Dengue Vaccination: A Practical Guide for Clinicians
Abstract
:1. Introduction
2. Virology of Dengue
3. Clinical Course and Management of Dengue
4. Efficacy and Safety of Dengue Vaccination in Adults
Vaccine | Manufacturer | Vaccine Type | Use and Administration | Author (Year) [Ref] |
---|---|---|---|---|
Dengvaxia® * (Approved) | Sanofi Pasteur (Lyon, France) | Recombinant tetravalent, live-attenuated dengue vaccine, based on a yellow fever virus backbone, without any dengue non-structural proteins. More immunogenic and efficacious against DEN-3 and DEN-4 dengue serotypes than DEN-1 and DEN-2. Elicits cross-reactive antibodies, with non-neutralizing antibodies against DEN-1 and DEN-2. Risk of ADE of dengue infection in dengue-seronegative vaccinees but less risk in seropositive vaccinees | Indicated for secondary prevention in children and adults aged 6–45 years with test-confirmed previous dengue. Three subcutaneous 0.5 mL doses given 6 months apart | Capeding (2014) [41] Villar (2015) [42] Hadinegoro (2015) [43] Sridhar (2018) [44] |
Qdenga® (Approved) | Takeda (Tokyo, Japan) | Recombinant tetravalent, live-attenuated dengue vaccine, based on a DEN-2 backbone, with DEN-2 non-structural proteins. Greater immunity and efficacy against DEN-2 dengue serotype than for DEN-1, DEN-3, and DEN-4 | Indicated for children and adults aged 4 years and older, regardless of the presence or absence of prior dengue infection. Two subcutaneous 0.5 mL doses given 3 months apart | Biswal (2019) [45] Biswal (2020) [46] Tricou (2020) [47] |
Butantan-Dengue Vaccine (DV) ** (Pending registration) | Instituto Butantan (São Paulo, Brazil) | Recombinant tetravalent, live-attenuated chimeric dengue vaccine comprising four monovalent dengue virus components representing each dengue serotype. Each monovalent component contains all the structural and non-structural proteins of the dengue virus (except DEN-2 non-structural proteins). Should generate balanced immunity against all four dengue serotypes, but randomized trial data are available to support efficacy against DEN-1 and DEN-2 only | Efficacious in children and adults aged 2–59 years. Single subcutaneous 0.5 mL dose | Nivarthi (2021) [48] Kallas (2024) [49] Nogueira (2024) [50] |
5. Co-Administration, Duration of Vaccine Protection, and Interpretation of Diagnostic Tests Post-Vaccination
6. Recommendations for Dengue Vaccination
Patient Population | Guideline (Year) [Ref] | Recommendations |
---|---|---|
Children | World Health Organization (WHO) (2024) [76] | |
Children | U.S. Centers for Disease Control and Prevention (CDC) (2021) [78] |
|
Children and adults | World Health Organization (WHO) (2024) [76] |
|
Children and adults | European Medicines Agency (2022) [79] |
|
Child and adult travelers with significant dengue exposure risk | Swiss Society for Tropical and Travel Medicine (2024) [64] |
|
7. Future Directions
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Phuong, H.T.; Vy, N.H.T.; Thanh, N.T.L.; Tan, M.; de Bruin, E.; Koopmans, M.; Boni, M.F.; Clapham, H.E. Estimating the force of infection of four dengue serotypes from serological studies in two regions of Vietnam. PLoS Negl. Trop. Dis. 2024, 18, e0012568. [Google Scholar] [CrossRef]
- Shirin, T.; Muraduzzaman, A.K.M.; Alam, A.N.; Sultana, S.; Siddiqua, M.; Khan, M.H.; Akram, A.; Sharif, A.R.; Hossain, S.; Flora, M.S. Largest dengue outbreak of the decade with high fatality may be due to reemergence of DEN-3 serotype in Dhaka, Bangladesh, necessitating immediate public health attention. New Microbes New Infect. 2019, 29, 100511. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Dai, X. The global incidence and trends of three common flavivirus infections (Dengue, yellow fever, and Zika) from 2011 to 2021. Front. Microbiol. 2024, 15, 1458166. [Google Scholar] [CrossRef]
- Togami, E.; Chiew, M.; Lowbridge, C.; Biaukula, V.; Bell, L.; Yajima, A.; Eshofonie, A.; Saulo, D.; Hien, D.T.H.; Otsu, S.; et al. Epidemiology of dengue reported in the World Health Organization’s Western Pacific Region, 2013–2019. Western Pac. Surveill. Response J. 2023, 14, 1–16. [Google Scholar] [CrossRef]
- Yang, X.; Quam, M.B.M.; Zhang, T.; Sang, S. Global burden for dengue and the evolving pattern in the past 30 years. J. Travel Med. 2021, 28, taab146. [Google Scholar] [CrossRef]
- Romanello, M.; Walawender, M.; Hsu, S.C.; Moskeland, A.; Palmeiro-Silva, Y.; Scamman, D.; Ali, Z.; Ameli, N.; Angelova, D.; Ayeb-Karlsson, S.; et al. The 2024 report of the Lancet Countdown on health and climate change: Facing record-breaking threats from delayed action. Lancet 2024, 404, 1847–1896. [Google Scholar] [CrossRef] [PubMed]
- Damtew, Y.T.; Tong, M.; Varghese, B.M.; Anikeeva, O.; Hansen, A.; Dear, K.; Zhang, Y.; Morgan, G.; Driscoll, T.; Capon, T.; et al. Effects of high temperatures and heatwaves on dengue fever: A systematic review and meta-analysis. EBioMedicine 2023, 91, 104582. [Google Scholar] [CrossRef]
- Sohail, A.; Anders, K.L.; McGuinness, S.L.; Leder, K. The epidemiology of imported and locally acquired dengue in Australia, 2012–2022. J. Travel Med. 2024, 31, taae014. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.; Pyke, A.; Florian, P.; Moore, F.; Smoll, N.; Adegbija, O.; Khan, A.; Hasan, R.; Carroll, H.; Harris, R.R.; et al. Re-emergence of dengue virus in regional Queensland: 2019 dengue virus outbreak in Rockhampton, Central Queensland, Australia. Commun. Dis. Intell. 2021, 45, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Haider, N.; Hasan, M.N.; Onyango, J.; Asaduzzaman, M. Global landmark: 2023 marks the worst year for dengue cases with millions infected and thousands of deaths reported. IJID Reg. 2024, 13, 100459. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Dengue and Severe Dengue. Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed on 26 December 2024).
- Kayesh, M.E.H.; Nazneen, H.; Kohara, M.; Tsukiyama-Kohara, K. An effective pan-serotype dengue vaccine and enhanced control strategies could help in reducing the severe dengue burden in Bangladesh—A perspective. Front. Microbiol. 2024, 15, 1423044. [Google Scholar] [CrossRef] [PubMed]
- Gurgel-Goncalves, R.; Oliveira, W.K.; Croda, J. The greatest Dengue epidemic in Brazil: Surveillance, Prevention, and Control. Rev. Soc. Bras. Med. Trop. 2024, 57, e002032024. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Morales, A.J.; Lopez-Medina, E.; Arboleda, I.; Cardona-Ospina, J.A.; Castellanos, J.; Faccini-Martinez, A.A.; Gallagher, E.; Hanley, R.; Lopez, P.; Mattar, S.; et al. Cost of dengue in Colombia: A systematic review. PLoS Negl. Trop. Dis. 2024, 18, e0012718. [Google Scholar] [CrossRef] [PubMed]
- Marczell, K.; Garcia, E.; Roiz, J.; Sachdev, R.; Towle, P.; Shen, J.; Sruamsiri, R.; da Silva, B.M.; Hanley, R. The macroeconomic impact of a dengue outbreak: Case studies from Thailand and Brazil. PLoS Negl. Trop. Dis. 2024, 18, e0012201. [Google Scholar] [CrossRef] [PubMed]
- Paz-Bailey, G.; Adams, L.E.; Deen, J.; Anderson, K.B.; Katzelnick, L.C. Dengue. Lancet 2024, 403, 667–682. [Google Scholar] [CrossRef]
- Oliveira, L.; Itria, A.; Lima, E.C. Cost of illness and program of dengue: A systematic review. PLoS ONE 2019, 14, e0211401. [Google Scholar] [CrossRef] [PubMed]
- Hung, T.M.; Shepard, D.S.; Bettis, A.A.; Nguyen, H.A.; McBride, A.; Clapham, H.E.; Turner, H.C. Productivity costs from a dengue episode in Asia: A systematic literature review. BMC Infect. Dis. 2020, 20, 393. [Google Scholar] [CrossRef]
- World Health, O. Dengue vaccine: WHO position paper, July 2016—Recommendations. Vaccine 2017, 35, 1200–1201. [Google Scholar] [CrossRef] [PubMed]
- Wahab, A.; Laksanawati, I.S.; Padmawati, R.S.; Mulyadi, A.W.E.; Triadmajani, W.; Thobari, J.A. Knowledge, attitude, and practice regarding dengue vaccine: A baseline study of community members and health providers in Indonesia. Clin. Exp. Pediatr. 2024. [Google Scholar] [CrossRef]
- Shafie, A.A.; Moreira, E.D., Jr.; Di Pasquale, A.; Demuth, D.; Yin, J.Y.S. Knowledge, Attitudes and Practices toward Dengue Fever, Vector Control, and Vaccine Acceptance Among the General Population in Countries from Latin America and Asia Pacific: A Cross-Sectional Study (GEMKAP). Vaccines 2023, 11, 575. [Google Scholar] [CrossRef]
- Knyazhanskaya, E.; Morais, M.C.; Choi, K.H. Flavivirus enzymes and their inhibitors. Enzymes 2021, 49, 265–303. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.G., Jr.; Atyeo, C.; Loos, C.; Montoya, M.; Roy, V.; Bos, S.; Narvekar, P.; Singh, T.; Katzelnick, L.C.; Kuan, G.; et al. Antibody Fc characteristics and effector functions correlate with protection from symptomatic dengue virus type 3 infection. Sci. Transl. Med. 2022, 14, eabm3151. [Google Scholar] [CrossRef] [PubMed]
- Sabin, A.B. Research on dengue during World War II. Am. J. Trop. Med. Hyg. 1952, 1, 30–50. [Google Scholar] [CrossRef] [PubMed]
- Montoya, M.; Gresh, L.; Mercado, J.C.; Williams, K.L.; Vargas, M.J.; Gutierrez, G.; Kuan, G.; Gordon, A.; Balmaseda, A.; Harris, E. Symptomatic versus inapparent outcome in repeat dengue virus infections is influenced by the time interval between infections and study year. PLoS Negl. Trop. Dis. 2013, 7, e2357. [Google Scholar] [CrossRef] [PubMed]
- Katzelnick, L.C.; Gresh, L.; Halloran, M.E.; Mercado, J.C.; Kuan, G.; Gordon, A.; Balmaseda, A.; Harris, E. Antibody-dependent enhancement of severe dengue disease in humans. Science 2017, 358, 929–932. [Google Scholar] [CrossRef]
- Halstead, S.B.; Mahalingam, S.; Marovich, M.A.; Ubol, S.; Mosser, D.M. Intrinsic antibody-dependent enhancement of microbial infection in macrophages: Disease regulation by immune complexes. Lancet Infect. Dis. 2010, 10, 712–722. [Google Scholar] [CrossRef]
- O’Driscoll, M.; Buddhari, D.; Huang, A.T.; Waickman, A.; Kaewhirun, S.; Iamsirithaworn, S.; Khampaen, D.; Farmer, A.; Fernandez, S.; Rodriguez-Barraquer, I.; et al. Maternally derived antibody titer dynamics and risk of hospitalized infant dengue disease. Proc. Natl. Acad. Sci. USA 2023, 120, e2308221120. [Google Scholar] [CrossRef]
- Tsai, J.J.; Chang, K.; Chen, C.H.; Liao, C.L.; Chen, L.J.; Tsai, Y.Y.; Tsai, C.Y.; Lin, P.C.; Hsu, M.C.; Liu, L.T. Dengue virus serotype did not contribute to clinical severity or mortality in Taiwan’s largest dengue outbreak in 2015. Eur. J. Med. Res. 2023, 28, 482. [Google Scholar] [CrossRef]
- See, K.C. Dengue-Associated Hemophagocytic Lymphohistiocytosis: A Narrative Review of Its Identification and Treatment. Pathogens 2024, 13, 332. [Google Scholar] [CrossRef] [PubMed]
- Ayala-Nunez, N.V.; Hoornweg, T.E.; van de Pol, D.P.; Sjollema, K.A.; Flipse, J.; van der Schaar, H.M.; Smit, J.M. How antibodies alter the cell entry pathway of dengue virus particles in macrophages. Sci. Rep. 2016, 6, 28768. [Google Scholar] [CrossRef] [PubMed]
- Belmont, L.; Contreras, M.; Cartwright-Acar, C.H.; Marceau, C.D.; Agrawal, A.; Levoir, L.M.; Lubow, J.; Goo, L. Functional genomics screens reveal a role for TBC1D24 and SV2B in antibody-dependent enhancement of dengue virus infection. J. Virol. 2024, 98, e0158224. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.Y.Y.; Low, J.Z.H.; Gan, E.S.; Ong, E.Z.; Zhang, S.L.; Tan, H.C.; Chai, X.; Ghosh, S.; Ooi, E.E.; Chan, K.R. Antibody-Dependent Dengue Virus Entry Modulates Cell Intrinsic Responses for Enhanced Infection. mSphere 2019, 4, e00528-19. [Google Scholar] [CrossRef] [PubMed]
- Sharp, T.M.; Fischer, M.; Munoz-Jordan, J.L.; Paz-Bailey, G.; Staples, J.E.; Gregory, C.J.; Waterman, S.H. Dengue and Zika Virus Diagnostic Testing for Patients with a Clinically Compatible Illness and Risk for Infection with Both Viruses. MMWR Recomm. Rep. 2019, 68, 1–10. [Google Scholar] [CrossRef]
- World Health Organization—Special Programme for Research, Training in Tropical Diseases; World Health Organization—Department of Control of Neglected Tropical Diseases; World Health Organization—Epidemic, and Pandemic Alert. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Sabin, A.B.; Schlesinger, R.W. Production of Immunity to Dengue with Virus Modified by Propagation in Mice. Science 1945, 101, 640–642. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.J.; Roehrig, J.T. New mouse model for dengue virus vaccine testing. J. Virol. 1999, 73, 783–786. [Google Scholar] [CrossRef] [PubMed]
- Larsen, C.P.; Whitehead, S.S.; Durbin, A.P. Dengue human infection models to advance dengue vaccine development. Vaccine 2015, 33, 7075–7082. [Google Scholar] [CrossRef] [PubMed]
- Pierce, K.K.; Durbin, A.P.; Walsh, M.R.; Carmolli, M.; Sabundayo, B.P.; Dickson, D.M.; Diehl, S.A.; Whitehead, S.S.; Kirkpatrick, B.D. TV005 dengue vaccine protects against dengue serotypes 2 and 3 in two controlled human infection studies. J. Clin. Investig. 2024, 134, e173328. [Google Scholar] [CrossRef] [PubMed]
- Coronel-Martinez, D.L.; Park, J.; Lopez-Medina, E.; Capeding, M.R.; Bonfanti, A.A.C.; Montalban, M.C.; Ramirez, I.; Gonzales, M.L.A.; Zambrano, B.; Dayan, G.; et al. Immunogenicity and safety of booster CYD-TDV dengue vaccine after alternative primary vaccination schedules in healthy individuals aged 9–50 years: A randomised, controlled, phase 2, non-inferiority study. Lancet Infect. Dis. 2022, 22, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Capeding, M.R.; Tran, N.H.; Hadinegoro, S.R.; Ismail, H.I.; Chotpitayasunondh, T.; Chua, M.N.; Luong, C.Q.; Rusmil, K.; Wirawan, D.N.; Nallusamy, R.; et al. Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: A phase 3, randomised, observer-masked, placebo-controlled trial. Lancet 2014, 384, 1358–1365. [Google Scholar] [CrossRef] [PubMed]
- Villar, L.; Dayan, G.H.; Arredondo-Garcia, J.L.; Rivera, D.M.; Cunha, R.; Deseda, C.; Reynales, H.; Costa, M.S.; Morales-Ramirez, J.O.; Carrasquilla, G.; et al. Efficacy of a tetravalent dengue vaccine in children in Latin America. N. Engl. J. Med. 2015, 372, 113–123. [Google Scholar] [CrossRef]
- Hadinegoro, S.R.; Arredondo-Garcia, J.L.; Capeding, M.R.; Deseda, C.; Chotpitayasunondh, T.; Dietze, R.; Muhammad Ismail, H.I.; Reynales, H.; Limkittikul, K.; Rivera-Medina, D.M.; et al. Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease. N. Engl. J. Med. 2015, 373, 1195–1206. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, S.; Luedtke, A.; Langevin, E.; Zhu, M.; Bonaparte, M.; Machabert, T.; Savarino, S.; Zambrano, B.; Moureau, A.; Khromava, A.; et al. Effect of Dengue Serostatus on Dengue Vaccine Safety and Efficacy. N. Engl. J. Med. 2018, 379, 327–340. [Google Scholar] [CrossRef]
- Biswal, S.; Reynales, H.; Saez-Llorens, X.; Lopez, P.; Borja-Tabora, C.; Kosalaraksa, P.; Sirivichayakul, C.; Watanaveeradej, V.; Rivera, L.; Espinoza, F.; et al. Efficacy of a Tetravalent Dengue Vaccine in Healthy Children and Adolescents. N. Engl. J. Med. 2019, 381, 2009–2019. [Google Scholar] [CrossRef] [PubMed]
- Biswal, S.; Borja-Tabora, C.; Martinez Vargas, L.; Velasquez, H.; Theresa Alera, M.; Sierra, V.; Johana Rodriguez-Arenales, E.; Yu, D.; Wickramasinghe, V.P.; Duarte Moreira, E., Jr.; et al. Efficacy of a tetravalent dengue vaccine in healthy children aged 4–16 years: A randomised, placebo-controlled, phase 3 trial. Lancet 2020, 395, 1423–1433. [Google Scholar] [CrossRef]
- Tricou, V.; Saez-Llorens, X.; Yu, D.; Rivera, L.; Jimeno, J.; Villarreal, A.C.; Dato, E.; Saldana de Suman, O.; Montenegro, N.; DeAntonio, R.; et al. Safety and immunogenicity of a tetravalent dengue vaccine in children aged 2–17 years: A randomised, placebo-controlled, phase 2 trial. Lancet 2020, 395, 1434–1443. [Google Scholar] [CrossRef]
- Nivarthi, U.K.; Swanstrom, J.; Delacruz, M.J.; Patel, B.; Durbin, A.P.; Whitehead, S.S.; Kirkpatrick, B.D.; Pierce, K.K.; Diehl, S.A.; Katzelnick, L.; et al. A tetravalent live attenuated dengue virus vaccine stimulates balanced immunity to multiple serotypes in humans. Nat. Commun. 2021, 12, 1102. [Google Scholar] [CrossRef]
- Kallas, E.G.; Cintra, M.A.T.; Moreira, J.A.; Patino, E.G.; Braga, P.E.; Tenorio, J.C.V.; Infante, V.; Palacios, R.; de Lacerda, M.V.G.; Batista Pereira, D.; et al. Live, Attenuated, Tetravalent Butantan-Dengue Vaccine in Children and Adults. N. Engl. J. Med. 2024, 390, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, M.L.; Cintra, M.A.T.; Moreira, J.A.; Patino, E.G.; Braga, P.E.; Tenorio, J.C.V.; de Oliveira Alves, L.B.; Infante, V.; Silveira, D.H.R.; de Lacerda, M.V.G.; et al. Efficacy and safety of Butantan-DV in participants aged 2–59 years through an extended follow-up: Results from a double-blind, randomised, placebo-controlled, phase 3, multicentre trial in Brazil. Lancet Infect. Dis. 2024, 24, 1234–1244. [Google Scholar] [CrossRef] [PubMed]
- Aynekulu Mersha, D.G.; van der Sterren, I.; van Leeuwen, L.P.M.; Langerak, T.; Hakim, M.S.; Martina, B.; van Lelyveld, S.F.L.; van Gorp, E.C.M. The role of antibody-dependent enhancement in dengue vaccination. Trop. Dis. Travel. Med. Vaccines 2024, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, V.; Arora, U.; Shukla, R.; Poddar, A.; Shanmugam, R.K.; White, L.J.; Mattocks, M.M.; Raut, R.; Perween, A.; Tyagi, P.; et al. A tetravalent virus-like particle vaccine designed to display domain III of dengue envelope proteins induces multi-serotype neutralizing antibodies in mice and macaques which confer protection against antibody dependent enhancement in AG129 mice. PLoS Negl. Trop. Dis. 2018, 12, e0006191. [Google Scholar] [CrossRef] [PubMed]
- Kirstein, J.; Douglas, W.; Thakur, M.; Boaz, M.; Papa, T.; Skipetrova, A.; Plennevaux, E. Immunogenicity of the CYD tetravalent dengue vaccine using an accelerated schedule: Randomised phase II study in US adults. BMC Infect. Dis. 2018, 18, 475. [Google Scholar] [CrossRef] [PubMed]
- Melo, F.I.R.; Morales, J.J.R.; De Los Santos, A.H.M.; Rivas, E.; Vigne, C.; Noriega, F. Immunogenicity and Safety of a Booster Injection of DTap-IPV//Hib (Pentaxim) Administered Concomitantly with Tetravalent Dengue Vaccine in Healthy Toddlers 15–18 Months of Age in Mexico: A Randomized Trial. Pediatr. Infect. Dis. J. 2017, 36, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Crevat, D.; Brion, J.D.; Gailhardou, S.; Laot, T.M.; Capeding, M.R. First Experience of Concomitant Vaccination Against Dengue and MMR in Toddlers. Pediatr. Infect. Dis. J. 2015, 34, 884–892. [Google Scholar] [CrossRef] [PubMed]
- Hassan, J.; Toh, T.H.; Sivapunniam, S.K.; Hasim, R.; Ghazali, N.F.; Sulaiman, S.; Koh, M.T.; Meyer, S.; Toh, M.L.; Zocchetti, C.; et al. Immunogenicity and Safety of a Tetravalent Dengue Vaccine Administered Concomitantly or Sequentially with Quadrivalent Human Papillomavirus Vaccine in Boys and Girls 9–13 Years of Age in Malaysia: A Phase IIIb, Randomized, Open-label Study. Pediatr. Infect. Dis. J. 2021, 40, 774–781. [Google Scholar] [CrossRef]
- Tricou, V.; Essink, B.; Ervin, J.E.; Turner, M.; Escudero, I.; Rauscher, M.; Brose, M.; Lefevre, I.; Borkowski, A.; Wallace, D. Immunogenicity and safety of concomitant and sequential administration of yellow fever YF-17D vaccine and tetravalent dengue vaccine candidate TAK-003: A phase 3 randomized, controlled study. PLoS Negl. Trop. Dis. 2023, 17, e0011124. [Google Scholar] [CrossRef] [PubMed]
- Tricou, V.; Eyre, S.; Ramjee, M.; Collini, P.; Mojares, Z.; Loeliger, E.; Mandaric, S.; Rauscher, M.; Brose, M.; Lefevre, I.; et al. A randomized phase 3 trial of the immunogenicity and safety of coadministration of a live-attenuated tetravalent dengue vaccine (TAK-003) and an inactivated hepatitis a (HAV) virus vaccine in a dengue non-endemic country. Vaccine 2023, 41, 1398–1407. [Google Scholar] [CrossRef] [PubMed]
- Vigne, C.; Dupuy, M.; Richetin, A.; Guy, B.; Jackson, N.; Bonaparte, M.; Hu, B.; Saville, M.; Chansinghakul, D.; Noriega, F.; et al. Integrated immunogenicity analysis of a tetravalent dengue vaccine up to 4 y after vaccination. Hum. Vaccin. Immunother. 2017, 13, 2004–2016. [Google Scholar] [CrossRef] [PubMed]
- Mandaric, S.; Friberg, H.; Saez-Llorens, X.; Borja-Tabora, C.; Biswal, S.; Escudero, I.; Faccin, A.; Gottardo, R.; Brose, M.; Roubinis, N.; et al. Long term T cell response and safety of a tetravalent dengue vaccine in healthy children. NPJ Vaccines 2024, 9, 192. [Google Scholar] [CrossRef] [PubMed]
- Tricou, V.; Yu, D.; Reynales, H.; Biswal, S.; Saez-Llorens, X.; Sirivichayakul, C.; Lopez, P.; Borja-Tabora, C.; Bravo, L.; Kosalaraksa, P.; et al. Long-term efficacy and safety of a tetravalent dengue vaccine (TAK-003): 4.5-year results from a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Glob. Health 2024, 12, e257–e270. [Google Scholar] [CrossRef]
- Plennevaux, E.; Moureau, A.; Arredondo-Garcia, J.L.; Villar, L.; Pitisuttithum, P.; Tran, N.H.; Bonaparte, M.; Chansinghakul, D.; Coronel, D.L.; L’Azou, M.; et al. Impact of Dengue Vaccination on Serological Diagnosis: Insights From Phase III Dengue Vaccine Efficacy Trials. Clin. Infect. Dis. 2018, 66, 1164–1172. [Google Scholar] [CrossRef] [PubMed]
- Low, J.G.; Oh, H.M.; Leo, Y.S.; Kalimuddin, S.; Wijaya, L.; Pang, J.; Lee, T.H.; Moss, K.J.; Brose, M.; Tricou, V. IgG, IgM, and Nonstructural Protein 1 Response Profiles after Receipt of Tetravalent Dengue Vaccine TAK-003 in a Phase 2 Randomized Controlled Trial. Am. J. Trop. Med. Hyg. 2024, 111, 102–106. [Google Scholar] [CrossRef]
- Eperon, G.; Veit, O.; Antonini, P.; Fehr, J.; Haller, S.; Hatz, C.; Landry, P.; Neumayr, A.; Niederer-Lohrer, A.; Schlagenhauf, P.; et al. Vaccination against dengue fever for travellers. Swiss Med. Wkly. 2024, 154, 3858. [Google Scholar] [CrossRef] [PubMed]
- Petri, E.; Biswal, S.; Lloyd, E.; Tricou, V.; Folschweiller, N. Early onset of protection of the TAK-003 dengue vaccine: Data from the DEN-301 clinical trial. Vaccine 2024, 42, 126309. [Google Scholar] [CrossRef] [PubMed]
- Macedo, J.V.L.; Junior, A.G.S.; Oliveira, M.D.L.; Andrade, C.A.S. Systematic review and meta-analysis: Assessing the accuracy of rapid immunochromatographic tests in dengue diagnosis. Diagn. Microbiol. Infect. Dis. 2024, 109, 116227. [Google Scholar] [CrossRef] [PubMed]
- See, K.C. Vaccination for the Prevention of Infection among Immunocompromised Patients: A Concise Review of Recent Systematic Reviews. Vaccines 2022, 10, 800. [Google Scholar] [CrossRef] [PubMed]
- Coronel-MartInez, D.L.; Park, J.; Lopez-Medina, E.; Capeding, M.R.; Cadena Bonfanti, A.A.; Montalban, M.C.; Ramirez, I.; Gonzales, M.L.A.; DiazGranados, C.A.; Zambrano, B.; et al. Immunogenicity and safety of simplified vaccination schedules for the CYD-TDV dengue vaccine in healthy individuals aged 9–50 years (CYD65): A randomised, controlled, phase 2, non-inferiority study. Lancet Infect. Dis. 2021, 21, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Saez-Llorens, X.; Tricou, V.; Yu, D.; Rivera, L.; Tuboi, S.; Garbes, P.; Borkowski, A.; Wallace, D. Safety and immunogenicity of one versus two doses of Takeda’s tetravalent dengue vaccine in children in Asia and Latin America: Interim results from a phase 2, randomised, placebo-controlled study. Lancet Infect. Dis. 2017, 17, 615–625. [Google Scholar] [CrossRef]
- Rosa, B.R.; Cunha, A.; Medronho, R.A. Efficacy, immunogenicity and safety of a recombinant tetravalent dengue vaccine (CYD-TDV) in children aged 2–17 years: Systematic review and meta-analysis. BMJ Open 2019, 9, e019368. [Google Scholar] [CrossRef]
- Flacco, M.E.; Bianconi, A.; Cioni, G.; Fiore, M.; Calo, G.L.; Imperiali, G.; Orazi, V.; Tiseo, M.; Troia, A.; Rosso, A.; et al. Immunogenicity, Safety and Efficacy of the Dengue Vaccine TAK-003: A Meta-Analysis. Vaccines 2024, 12, 770. [Google Scholar] [CrossRef] [PubMed]
- Rivera, L.; Biswal, S.; Saez-Llorens, X.; Reynales, H.; Lopez-Medina, E.; Borja-Tabora, C.; Bravo, L.; Sirivichayakul, C.; Kosalaraksa, P.; Martinez Vargas, L.; et al. Three-year Efficacy and Safety of Takeda’s Dengue Vaccine Candidate (TAK-003). Clin. Infect. Dis. 2022, 75, 107–117. [Google Scholar] [CrossRef]
- Borja-Tabora, C.; Fernando, L.; Lopez Medina, E.; Reynales, H.; Rivera, L.; Saez-Llorens, X.; Sirivichayakul, C.; Yu, D.; Folschweiller, N.; Moss, K.J.; et al. Immunogenicity, safety, and efficacy of a tetravalent dengue vaccine in children and adolescents: An analysis by age group. Clin. Infect. Dis. 2024, ciae369. [Google Scholar] [CrossRef]
- Phadungsombat, J.; Nakayama, E.E.; Shioda, T. Unraveling Dengue Virus Diversity in Asia: An Epidemiological Study through Genetic Sequences and Phylogenetic Analysis. Viruses 2024, 16, 1046. [Google Scholar] [CrossRef]
- Velasco, J.M.; Klungthong, C.; Chinnawirotpisan, P.; Diones, P.C.; Valderama, M.T.; Leonardia, S.; Manasatienkij, W.; Joonlasak, K.; Rodpradit, P.; Mateo, J.; et al. Genetic diversity of dengue virus circulating in the Philippines (2014–2019) and comparison with dengue vaccine strains. PLoS Negl. Trop. Dis. 2024, 18, e0012697. [Google Scholar] [CrossRef]
- World Health Organization. WHO Prequalifies New Dengue Vaccine. Available online: https://www.who.int/news/item/15-05-2024-who-prequalifies-new-dengue-vaccine (accessed on 26 December 2024).
- Freedman, D.O. A new dengue vaccine (TAK-003) now WHO recommended in endemic areas; what about travellers? J. Travel. Med. 2023, 30, taad132. [Google Scholar] [CrossRef] [PubMed]
- Paz-Bailey, G.; Adams, L.; Wong, J.M.; Poehling, K.A.; Chen, W.H.; McNally, V.; Atmar, R.L.; Waterman, S.H. Dengue Vaccine: Recommendations of the Advisory Committee on Immunization Practices, United States, 2021. MMWR Recomm. Rep. 2021, 70, 1–16. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Qdenga. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/qdenga (accessed on 26 December 2024).
- Walsh, M.R.; Alam, M.S.; Pierce, K.K.; Carmolli, M.; Alam, M.; Dickson, D.M.; Bak, D.M.; Afreen, S.; Nazib, F.; Golam, K.; et al. Safety and durable immunogenicity of the TV005 tetravalent dengue vaccine, across serotypes and age groups, in dengue-endemic Bangladesh: A randomised, controlled trial. Lancet Infect. Dis. 2024, 24, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Tu, H.A.; Nivarthi, U.K.; Graham, N.R.; Eisenhauer, P.; Delacruz, M.J.; Pierce, K.K.; Whitehead, S.S.; Boyson, J.E.; Botten, J.W.; Kirkpatrick, B.D.; et al. Stimulation of B Cell Immunity in Flavivirus-Naive Individuals by the Tetravalent Live Attenuated Dengue Vaccine TV003. Cell Rep. Med. 2020, 1, 100155. [Google Scholar] [CrossRef] [PubMed]
- Silveira, C.G.T.; Magnani, D.M.; Costa, P.R.; Avelino-Silva, V.I.; Ricciardi, M.J.; Timenetsky, M.; Goulart, R.; Correia, C.A.; Marmorato, M.P.; Ferrari, L.; et al. Plasmablast Expansion Following the Tetravalent, Live-Attenuated Dengue Vaccine Butantan-DV in DENV-Naive and DENV-Exposed Individuals in a Brazilian Cohort. Front. Immunol. 2022, 13, 908398. [Google Scholar] [CrossRef]
- Graham, N.; Eisenhauer, P.; Diehl, S.A.; Pierce, K.K.; Whitehead, S.S.; Durbin, A.P.; Kirkpatrick, B.D.; Sette, A.; Weiskopf, D.; Boyson, J.E.; et al. Rapid Induction and Maintenance of Virus-Specific CD8(+) T(EMRA) and CD4(+) T(EM) Cells Following Protective Vaccination Against Dengue Virus Challenge in Humans. Front. Immunol. 2020, 11, 479. [Google Scholar] [CrossRef] [PubMed]
- Lyke, K.E.; Chua, J.V.; Koren, M.; Friberg, H.; Gromowski, G.D.; Rapaka, R.R.; Waickman, A.T.; Joshi, S.; Strauss, K.; McCracken, M.K.; et al. Efficacy and immunogenicity following dengue virus-1 human challenge after a tetravalent prime-boost dengue vaccine regimen: An open-label, phase 1 trial. Lancet Infect. Dis. 2024, 24, 896–908. [Google Scholar] [CrossRef] [PubMed]
- Manocha, N.; Laubreton, D.; Robert, X.; Marvel, J.; Gueguen-Chaignon, V.; Gouet, P.; Kumar, P.; Khanna, M. Unveiling a Shield of Hope: A Novel Multiepitope-Based Immunogen for Cross-Serotype Cellular Defense against Dengue Virus. Vaccines 2024, 12, 316. [Google Scholar] [CrossRef] [PubMed]
- Miauton, A.; Audran, R.; Besson, J.; Maby-El Hajjami, H.; Karlen, M.; Warpelin-Decrausaz, L.; Sene, L.; Schaufelberger, S.; Faivre, V.; Faouzi, M.; et al. Safety and immunogenicity of a synthetic nanoparticle-based, T cell priming peptide vaccine against dengue in healthy adults in Switzerland: A double-blind, randomized, vehicle-controlled, phase 1 study. EBioMedicine 2024, 99, 104922. [Google Scholar] [CrossRef] [PubMed]
- Okoye, E.C.; Mitra, A.K.; Lomax, T.; Nunaley, C. Dengue Fever Epidemics and the Prospect of Vaccines: A Systematic Review and Meta-Analysis Using Clinical Trials in Children. Diseases 2024, 12, 32. [Google Scholar] [CrossRef] [PubMed]
- Lebeau, G.; Lagrave, A.; Ogire, E.; Grondin, L.; Seriacaroupin, S.; Moutoussamy, C.; Mavingui, P.; Hoarau, J.J.; Roche, M.; Krejbich-Trotot, P.; et al. Viral Toxin NS1 Implication in Dengue Pathogenesis Making It a Pivotal Target in Development of Efficient Vaccine. Vaccines 2021, 9, 946. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.N.; Ismail, N.S.M.; Alshahrani, M.Y.; Aboshanab, K.M. Multi-epitope peptide vaccines targeting dengue virus serotype 2 created via immunoinformatic analysis. Sci. Rep. 2024, 14, 17645. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.; Bhatnagar, S.; Kumari, K.; Mittal, N.; Sukhralia, S.; Gopirajan At, S.; Dhanaraj, P.S.; Lal, R. Highly conserved epitopes of DENV structural and non-structural proteins: Candidates for universal vaccine targets. Gene 2019, 695, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Martinez, D.R.; Metz, S.W.; Baric, R.S. Dengue Vaccines: The Promise and Pitfalls of Antibody-Mediated Protection. Cell Host Microbe 2021, 29, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Young, E.; Yount, B.; Pantoja, P.; Henein, S.; Meganck, R.M.; McBride, J.; Munt, J.E.; Baric, T.J.; Zhu, D.; Scobey, T.; et al. A live dengue virus vaccine carrying a chimeric envelope glycoprotein elicits dual DENV2-DENV4 serotype-specific immunity. Nat. Commun. 2023, 14, 1371. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Li, J.J.; Liu, T.; Brian, O.; Li, J. Infectious disease mRNA vaccines and a review on epitope prediction for vaccine design. Brief. Funct. Genom. 2021, 20, 289–303. [Google Scholar] [CrossRef]
- Thoresen, D.; Matsuda, K.; Urakami, A.; Ngwe Tun, M.M.; Nomura, T.; Moi, M.L.; Watanabe, Y.; Ishikawa, M.; Hau, T.T.T.; Yamamoto, H.; et al. A tetravalent dengue virus-like particle vaccine induces high levels of neutralizing antibodies and reduces dengue replication in non-human primates. J. Virol. 2024, 98, e0023924. [Google Scholar] [CrossRef] [PubMed]
- Rothen, D.A.; Dutta, S.K.; Krenger, P.S.; Vogt, A.S.; Lieknina, I.; Sobczak, J.M.; Osterhaus, A.; Mohsen, M.O.; Vogel, M.; Martina, B.; et al. Preclinical Evaluation of Novel Sterically Optimized VLP-Based Vaccines against All Four DENV Serotypes. Vaccines 2024, 12, 874. [Google Scholar] [CrossRef]
- Chen, Q.; Li, R.; Wu, B.; Zhang, X.; Zhang, H.; Chen, R. A tetravalent nanoparticle vaccine elicits a balanced and potent immune response against dengue viruses without inducing antibody-dependent enhancement. Front. Immunol. 2023, 14, 1193175. [Google Scholar] [CrossRef]
- Wollner, C.J.; Richner, M.; Hassert, M.A.; Pinto, A.K.; Brien, J.D.; Richner, J.M. A Dengue Virus Serotype 1 mRNA-LNP Vaccine Elicits Protective Immune Responses. J. Virol. 2021, 95, e02482-20. [Google Scholar] [CrossRef]
- Diaz-Quijano, F.A.; Siqueira de Carvalho, D.; Raboni, S.M.; Shimakura, S.E.; Maron de Mello, A.; Vieira da Costa-Ribeiro, M.C.; Silva, L.; da Cruz Magalhaes Buffon, M.; Cesario Pereira Maluf, E.M.; Graeff, G.; et al. Effectiveness of mass dengue vaccination with CYD-TDV (Dengvaxia(R)) in the state of Parana, Brazil: Integrating case-cohort and case-control designs. Lancet Reg. Health Am. 2024, 35, 100777. [Google Scholar] [CrossRef]
- Fox, T.; Sguassero, Y.; Chaplin, M.; Rose, W.; Doum, D.; Arevalo-Rodriguez, I.; Villanueva, G. Wolbachia-carrying Aedes mosquitoes for preventing dengue infection. Cochrane Database Syst. Rev. 2024, 4, CD015636. [Google Scholar] [CrossRef] [PubMed]
- Utarini, A.; Indriani, C.; Ahmad, R.A.; Tantowijoyo, W.; Arguni, E.; Ansari, M.R.; Supriyati, E.; Wardana, D.S.; Meitika, Y.; Ernesia, I.; et al. Efficacy of Wolbachia-Infected Mosquito Deployments for the Control of Dengue. N. Engl. J. Med. 2021, 384, 2177–2186. [Google Scholar] [CrossRef]
- Jearanaiwitayakul, T.; Sunintaboon, P.; Chawengkittikul, R.; Limthongkul, J.; Midoeng, P.; Chaisuwirat, P.; Warit, S.; Ubol, S. Whole inactivated dengue virus-loaded trimethyl chitosan nanoparticle-based vaccine: Immunogenic properties in ex vivo and in vivo models. Hum. Vaccin. Immunother. 2021, 17, 2793–2807. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.C.; Lin, L.; Martinez, L.J.; Ruck, R.C.; Eckels, K.H.; Collard, A.; De La Barrera, R.; Paolino, K.M.; Toussaint, J.F.; Lepine, E.; et al. Phase 1 Randomized Study of a Tetravalent Dengue Purified Inactivated Vaccine in Healthy Adults in the United States. Am. J. Trop. Med. Hyg. 2017, 96, 1325–1337. [Google Scholar] [CrossRef] [PubMed]
- Pinto, P.B.A.; Assis, M.L.; Vallochi, A.L.; Pacheco, A.R.; Lima, L.M.; Quaresma, K.R.L.; Pereira, B.A.S.; Costa, S.M.; Alves, A.M.B. T Cell Responses Induced by DNA Vaccines Based on the DENV2 E and NS1 Proteins in Mice: Importance in Protection and Immunodominant Epitope Identification. Front. Immunol. 2019, 10, 1522. [Google Scholar] [CrossRef]
- Lu, H.; Xu, X.F.; Gao, N.; Fan, D.Y.; Wang, J.; An, J. Preliminary evaluation of DNA vaccine candidates encoding dengue-2 prM/E and NS1: Their immunity and protective efficacy in mice. Mol. Immunol. 2013, 54, 109–114. [Google Scholar] [CrossRef]
- Durbin, A.P.; Pierce, K.K.; Kirkpatrick, B.D.; Grier, P.; Sabundayo, B.P.; He, H.; Sausser, M.; Russell, A.F.; Martin, J.; Hyatt, D.; et al. Immunogenicity and Safety of a Tetravalent Recombinant Subunit Dengue Vaccine in Adults Previously Vaccinated with a Live Attenuated Tetravalent Dengue Vaccine: Results of a Phase-I Randomized Clinical Trial. Am. J. Trop. Med. Hyg. 2020, 103, 855–863. [Google Scholar] [CrossRef] [PubMed]
- Normile, D. Tropical medicine. Surprising new dengue virus throws a spanner in disease control efforts. Science 2013, 342, 415. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
See, K.C. Dengue Vaccination: A Practical Guide for Clinicians. Vaccines 2025, 13, 145. https://doi.org/10.3390/vaccines13020145
See KC. Dengue Vaccination: A Practical Guide for Clinicians. Vaccines. 2025; 13(2):145. https://doi.org/10.3390/vaccines13020145
Chicago/Turabian StyleSee, Kay Choong. 2025. "Dengue Vaccination: A Practical Guide for Clinicians" Vaccines 13, no. 2: 145. https://doi.org/10.3390/vaccines13020145
APA StyleSee, K. C. (2025). Dengue Vaccination: A Practical Guide for Clinicians. Vaccines, 13(2), 145. https://doi.org/10.3390/vaccines13020145