in China. N. Engl. J. Med. 2014, 370, 818–828. [Google Scholar] [CrossRef]
- Li, J.-X.; Song, Y.-F.; Wang, L.; Zhang, X.-F.; Hu, Y.-S.; Hu, Y.-M.; Xia, J.-L.; Li, J.; Zhu, F.-C. Two-Year Efficacy and Immunogenicity of Sinovac Enterovirus 71 Vaccine against Hand, Foot and Mouth Disease in Children. Expert Rev. Vaccines 2015, 15, 129–137. [Google Scholar] [CrossRef]
- Guan, X.; Che, Y.; Wei, S.; Li, S.; Zhao, Z.; Tong, Y.; Wang, L.; Gong, W.; Zhang, Y.; Zhao, Y.; et al. Effectiveness and Safety of an Inactivated Enterovirus 71 Vaccine in Children Aged 6–71 Months in a Phase IV Study. Clin. Infect. Dis. 2019, 71, 2421–2427. [Google Scholar] [CrossRef]
- Zhang, W.; Kong, Y.; Jiang, Z.; Li, C.; Wang, L.; Xia, J. Comprehensive Safety Assessment of a Human Inactivated Diploid Enterovirus 71 Vaccine Based on a Phase III Clinical Trial. Hum. Vaccin. Immunother. 2016, 12, 922–930. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Dong, Z.; Wang, Q.; Carr, M.J.; Li, J.; Liu, T.; Li, D.; Shi, W. Characterization of an Inactivated Whole-Virus Bivalent Vaccine That Induces Balanced Protective Immunity against Coxsackievirus A6 and A10 in Mice. Vaccine 2018, 36, 7095–7104. [Google Scholar] [CrossRef] [PubMed]
- Caine, E.A.; Fuchs, J.; Das, S.C.; Partidos, C.D.; Osorio, J.E. Efficacy of a Trivalent Hand, Foot, and Mouth Disease Vaccine against Enterovirus 71 and Coxsackieviruses A16 and A6 in Mice. Viruses 2015, 7, 5919–5932. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; In, H.J.; Lee, J.-A.; Yoo, J.S.; Lee, S.-W.; Chung, G.T.; Choi, Y.K.; Chung, J.K.; Cho, S.J.; Lee, J.-W. The Immunogenicity and Protection Effect of an Inactivated Coxsackievirus A6, A10, and A16 Vaccine against Hand, Foot, and Mouth Disease. Vaccine 2018, 36, 3445–3452. [Google Scholar] [CrossRef]
- Zhang, W.; Dai, W.; Zhang, C.; Zhou, Y.; Xiong, P.; Wang, S.; Ye, X.; Liu, Q.; Zhou, D.; Huang, Z. A Virus-like Particle-Based Tetravalent Vaccine for Hand, Foot, and Mouth Disease Elicits Broad and Balanced Protective Immunity. Emerg. Microbes Infect. 2018, 7, 1–12. [Google Scholar] [CrossRef]
- He, X.; Zhang, M.; Zhao, C.; Zheng, P.; Zhang, X.; Xu, J. From Monovalent to Multivalent Vaccines, the Exploration for Potential Preventive Strategies against Hand, Foot, and Mouth Disease (HFMD). Virol. Sin. 2020, 36, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Anasir, M.I.; Poh, C.L. Advances in Antigenic Peptide-Based Vaccine and Neutralizing Antibodies against Viruses Causing Hand, Foot, and Mouth Disease. Int. J. Mol. Sci. 2019, 20, 1256. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.-Y.; Liu, C.-C. Novel Strategies for the Development of Hand, Foot, and Mouth Disease Vaccines and Antiviral Therapies. Expert Opin. Drug Discov. 2021, 17, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Sendi, P.; Johansson, L.; Norrby-Teglund, A. Invasive Group B Streptococcal Disease in Non-Pregnant Adults. Infection 2008, 36, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Ikebe, T.; Okuno, R.; Uchitani, Y.; Takano, M.; Yamaguchi, T.; Otsuka, H.; Kazawa, Y.; Fujita, S.; Kobayashi, A.; Date, Y.; et al. Working Group for Beta-Hemolytic Streptococci in Japan. Serotype Distribution and Antimicrobial Resistance of Streptococcus agalactiae Isolates in Nonpregnant Adults with Streptococcal Toxic Shock Syndrome in Japan in 2014 to 2021. Microbiol. Spectr. 2023, 11, e0498722. [Google Scholar] [CrossRef]
- Raabe, V.N.; Shane, A.L. Group B Streptococcus (Streptococcus Agalactiae). Microbiol. Spectr. 2019, 7, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Hasso-Agopsowicz, M.; Hwang, A.; Hollm-Delgado, M.G.; Umbelino-Walker, I.; Karron, R.A.; Rao, R.; Asante, K.P.; Sheel, M.; Sparrow, E.; Giersing, B. Identifying WHO global priority endemic pathogens for vaccine research and development (R&D) using multi-criteria decision analysis (MCDA): An objective of the Immunization Agenda 2030. EBioMedicine 2024, 110, 105424. [Google Scholar] [CrossRef]
- Seale, A.C.; Bianchi-Jassir, F.; Russell, N.J.; Kohli-Lynch, M.; Tann, C.J.; Hall, J.; Madrid, L.; Blencowe, H.; Cousens, S.; Baker, C.J.; et al. Estimates of the Burden of Group B Streptococcal Disease Worldwide for Pregnant Women, Stillbirths, and Children. Clin. Infect. Dis. 2017, 65, S200–S219. [Google Scholar] [CrossRef] [PubMed]
- Madhi, S.A.; Cutland, C.L.; Jose, L.; Koen, A.; Govender, N.; Wittke, F.; Morounfolu, O.; Ajoke, S.M.; Baker, S.; Dull, P.M.; et al. Safety and Immunogenicity of an Investigational Maternal Trivalent Group B Streptococcus Vaccine in Healthy Women and Their Infants: A Randomised Phase 1b/2 Trial. Lancet Infect. Dis. 2016, 16, 923–934. [Google Scholar] [CrossRef]
- Beran, J.; Leroux-Roels, G.; Damme, P.V.; de Hoon, J.; Vandermeulen, C.; Al-Ibrahim, M.; Johnson, C.; Peterson, J.; Baker, S.; Seidl, C.; et al. Safety and Immunogenicity of Fully Liquid and Lyophilized Formulations of an Investigational Trivalent Group B Streptococcus Vaccine in Healthy Non-Pregnant Women: Results from a Randomized Comparative Phase II Trial. Vaccine 2020, 38, 3227–3234. [Google Scholar] [CrossRef]
- Swamy, G.K.; Metz, T.D.; Edwards, K.M.; Soper, D.E.; Beigi, R.H.; Campbell, J.D.; Grassano, L.; Buffi, G.; Dreisbach, A.; Margarit, I.; et al. Safety and Immunogenicity of an Investigational Maternal Trivalent Group B Streptococcus Vaccine in Pregnant Women and Their Infants: Results from a Randomized Placebo-Controlled Phase II Trial. Vaccine 2020, 38, 6930–6940. [Google Scholar] [CrossRef] [PubMed]
- Donders, G.G.G.; Halperin, S.A.; Devlieger, R.; Baker, S.; Forte, P.; Wittke, F.; Slobod, K.S.; Dull, P.M. Maternal Immunization with an Investigational Trivalent Group B Streptococcal Vaccine. Obstet. Gynecol. 2016, 127, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Fabbrini, M.; Rigat, F.; Tuscano, G.; Chiarot, E.; Donders, G.; Devlieger, R.; Filippini, S.; Frigimelica, E.; Forte, P.; Wittke, F.; et al. Functional Activity of Maternal and Cord Antibodies Elicited by an Investigational Group B Streptococcus Trivalent Glycoconjugate Vaccine in Pregnant Women. J. Infect. 2018, 76, 449–456. [Google Scholar] [CrossRef]
- Leroux-Roels, G.; Bebia, Z.; Maes, C.; Aerssens, A.; Boever, F.D.; Grassano, L.; Buffi, G.; Margarit, I.; Karsten, A.; Cho, S.; et al. Safety and Immunogenicity of a Second Dose of an Investigational Maternal Trivalent Group B Streptococcus Vaccine in Nonpregnant Women 4–6 Years after a First Dose: Results from a Phase 2 Trial. Clin. Infect. Dis. 2019, 70, 2570–2579. [Google Scholar] [CrossRef] [PubMed]
- Heyderman, R.S.; Madhi, S.A.; French, N.; Cutland, C.; Ngwira, B.; Kayambo, D.; Mboizi, R.; Koen, A.; Jose, L.; Morounfolu, O.; et al. Group B Streptococcus Vaccination in Pregnant Women with or without HIV in Africa: A Non-Randomised Phase 2, Open-Label, Multicentre Trial. Lancet Infect. Dis. 2016, 16, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Absalon, J.; Segall, N.; Block, S.L.; Center, K.J.; Scully, I.L.; Giardina, P.C.; Peterson, J.; Watson, W.J.; Gruber, W.C.; Jansen, K.U.; et al. Safety and Immunogenicity of a Novel Hexavalent Group B Streptococcus Conjugate Vaccine in Healthy, Non-Pregnant Adults: A Phase 1/2, Randomised, Placebo-Controlled, Observer-Blinded, Dose-Escalation Trial. Lancet Infect. Dis. 2020, 21, 263–274. [Google Scholar] [CrossRef]
- Madhi, S.A.; Anderson, A.S.; Absalon, J.; Radley, D.; Simon, R.; Babalwa, J.; Strehlau, R.; van Niekerk, A.; Izu, A.; Naidoo, N.; et al. Potential for Maternally Administered Vaccine for Infant Group B Streptococcus. N. Engl. J. Med. 2023, 389, 215–227. [Google Scholar] [CrossRef]
- Fischer, P.; Pawlowski, A.; Cao, D.; Bell, D.; Kitson, G.; Darsley, M.; Johansson-Lindbom, B. Safety and Immunogenicity of a Prototype Recombinant Alpha-like Protein Subunit Vaccine (GBS-NN) against Group B Streptococcus in a Randomised Placebo-Controlled Double-Blind Phase 1 Trial in Healthy Adult Women. Vaccine 2021, 39, 4489–4499. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.Y.; Wang, K.Y.; Xiao, D.; Chen, D.F.; Geng, Y.; Wang, J.; He, Y.; Wang, E.L.; Huang, J.L.; Xiao, G.Y. Safety and Immunogenicity of an Oral DNA Vaccine Encoding Sip of Streptococcus Agalactiae from Nile Tilapia Oreochromis Niloticus Delivered by Live Attenuated Salmonella Typhimurium. Fish Shellfish Immunol. 2014, 38, 34–41. [Google Scholar] [CrossRef]
- Hillier, S.L.; Ferrieri, P.; Edwards, M.S.; Ewell, M.; Ferris, D.; Fine, P.; Carey, V.; Meyn, L.; Hoagland, D.; Kasper, D.L.; et al. A Phase 2, Randomized, Control Trial of Group B Streptococcus (GBS) Type III Capsular Polysaccharide-Tetanus Toxoid (GBS III-TT) Vaccine to Prevent Vaginal Colonization with GBS III. Clin. Infect. Dis. 2018, 68, 2079–2086. [Google Scholar] [CrossRef] [PubMed]
Therapy | Study Type | Outcomes | Reference |
---|---|---|---|
Inactivated C. acnes | Animal | Induced ear inflammation | [11] |
Sialidase | Animal | Increased IL-8 production, reduced ear swelling, decreased MIP-2 release | [13] |
CAMP factor | Animal | Decreased C. acnes-induced inflammation | [15] |
Animal | Decreased MIP-2 release | [17] | |
Ex vivo | Decreased IL-8 and IL-1b production | ||
HylA | Animal | Decreased HylA-induced inflammation | [18] |
Unspecified C. acnes recombinant proteins | Human | Pending | [6] |
Unspecified mRNA | Human | Pending | [7] |
Therapy | Study Type | Outcomes | Reference |
---|---|---|---|
20 personalized tumor neoantigens | Human (phase 1) | Protected against recurrence in 4 out of 6 patients at 25 months post vaccination | [68] |
mRNA-4157 (V940) | Human | Induced de novo and strengthened pre-existing T-cell responses to targeted neoantigens | [69] |
Antigen-engineered dendritic cell vaccine | Human | Induced antigen-specific CD8+ and CD4+ T-cell responses | [70] |
Multipeptide vaccine | Human | Increased median survival | [71] |
Therapy | Study Type | Outcomes | Reference |
---|---|---|---|
SA4Ag (CP5, CP8, rmClfA, rMntC) | Human | Safe; generated high titers of S. aureus-specific antibodies | [77] |
SA4Ag and SA3Ag | Human | Acceptable safety profiles | [78] |
BCG-Denmark | Human | Decreased incidence of AD | [84] |
BCG | Human | Decreased incidence of AD | [85] |
Therapy | Study Type | Outcomes | Reference |
---|---|---|---|
Intralesional Candida antigen versus topical diphencyprone | Human | Intralesional Candida antigen more efficacious; both safe | [89] |
Intralesional MMR vaccine versus C. albicans-specific antigen | Human | Similar rates of clearance; both safe | [90] |
Human | MMR vaccine more efficacious; both safe | [91] | |
Intralesional MMR vaccine versus Candida antigen and PPD | Human | Similar rates of clearance; all safe | [92] |
Intralesional MMR vaccine versus BCG vaccine and Candida antigen | Human | Higher rates of clearance using MMR and BCG than Candida; all safe | [93] |
Therapy | Study Type | Outcomes | Reference |
---|---|---|---|
BCG vaccine | Human | 47% protection; decrease in lesion size | [103] |
Human | Decreased risk of progression to osteomyelitis | [104] | |
Human | No significant link | [105] |
Therapy | Study Type | Outcomes | Reference |
---|---|---|---|
BCG vaccine | Human | Decreased risk of disease; increased disease-free period | [107] |
Human | Decrease in severity | [108] | |
MIP vaccine | Human | Reduced bacillary load; enhanced treatment outcomes | [111] |
LepVax subunit vaccine | Human | Safe; reduced risk of neuropathy | [112] |
Therapy | Study Type | Outcomes | Reference |
---|---|---|---|
Live L. major parasites | Human | Up to 90% protection; unsafe | [119] |
Leishvaccine (whole-killed L. amazonensis) | Human | Reduced CL incidence | [122] |
Centrin-deleted Leishmania | Animal | Immunized mice had no visible lesions following challenge with L. major-infected sandflies. | [119] |
LEISH-F3 | Human (phase 1) | Induced strong immune responses against VL | [124] |
gp63 | Animal | Protected against L. major | [125] |
Animal | Protected against L. mexicana | [126] | |
ChAd63-KH (KMP-11 and HASB) | Human (phase 1) | Safe; induced robust CD8+ T cell responses in 100% of subjects | [118] |
Human (phase 2a) | Induced robust immune responses; minimal adverse reactions; 30.4% experienced >90% improvement; 21.7% experienced partial improvement | [127] | |
HisAK70 (H2A, H2B, H3, H4, A2, KMP11, and HSP70) | Animal | Induced robust immune responses, including higher iNOS/arginase activity, IFN-γ/IL-10, IFN-γ/IL-4, and GM-CSF/IL-10 ratios | [128] |
LeishDNAVax (naked multi-epitope DNA vaccine) | Animal | Induced T-cell-based immunity and conferred protective effects against infection | [129] |
RNA vaccine | Animal | Protected against challenge with L. donovani | [132] |
Therapy | Study Type | Outcomes | Reference |
---|---|---|---|
MVA | Human (phase 2) | One high dose is superior to one standard dose but inferior to two standard doses. | [138] |
MVA | Human (phase 1) | Similar safety and immunogenicity profiles in both healthy and AD populations | [139] |
IMVAMUNE | Human | Safe, well tolerated, and elicited strong immune responses; standard schedule elicited greater antibody titers | [140] |
MVA vs. ACAM2000 | Human (phase 3) | MVA induced higher neutralizing antibody titers and was associated with fewer severe adverse events. | [141] |
CJ-50300 | Human (phase 3) | 95.0% exhibited cutaneous “take” reactions and 88.5% demonstrated humoral immunogenicity; 95.9% reported vaccine-related adverse events; no serious reactions. | [142] |
ACAM2000 | Human | Linked to a case of mother-to-child transmission | [146] |
JYNNEOS | Animal | No evidence of fetal malformations or developmental delays | [148] |
Therapy | Study Type | Outcomes | Reference |
---|---|---|---|
Tian Tan(first generation) | Human | Provided partial protection against mpox for over 42 years | [152] |
MVA-BN/JYNNEOS(third generation) | Human | 78% effectiveness in preventing symptomatic mpox 14 days after pre-exposure immunization | [154] |
Human | 88.8% effectiveness when used for post-exposure prophylaxis | [155] | |
4pox DNA vaccine | Animal | Comparable protection to ACAM2000 and MVA | [157,158] |
Multivalent mRNA vaccine | Animal | Induced T-cell responses and protected against vaccinia virus | [159] |
Protein-based subunit vaccines | Animal | Demonstrated some efficacy in protecting against mpox | [160] |
Therapy | Study Type | Outcomes | Reference |
---|---|---|---|
Inactivated EV-A71 vaccine | Human (phase 3) | 97.4% efficacy against HFMD | [163] |
Human (phase 3) | 94.8% efficacy against HFMD; 100% effective in preventing hospitalization and neurological complications | [164] | |
Human (phase 3) | Overall efficacy of 94.7% for two years | [165] | |
Human (phase 4) | 89.7% overall effectiveness over a 14-month follow-up | [166] | |
Bivalent (CVA6, CVA10) | Animal | Induced high levels of IgG and neutralizing antibodies; passive transfer of antisera from vaccinated mice to recipient mice potently protected recipient mice against CVA6 and CVA10 challenge | [168] |
Trivalent (EV71, CVA6, CVA16) | Animal | Provided full protection from lethal challenge against EV71 and CVA16 | [169] |
Trivalent (CVA6, CVA10, CVA16) | Animal | Induced neutralizing antibody and cell-mediated immune responses | [170] |
Tetravalent (EVA71, CVA6, CVA10, CVA16) | Animal | Elicited antigen-specific and long-lasting serum antibody responses; passively transferred vaccine-immunized sera conferred efficient protection against single or mixed infections | [171] |
Therapy | Study Type | Outcomes | Reference |
---|---|---|---|
Trivalent (capsular polysaccharides Ia, Ib, III) | Human (phase 1b/2) | Safe; induced serotype-specific antibody production in women and higher antibody concentrations in infants | [180] |
Human (phase 2) | Safe; induced 8–16-fold increase in IgG concentrations | [181] | |
Human (phase 2) | Serotype-specific IgG geometric mean concentrations were 13–23-fold higher in vaccine vs. placebo recipients on day 31 and persisted until postpartum day 90. Antibody transfer ratios were 0.62–0.82. | [182] | |
Human | Immunogenic for all serotypes; well tolerated; antibody transfer ratios of 0.66–0.79 | [183] | |
Human (phase 2) | Elicited functional antibodies that were placentally transferred | [184] | |
Human (phase 2) | A second dose administered 4–6 years after the first was immunogenic, with a favorable safety profile. | [185] | |
Human (phase 2) | Lower antibody responses and reduced antibody transfer to infants in HIV-infected pregnant women | [186] | |
Hexavalent (Ia, Ib, II through V) | Human (phase 1/2) | Well tolerated; elicited robust immune responses | [187] |
Human (phase 2) | Safe; produced serotype-specific anti-CPS antibodies; antibody transfer ratios were 0.4–1.3. 57–97% of infants developed antibodies associated with a reduced risk of disease | [188] | |
Trivalent vs. hexavalent | Human | The trivalent and hexavalent conjugate vaccines have efficacies of 61.2% and 91.4%, respectively, for preventing STSS from GBS. | [176] |
GBS-NN (AlphaC and Rib) | Human (phase 1) | Well tolerated; highly immunogenic. Antibody levels remained elevated for up to one year. | [189] |
SL/pVAX1-sip | Animal | Safe and effective in tilapias; induced protective immune responses without genomic integration | [190] |
GBS CPS III-TT conjugate vaccine | Human (phase 2) | Significantly delayed acquisition of vaginal and rectal GBS III colonization | [191] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goh, E.; Chavatte, J.-M.; Lin, R.T.P.; Ng, L.F.P.; Rénia, L.; Oon, H.H. Vaccines in Dermatology—Present and Future: A Review. Vaccines 2025, 13, 125. https://doi.org/10.3390/vaccines13020125
Goh E, Chavatte J-M, Lin RTP, Ng LFP, Rénia L, Oon HH. Vaccines in Dermatology—Present and Future: A Review. Vaccines. 2025; 13(2):125. https://doi.org/10.3390/vaccines13020125
Chicago/Turabian StyleGoh, Eyan, Jean-Marc Chavatte, Raymond T. P. Lin, Lisa F. P. Ng, Laurent Rénia, and Hazel H. Oon. 2025. "Vaccines in Dermatology—Present and Future: A Review" Vaccines 13, no. 2: 125. https://doi.org/10.3390/vaccines13020125
APA StyleGoh, E., Chavatte, J.-M., Lin, R. T. P., Ng, L. F. P., Rénia, L., & Oon, H. H. (2025). Vaccines in Dermatology—Present and Future: A Review. Vaccines, 13(2), 125. https://doi.org/10.3390/vaccines13020125