Immunoprotection Provided by Salivary and Intestinal Protein-Based Antigens Against the Ixodid Tick Amblyomma sculptum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Ticks and Ethical Statement
2.2. Vaccine Formulations and Experimental Groups
2.3. Immunization of the Experimental Groups
2.4. Behavioral Analysis and Immunobiological Safety
2.5. Phenotypic Profile of the Lymphocyte Populations
2.6. Humoral Response
2.7. Tick Challenge and Assessment of Efficacy
2.8. Statistical Analysis
3. Results
3.1. Immunobiological Safety and Harm Analysis
3.2. Leukocyte Immunophenotyping
3.3. Humoral Response
3.4. Tick Challenge on Immunized Mice
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Estrada-Peña, A.; Guglielmone, A.A.; Mangold, A.J. The Distribution and Ecological “preferences” of the Tick Amblyomma Cajennense (Acari: Ixodidae), an Ectoparasite of Humans and Other Mammals in the Americas. Ann. Trop. Med. Parasitol. 2004, 98, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Guglielmone, A.A.; Beati, L.; Barros-Battesti, D.M.; Labruna, M.B.; Nava, S.; Venzal, J.M.; Mangold, A.J.; Szabó, M.P.J.; Martins, J.R.; González-Acuña, D.; et al. Ticks (Ixodidae) on Humans in South America. Exp. Appl. Acarol. 2006, 40, 83–100. [Google Scholar] [CrossRef] [PubMed]
- Martins, T.F.; Barbieri, A.R.M.; Costa, F.B.; Terassini, F.A.; Camargo, L.M.A.; Peterka, C.R.L.; De, C.; Pacheco, R.; Dias, R.A.; Nunes, P.H.; et al. Geographical Distribution of Amblyomma Cajennense (Sensu Lato) Ticks (Parasitiformes: Ixodidae) in Brazil, with Description of the Nymph of A. Cajennense (Sensu Stricto). Parasit. Vectors 2016, 9, 186. [Google Scholar] [CrossRef] [PubMed]
- Szabó, M.P.J.; Martins, T.F.; Barbieri, A.R.M.; Costa, F.B.; Soares, H.S.; Tolesano-Pascoli, G.V.; Torga, K.; Saraiva, D.G.; Ramos, V.D.N.; Osava, C.F.; et al. Ticks Biting Humans in the Brazilian Savannah: Attachment Sites and Exposure Risk in Relation to Species, Life Stage and Season. Ticks Tick-Borne Dis. 2020, 11, 101328. [Google Scholar] [CrossRef] [PubMed]
- Labruna, M.B.; Krawczak, F.S.; Gerardi, M.; Binder, L.C.; Barbieri, A.R.M.; Paz, G.F.; Rodrigues, D.S.; Araújo, R.N.; Bernardes, M.L.; Leite, R.C. Isolation of Rickettsia Rickettsii from the Tick Amblyomma Sculptum from a Brazilian Spotted Fever-Endemic Area in the Pampulha Lake Region, Southeastern Brazil. Vet. Parasitol. Reg. Stud. Rep. 2017, 8, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Szabó, M.P.J.; Pinter, A.; Labruna, M.B. Ecology, Biology and Distribution of Spotted-Fever Tick Vectors in Brazil. Front. Cell. Infect. Microbiol. 2013, 3, 27. [Google Scholar] [CrossRef]
- De Paula, L.G.F.; Do Nascimento, R.M.; Franco, A.D.O.; Szabó, M.P.J.; Labruna, M.B.; Monteiro, C.; Krawczak, F.D.S. Seasonal Dynamics of Amblyomma Sculptum: A Review. Parasit. Vectors 2022, 15, 193. [Google Scholar] [CrossRef]
- Gerardi, M.; Ramírez-Hernández, A.; Binder, L.C.; Krawczak, F.S.; Gregori, F.; Labruna, M.B. Comparative Susceptibility of Different Populations of Amblyomma Sculptum to Rickettsia Rickettsii. Front. Physiol. 2019, 10, 653. [Google Scholar] [CrossRef] [PubMed]
- Karasek, I.; Butler, C.; Baynes, R.; Werners, A. A Review on the Treatment and Control of Ectoparasite Infestations in Equids. J. Vet. Pharmacol. Ther. 2020, 43, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Labruna, M.B.; Leite, R.C.; Gobesso, A.A.D.O.; Gennari, S.M.; Kasai, N. Controle estratégico do carrapato Amblyomma cajennense em eqüinos. Ciênc. Rural 2004, 34, 195–200. [Google Scholar] [CrossRef]
- Welsh, J.A.; Braun, H.; Brown, N.; Um, C.; Ehret, K.; Figueroa, J.; Boyd Barr, D. Production-Related Contaminants (Pesticides, Antibiotics and Hormones) in Organic and Conventionally Produced Milk Samples Sold in the USA. Public Health Nutr. 2019, 22, 2972–2980. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, E.R.N.; Carvalho, S.F.; Dias, S.A.; Santos, R.A.; Tavares, M.A.; Neves, L.C.; Paula, W.V.D.F.; Pádua, G.T.; De Lima, N.J.; Paludo, R.L.D.R.; et al. Susceptibility of Amblyomma Sculptum, Vector of Rickettsia Rickettsii, Ticks from a National Park and an Experimental Farm to Different Synthetic Acaricides. Pathogens 2023, 12, 1304. [Google Scholar] [CrossRef]
- Souza Freitas, E.D.P.E.; Zapata, M.T.A.G.; Fernandes, F.D.F. Monitoring of Resistance or Susceptibility of Adults and Larvae of Amblyomma Cajennense (Acari: Ixodidae) to Synthetic Acaricides in Goiás, Brazil. Exp. Appl. Acarol. 2011, 53, 189–202. [Google Scholar] [CrossRef]
- Rodríguez-Valle, M.; Taoufik, A.; Valdés, M.; Montero, C.; Hassan, I.; Hassan, S.M.; Jongejan, F.; De La Fuente, J. Efficacy of Rhipicephalus (Boophilus) Microplus Bm86 against Hyalomma Dromedarii and Amblyomma Cajennense Tick Infestations in Camels and Cattle. Vaccine 2012, 30, 3453–3458. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Mallon, A.; Encinosa Guzmán, P.E.; Bello Soto, Y.; Rosales Perdomo, K.; Montero Espinosa, C.; Vargas, M.; Estrada García, M.P. A Chemical Conjugate of the Tick P0 Peptide Is Efficacious against Amblyomma Mixtum. Transbound. Emerg. Dis. 2020, 67, 175–177. [Google Scholar] [CrossRef] [PubMed]
- Nassar, M.; Martins, L.A.; De Assis, J.B.; Esteves, E.; Sá-Nunes, A.; Labruna, M.B.; Daffre, S.; Fogaça, A.C. The Survival of Amblyomma Sculptum Ticks upon Blood-Feeding Depends on the Expression of an Inhibitor of Apoptosis Protein. Parasit. Vectors 2023, 16, 96. [Google Scholar] [CrossRef]
- Costa, G.C.A.; Ribeiro, I.C.T.; Melo-Junior, O.; Gontijo, N.F.; Sant’Anna, M.R.V.; Pereira, M.H.; Pessoa, G.C.D.; Koerich, L.B.; Oliveira, F.; Valenzuela, J.G.; et al. Amblyomma Sculptum Salivary Protease Inhibitors as Potential Anti-Tick Vaccines. Front. Immunol. 2021, 11, 611104. [Google Scholar] [CrossRef] [PubMed]
- Costa, G.C.A.; Ribeiro, I.C.T.; Giunchetti, R.C.; Gontijo, N.F.; Sant’Anna, M.R.V.; Pereira, M.H.; Pessoa, G.C.D.; Koerich, L.B.; Oliveira, F.; Valenzuela, J.G.; et al. Gut Membrane Proteins as Candidate Antigens for Immunization of Mice against the Tick Amblyomma Sculptum. Vaccine 2024, 42, 126141. [Google Scholar] [CrossRef]
- Wharton, R.H. Tick-Borne Livestock Diseases and Their Vectors. 5. Acaricide Resistance and Alternative Methods of Tick Control. World Anim. Rev. 1976, 20, 8–15. [Google Scholar]
- Jackson, L.A.; Opdebeeck, J.P. Humoral Immune Responses of Hereford Cattle Vaccinated with Midgut Antigens of the Cattle Tick, Boophilus Microplus. Parasite Immunol. 1990, 12, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Kemp, D.H.; Pearson, R.D.; Gough, J.M.; Willadsen, P. Vaccination against Boophilus Microplus: Localization of Antigens on Tick Gut Cells and Their Interaction with the Host Immune System. Exp. Appl. Acarol. 1989, 7, 43–58. [Google Scholar] [CrossRef]
- Kemp, D.H.; Agbede, R.I.S.; Johnston, L.A.Y.; Gough, J.M. Immunization of Cattle against Boophilus Microplus Using Extracts Derived from Adult Female Ticks: Feeding and Survival of the Parasite on Vaccinated Cattle. Int. J. Parasitol. 1986, 16, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.Y.M.; Opdebeeck, J.P. Protective Efficacy of Antigens Solubilized from Gut Membranes of the Cattle Tick, Boophilus Microplus. Immunology 1989, 66, 149–155. [Google Scholar]
- Bouchard, K.R.; Wikel, S.K. Care, Maintenance, and Experimental Infestation of Ticks in the Laboratory Setting. In Biology of Disease Vectors; Academic Press: Marquardt, WC, USA, 2005; pp. 705–712. [Google Scholar]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, A.D.A.R.; Garcia, M.V.; Szabó, M.P.J.; Barros, J.C.; Andreotti, R. Formula to Evaluate Efficacy of Vaccines and Systemic Substances against Three-Host Ticks. Int. J. Parasitol. 2015, 45, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Barros, V.C.; Assumpção, J.G.; Cadete, A.M.; Santos, V.C.; Cavalcante, R.R.; Araújo, R.N.; Pereira, M.H.; Gontijo, N.F. The Role of Salivary and Intestinal Complement System Inhibitors in the Midgut Protection of Triatomines and Mosquitoes. PLoS ONE 2009, 4, e6047. [Google Scholar] [CrossRef] [PubMed]
- Khattab, A.; Barroso, M.; Miettinen, T.; Meri, S. Anopheles Midgut Epithelium Evades Human Complement Activity by Capturing Factor H from the Blood Meal. PLoS Negl. Trop. Dis. 2015, 9, e0003513. [Google Scholar] [CrossRef]
- Lindblad, E.B. Aluminium Adjuvants—In Retrospect and Prospect. Vaccine 2004, 22, 3658–3668. [Google Scholar] [CrossRef]
- Cunha, R.C.; Saimo-Kahwa, M.; Valério Garcia, M.; Santos, F.D.S.; Samuel, E.; Ann, N.; Ikwap, K.; Julie Akwongo, C.; Leivas Leite, F.P.; Andreotti, R. RA92A Recombinant Protein as Immunogen to Protect Cattle against Tick Challenge in Brazil and Uganda. Biosci. J. 2021, 37, e37068. [Google Scholar] [CrossRef]
- Kitsou, C.; Fikrig, E.; Pal, U. Tick Host Immunity: Vector Immunomodulation and Acquired Tick Resistance. Trends Immunol. 2021, 42, 554–574. [Google Scholar] [CrossRef] [PubMed]
- Ndawula, C.; Tabor, A.E. Cocktail Anti-Tick Vaccines: The Unforeseen Constraints and Approaches toward Enhanced Efficacies. Vaccines 2020, 8, 457. [Google Scholar] [CrossRef]
- Schwarz, H.; Schmittner, M.; Duschl, A.; Horejs-Hoeck, J. Residual Endotoxin Contaminations in Recombinant Proteins Are Sufficient to Activate Human CD1c+ Dendritic Cells. PLoS ONE 2014, 9, e113840. [Google Scholar] [CrossRef]
- Faber, E.; Tshilwane, S.I.; Van Kleef, M.; Pretorius, A. The Impact of Escherichia Coli Contamination Products Present in Recombinant African Horse Sickness Virus Serotype 4 Proteins on the Innate and Humoral Immune Responses. Mol. Immunol. 2022, 152, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Garcia, G.R.; Maruyama, S.R.; Nelson, K.T.; Ribeiro, J.M.C.; Gardinassi, L.G.; Maia, A.A.M.; Ferreira, B.R.; Kooyman, F.N.J.; De Miranda Santos, I.K.F. Immune Recognition of Salivary Proteins from the Cattle Tick Rhipicephalus Microplus Differs According to the Genotype of the Bovine Host. Parasit. Vectors 2017, 10, 144. [Google Scholar] [CrossRef]
- Antunes, S.; Domingos, A. Tick Vaccines and Concealed versus Exposed Antigens. Pathogens 2023, 12, 374. [Google Scholar] [CrossRef] [PubMed]
- Canales, M.; Enríquez, A.; Ramos, E.; Cabrera, D.; Dandie, H.; Soto, A.; Falcón, V.; Rodríguez, M.; De La Fuente, J. Large-Scale Production in Pichia Pastoris of the Recombinant Vaccine GavacTM against Cattle Tick. Vaccine 1997, 15, 414–422. [Google Scholar] [CrossRef]
- Neuberger, M.S.; Rajewsky, K. Activation of Mouse Complement by Monoclonal Mouse Antibodies. Eur. J. Immunol. 1981, 11, 1012–1016. [Google Scholar] [CrossRef]
- Parthasarathi, B.C.; Kumar, B.; Bhure, S.K.; Sharma, A.K.; Manisha; Nagar, G.; Kumar, S.; Nandi, A.; Manjunathachar, H.V.; Chigure, G.M.; et al. Co-Immunization Efficacy of Recombinant Antigens against Rhipicephalus Microplus and Hyalomma anatolicumTick Infestations. Pathogens 2023, 12, 433. [Google Scholar] [CrossRef]
- Rodríguez-Durán, A.; Ullah, S.; Parizi, L.F.; Ali, A.; Da Silva Vaz Junior, I. Rabbits as Animal Models for Anti-Tick Vaccine Development: A Global Scenario. Pathogens 2023, 12, 1117. [Google Scholar] [CrossRef]
- Csordas, B.G.; Cunha, R.C.; Garcia, M.V.; da Silva, S.S.; Leite, F.L.; Andreotti, R. Molecular Characterization of the Recombinant Protein RmLTI-BmCG-LTB: Protective Immunity against Rhipicephalus (Boophilus) Microplus. PLoS ONE 2018, 13, e0191596. [Google Scholar] [CrossRef] [PubMed]
- De La Fuente, J.; Manzano-Roman, R.; Naranjo, V.; Kocan, K.M.; Zivkovic, Z.; Blouin, E.F.; Canales, M.; Almazán, C.; Galindo, R.C.; Step, D.L.; et al. Identification of Protective Antigens by RNA Interference for Control of the Lone Star Tick, Amblyomma Americanum. Vaccine 2010, 28, 1786–1795. [Google Scholar] [CrossRef] [PubMed]
- de la Fuente, J.; Contreras, M. Tick Vaccines: Current Status and Future Directions. Expert Rev. Vaccines 2015, 14, 1367–1376. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, F.D.; Miller, R.J.; Pérez De León, A.A. Cattle Tick Vaccines: Many Candidate Antigens, but Will a Commercially Viable Product Emerge? Int. J. Parasitol. 2012, 42, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Kasaija, P.D.; Contreras, M.; Kabi, F.; Mugerwa, S.; De La Fuente, J.D.L. Vaccination with Recombinant Subolesin Antigens Provides Cross-Tick Species Protection in Bos Indicus and Crossbred Cattle in Uganda. Vaccines 2020, 8, 319. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, S.R.; Garcia, G.R.; Teixeira, F.R.; Brandão, L.G.; Anderson, J.M.; Ribeiro, J.M.C.; Valenzuela, J.G.; Horackova, J.; Veríssimo, C.J.; Katiki, L.M.; et al. Mining a Differential Sialotranscriptome of Rhipicephalus Microplus Guides Antigen Discovery to Formulate a Vaccine That Reduces Tick Infestations. Parasit. Vectors 2017, 10, 206. [Google Scholar] [CrossRef] [PubMed]
- Luz, H.R.; Costa, F.B.; Benatti, H.R.; Ramos, V.N.; De, A.; Serpa, M.C.; Martins, T.F.; Acosta, I.C.L.; Ramirez, D.G.; Muñoz-Leal, S.; et al. Epidemiology of Capybara-Associated Brazilian Spotted Fever. PLoS Negl. Trop. Dis. 2019, 13, e0007734. [Google Scholar] [CrossRef]
- Szabó, M.P.J.; Queiroz, C.L.; Suzin, A.; Rodrigues, V.D.S.; Vieira, R.B.K.; Martins, M.M.; Rezende, L.M.; Sousa, A.C.P.; Ramos, V.D.N.; Muraro, F.M.; et al. Density and Behavior of Capybara (Hydrochoerus Hydrochaeris) Ticks (Acari: Ixodidae) Amblyomma Sculptum and Amblyomma Dubitatum with Notes on Rickettsia Bellii Infection: Assessing Human Exposure Risk. Ticks Tick-Borne Dis. 2024, 15, 102330. [Google Scholar] [CrossRef] [PubMed]
Groups | Ct (Control) | V1 (8.9Ch) | V2 (BtCh) | V3 (KnCh) | V4 (Kn8.9Ch) | V5 (KnBt8.9Ch) | |
---|---|---|---|---|---|---|---|
Parameter | |||||||
Larvae | |||||||
Fed (%) 1 | 98.0 | 66.4 | 71.6 | 82.6 | 93.8 | 97.5 | |
Molted (%) 2 | 95.0 | 13.3 | 16.1 | 17.0 | 50.0 | 59.9 | |
Mortality (%) 3 | 6.9 | 91.9 | 88.4 | 87.8 | 53.1 | 41.6 | |
Nymphs | |||||||
Fed (%) | 100 | 84.6 | 100 | 100 | 97.5 | 97.2 | |
Molted (%) | 100 | 9.1 | 16.3 | 17.8 | 87.2 | 97.1 | |
Mortality (%) | 0 | 92.3 | 83.7 | 82.2 | 15.0 | 5.6 | |
Females | |||||||
Fed (%) | 100 | 66.7 | 88.9 | 80.0 | 70.0 | 90.0 | |
Fertile (%) 4 | 100 | 50.0 | 87.5 | 87.5 | 85.7 | 55.6 | |
Unfed+infertile (%) 5 | 0 | 66.7 | 22.2 | 30.0 | 40.0 | 50.0 |
Groups 1 | RL | VL | RN | VN | RA | OA | FE | E (%) 2 |
---|---|---|---|---|---|---|---|---|
Ct (Control) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | - |
V1 (8.9Ch) | 0.68 | 0.14 | 0.85 | 0.09 | 0.67 | 0.55 | 0.26 | 99.9 |
V2 (BtCh) | 0.73 | 0.17 | 1.00 | 0.16 | 0.89 | 0.84 | 0.56 | 99.2 |
V3 (KnCh) | 0.84 | 0.18 | 1.00 | 0.18 | 0.80 | 0.51 | 0.76 | 99.2 |
V4 (Kn8.9Ch) | 0.96 | 0.53 | 0.98 | 0.87 | 0.70 | 0.72 | 0.38 | 91.7 |
V5 (KnBt8.9Ch) | 0.99 | 0.63 | 0.97 | 0.97 | 0.90 | 0.46 | 0.75 | 81.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Natividade, U.A.; Abreu, J.F.; Ribeiro, I.C.T.; Pereira Filho, A.A.; Silva, A.V.; Ribeiro, H.S.; Giunchetti, R.C.; Sant’Anna, M.R.V.; Gontijo, N.F.; Pereira, M.H.; et al. Immunoprotection Provided by Salivary and Intestinal Protein-Based Antigens Against the Ixodid Tick Amblyomma sculptum. Vaccines 2025, 13, 136. https://doi.org/10.3390/vaccines13020136
Natividade UA, Abreu JF, Ribeiro ICT, Pereira Filho AA, Silva AV, Ribeiro HS, Giunchetti RC, Sant’Anna MRV, Gontijo NF, Pereira MH, et al. Immunoprotection Provided by Salivary and Intestinal Protein-Based Antigens Against the Ixodid Tick Amblyomma sculptum. Vaccines. 2025; 13(2):136. https://doi.org/10.3390/vaccines13020136
Chicago/Turabian StyleNatividade, Ulisses A., Jessica F. Abreu, Izabela C. T. Ribeiro, Adalberto A. Pereira Filho, Augusto V. Silva, Helen S. Ribeiro, Rodolfo C. Giunchetti, Mauricio R. V. Sant’Anna, Nelder F. Gontijo, Marcos H. Pereira, and et al. 2025. "Immunoprotection Provided by Salivary and Intestinal Protein-Based Antigens Against the Ixodid Tick Amblyomma sculptum" Vaccines 13, no. 2: 136. https://doi.org/10.3390/vaccines13020136
APA StyleNatividade, U. A., Abreu, J. F., Ribeiro, I. C. T., Pereira Filho, A. A., Silva, A. V., Ribeiro, H. S., Giunchetti, R. C., Sant’Anna, M. R. V., Gontijo, N. F., Pereira, M. H., & Araujo, R. N. (2025). Immunoprotection Provided by Salivary and Intestinal Protein-Based Antigens Against the Ixodid Tick Amblyomma sculptum. Vaccines, 13(2), 136. https://doi.org/10.3390/vaccines13020136