Characterization and Protective Efficacy of a Salmonella Typhimurium ATCC 14028 sptP Mutant as a Live Attenuated Vaccine Candidate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Plasmids, and Primers
2.2. Construction of the sptP Mutant
2.3. Identification of the Biological Characteristics of ATCC14028ΔsptP In Vitro
2.4. The Ability of Bacteria to Invade Cells
2.5. Assessment of Bacterial Virulence
2.6. Histopathological Tests
2.7. Bacterial Invasion Ability Test
2.8. Immunoprotective Assessment of ATCC14028ΔsptP
2.9. Serum IgG Assay
2.10. Data Analysis
3. Results
3.1. Construction and Biological Characteristics of Mutant ATCC14028ΔsptP
3.2. Mutations in sptP Reduce Bacterial Invasion in Cells
3.3. ATCC14028ΔsptP Showed Reduced Virulence in Mice
3.4. ATCC14028ΔsptP Showed Fewer Pathological Changes than Wild-Type Strains
3.5. The Invasion Capacity of ATCC14028ΔsptP in Mouse Visceral Tissues Was Reduced Compared to the Wild-Type Strain
3.6. ATCC14028ΔsptP Protects Mice Against Wild-Type Salmonella Typhimurium
3.7. The ATCC14028ΔsptP Strain Induced an Immune Response Similar to That of the Wild-Type Strain
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Branchu, P.; Bawn, M.; Kingsley, R.A. Genome Variation and Molecular Epidemiology of Salmonella Enterica Serovar Typhimurium Pathovariants. Infect. Immun. 2018, 86, e00079-18. [Google Scholar] [CrossRef] [PubMed]
- Fàbrega, A.; Vila, J. Salmonella Enterica Serovar Typhimurium Skills to Succeed in the Host: Virulence and Regulation. Clin. Microbiol. Rev. 2013, 26, 308–341. [Google Scholar] [CrossRef]
- Broz, P.; Ohlson, M.B.; Monack, D.M. Innate Immune Response to Salmonella typhimurium, a Model Enteric Pathogen. Gut Microbes 2012, 3, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Ménard, S.; Lacroix-Lamandé, S.; Ehrhardt, K.; Yan, J.; Grassl, G.A.; Wiedemann, A. Cross-Talk Between the Intestinal Epithelium and Salmonella Typhimurium. Front. Microbiol. 2022, 13, 906238. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Wang, P.; Song, X.; Zhang, H.; Ma, S.; Wang, J.; Li, W.; Lv, R.; Liu, X.; Ma, S.; et al. Salmonella Typhimurium Reprograms Macrophage Metabolism via T3SS Effector SopE2 to Promote Intracellular Replication and Virulence. Nat. Commun. 2021, 12, 879. [Google Scholar] [CrossRef]
- Liu, Q.; Li, P.; Luo, H.; Curtiss, R.; Kong, Q. Attenuated Salmonella Typhimurium Expressing Salmonella Paratyphoid A O-Antigen Induces Protective Immune Responses against Two Salmonella Strains. Virulence 2019, 10, 82–96. [Google Scholar] [CrossRef]
- Beuzón, C.R.; Méresse, S.; Unsworth, K.E.; Ruíz-Albert, J.; Garvis, S.; Waterman, S.R.; Ryder, T.A.; Boucrot, E.; Holden, D.W. Salmonella Maintains the Integrity of Its Intracellular Vacuole through the Action of SifA. EMBO J. 2000, 19, 3235–3249. [Google Scholar] [CrossRef]
- Luk, C.H.; Enninga, J.; Valenzuela, C. Fit to Dwell in Many Places—The Growing Diversity of Intracellular Salmonella Niches. Front. Cell Infect. Microbiol. 2022, 12, 989451. [Google Scholar] [CrossRef]
- Bäumler, A.J.; Tsolis, R.M.; Heffron, F. Contribution of Fimbrial Operons to Attachment to and Invasion of Epithelial Cell Lines by Salmonella Typhimurium. Infect. Immun. 1996, 64, 1862–1865. [Google Scholar] [CrossRef]
- Hapfelmeier, S.; Stecher, B.; Barthel, M.; Kremer, M.; Müller, A.J.; Heikenwalder, M.; Stallmach, T.; Hensel, M.; Pfeffer, K.; Akira, S.; et al. The Salmonella Pathogenicity Island (SPI)-2 and SPI-1 Type III Secretion Systems Allow Salmonella Serovar Typhimurium to Trigger Colitis via MyD88-Dependent and MyD88-Independent Mechanisms. J. Immunol. 2005, 174, 1675–1685. [Google Scholar] [CrossRef]
- Siriken, B. Salmonella Pathogenicity Islands. Mikrobiyol. Bul. 2013, 47, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Jennings, E.; Thurston, T.L.M.; Holden, D.W. Salmonella SPI-2 Type III Secretion System Effectors: Molecular Mechanisms and Physiological Consequences. Cell Host Microbe 2017, 22, 217–231. [Google Scholar] [CrossRef]
- Siceloff, A.T.; Ohta, N.; Norman, K.N.; Loneragan, G.H.; Norby, B.; Scott, H.M.; Shariat, N.W. Antimicrobial Resistance Hidden within Multiserovar Salmonella Populations. Antimicrob. Agents Chemother. 2021, 65, e00048-21. [Google Scholar] [CrossRef] [PubMed]
- Pulford, C.V.; Perez-Sepulveda, B.M.; Canals, R.; Bevington, J.A.; Bengtsson, R.J.; Wenner, N.; Rodwell, E.V.; Kumwenda, B.; Zhu, X.; Bennett, R.J.; et al. Stepwise Evolution of Salmonella Typhimurium ST313 Causing Bloodstream Infection in Africa. Nat. Microbiol. 2021, 6, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Ju, Z.; Wang, G.; Yang, J.; Wang, F.; Tang, H.; Zhao, X.; Sun, S. Prevalence and Antimicrobial Resistance of Salmonella Isolated from Dead-in-Shell Chicken Embryos in Shandong, China. Front. Vet. Sci. 2021, 8, 581946. [Google Scholar] [CrossRef]
- Sears, K.T.; Galen, J.E.; Tennant, S.M. Advances in the Development of Salmonella-Based Vaccine Strategies for Protection against Salmonellosis in Humans. J. Appl. Microbiol. 2021, 131, 2640–2658. [Google Scholar] [CrossRef]
- Tennant, S.M.; Levine, M.M. Live Attenuated Vaccines for Invasive Salmonella Infections. Vaccine 2015, 33, C36–C41. [Google Scholar] [CrossRef]
- Jung, B.; Park, S.; Kim, E.; Yoon, H.; Hahn, T.-W. Salmonella Typhimurium Lacking phoBR as a Live Vaccine Candidate against Poultry Infection. Vet. Microbiol. 2022, 266, 109342. [Google Scholar] [CrossRef]
- Park, S.; Jung, B.; Kim, E.; Hong, S.-T.; Yoon, H.; Hahn, T.-W. Salmonella Typhimurium Lacking YjeK as a Candidate Live Attenuated Vaccine Against Invasive Salmonella Infection. Front. Immunol. 2020, 11, 1277. [Google Scholar] [CrossRef]
- Lin, Z.; Tang, P.; Jiao, Y.; Kang, X.; Li, Q.; Xu, X.; Sun, J.; Pan, Z.; Jiao, X. Immunogenicity and Protective Efficacy of a Salmonella Enteritidis sptP Mutant as a Live Attenuated Vaccine Candidate. BMC Vet. Res. 2017, 13, 194. [Google Scholar] [CrossRef]
- Johnson, R.; Byrne, A.; Berger, C.N.; Klemm, E.; Crepin, V.F.; Dougan, G.; Frankel, G. The Type III Secretion System Effector SptP of Salmonella Enterica Serovar Typhi. J. Bacteriol. 2017, 199, e00647-16. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Galán, J.E. The Salmonella typhimurium Tyrosine Phosphatase SptP Is Translocated into Host Cells and Disrupts the Actin Cytoskeleton. Mol. Microbiol. 1998, 27, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Galán, J. Salmonella Entry into Host Cells: The Work in Concert of Type III Secreted Effector Proteins. Microbes Infect. 2001, 3, 1293–1298. [Google Scholar] [CrossRef] [PubMed]
- Stebbins, C.E.; Galán, J.E. Modulation of Host Signaling by a Bacterial Mimic: Structure of the Salmonella Effector SptP Bound to Rac1. Mol. Cell 2000, 6, 1449–1460. [Google Scholar] [CrossRef]
- Galán, J.E. Salmonella Typhimurium and Inflammation: A Pathogen-Centric Affair. Nat. Rev. Microbiol. 2021, 19, 716–725. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, C.; Liao, C.; Li, J.; Yu, C.; Cheng, X.; Yu, Z.; Zhang, M.; Wang, Y. Deletion of Invasion Protein B in Salmonella Enterica Serovar Typhimurium Influences Bacterial Invasion and Virulence. Curr. Microbiol. 2015, 71, 687–692. [Google Scholar] [CrossRef]
- Hamed, S.; Shawky, R.M.; Emara, M.; Slauch, J.M.; Rao, C.V. HilE Is Required for Synergistic Activation of SPI-1 Gene Expression in Salmonella enterica Serovar Typhimurium. BMC Microbiol. 2021, 21, 49. [Google Scholar] [CrossRef]
- Dawan, J.; Ahn, J. Assessment of Cross-Resistance Potential to Serial Antibiotic Treatments in Antibiotic-Resistant Salmonella Typhimurium. Microb. Pathog. 2020, 148, 104478. [Google Scholar] [CrossRef]
- Pei, Y.; Parreira, V.R.; Roland, K.L.; Curtiss, R.; Prescott, J.F. Assessment of Attenuated Salmonella Vaccine Strains in Controlling Experimental Salmonella Typhimurium Infection in Chickens. Can. J. Vet. Res. 2014, 78, 23–30. [Google Scholar]
- Gebauer, J.; Tesařík, R.; Králová, N.; Havlíčková, H.; Matiašovic, J. Salmonella Typhimurium-Based Inactivated Vaccine Containing a Wide Spectrum of Bacterial Antigens Which Mimics Protein Expression Changes during Different Stages of an Infection Process. Vet. Microbiol. 2023, 282, 109756. [Google Scholar] [CrossRef]
- Arricau, N.; Hermant, D.; Waxin, H.; Popoff, M.Y. Molecular Characterization of the Salmonella Typhi StpA Protein That Is Related to Both Yersinia YopE Cytotoxin and YopH Tyrosine Phosphatase. Res. Microbiol. 1997, 148, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Faisal, S.M.; Chen, J.-W.; Chen, T.-T.; McDonough, S.P.; Liu, S.; Moreira, M.A.S.; Akey, B.L.; Chang, C.-F.; Chang, Y.-F. Immune Response and Protective Efficacy of Live Attenuated Salmonella Vaccine Expressing Antigens of Mycobacterium Avium Subsp. Paratuberculosis against Challenge in Mice. Vaccine 2012, 31, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Collins, F.M.; Carter, P.B. Comparative Immunogenicity of Heat-Killed and Living Oral Salmonella Vaccines. Infect. Immun. 1972, 6, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, C.; Akçelik, N.; Neslihan Özdemir, F.; Evcili, İ.; Kahraman, T.; Gürsel, İ.; Akçelik, M. The Role of bcsE Gene in the Pathogenicity of Salmonella. Pathog. Dis. 2021, 79, ftab037. [Google Scholar] [CrossRef]
- Sirard, J.; Niedergang, F.; Kraehenbuhl, J. Live Attenuated Salmonella: A Paradigm of Mucosal Vaccines. Immunol. Rev. 1999, 171, 5–26. [Google Scholar] [CrossRef]
- Lofton, H.; Anwar, N.; Rhen, M.; Andersson, D.I. Fitness of Salmonella Mutants Resistant to Antimicrobial Peptides. J. Antimicrob. Chemother. 2015, 70, 432–440. [Google Scholar] [CrossRef]
- Pasetti, M.F.; Levine, M.M.; Sztein, M.B. Animal Models Paving the Way for Clinical Trials of Attenuated Salmonella Enterica Serovar Typhi Live Oral Vaccines and Live Vectors. Vaccine 2003, 21, 401–418. [Google Scholar] [CrossRef]
- Ji, H.J.; Jang, A.-Y.; Song, J.Y.; Ahn, K.B.; Han, S.H.; Bang, S.J.; Jung, H.K.; Hur, J.; Seo, H.S. Development of Live Attenuated Salmonella Typhimurium Vaccine Strain Using Radiation Mutation Enhancement Technology (R-MET). Front. Immunol. 2022, 13, 931052. [Google Scholar] [CrossRef]
- Desin, T.S.; Köster, W.; Potter, A.A. Salmonella Vaccines in Poultry: Past, Present and Future. Expert Rev. Vaccines 2013, 12, 87–96. [Google Scholar] [CrossRef]
Primers | Sequences (5′-3′) 1 | Production Size | Usage | Source |
---|---|---|---|---|
sptP-cat-F | GTTTGCTGATTAATTGGAATGCTGCTGACCGCAAATCGTGCAGGCCCAGttacgccccgccctgccac | 960 bp | sptP gene homologous arms | This study |
sptP-cat-R | AGAAAATAGAACCGGCGCGCCAATGCCACAGACGATGAGCGGACCGCAtacctgtgacggaagatcacttc | |||
sptP-out-F | GTACGAACCGCTAATGCCACAGG | 1145 bp or 285 bp | Identification of sptP mutant | This study |
sptP-out-R | GAGAGGTGGTTGTAAAGCTCTACTCATG |
Groups | Challenge Dose (CFUs) | Number of Dead Mice/Total Number of Mice | Mortality | LD50 (CFUs) |
---|---|---|---|---|
ATCC14028 | 105 | 0/5 | 0% | 5.01 × 105 |
106 | 4/5 | 80% | ||
107 | 5/5 | 100% | ||
108 | 5/5 | 100% | ||
109 | 5/5 | 100% | ||
1010 | 5/5 | 100% | ||
ATCC14028ΔsptP | 105 | 0/5 | 0% | 2 × 107 |
106 | 0/5 | 0% | ||
107 | 2/5 | 40% | ||
108 | 4/5 | 80% | ||
109 | 5/5 | 100% | ||
1010 | 5/5 | 100% | ||
PBS | - | 0/10 | 0% | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, N.; Ding, Y.; He, T.; Sun, Y.; Chen, H.; Huang, M.; Li, T. Characterization and Protective Efficacy of a Salmonella Typhimurium ATCC 14028 sptP Mutant as a Live Attenuated Vaccine Candidate. Vaccines 2025, 13, 150. https://doi.org/10.3390/vaccines13020150
Zhou N, Ding Y, He T, Sun Y, Chen H, Huang M, Li T. Characterization and Protective Efficacy of a Salmonella Typhimurium ATCC 14028 sptP Mutant as a Live Attenuated Vaccine Candidate. Vaccines. 2025; 13(2):150. https://doi.org/10.3390/vaccines13020150
Chicago/Turabian StyleZhou, Nanlong, Yonghui Ding, Ting He, Yuling Sun, Hongfang Chen, Meiling Huang, and Tiansen Li. 2025. "Characterization and Protective Efficacy of a Salmonella Typhimurium ATCC 14028 sptP Mutant as a Live Attenuated Vaccine Candidate" Vaccines 13, no. 2: 150. https://doi.org/10.3390/vaccines13020150
APA StyleZhou, N., Ding, Y., He, T., Sun, Y., Chen, H., Huang, M., & Li, T. (2025). Characterization and Protective Efficacy of a Salmonella Typhimurium ATCC 14028 sptP Mutant as a Live Attenuated Vaccine Candidate. Vaccines, 13(2), 150. https://doi.org/10.3390/vaccines13020150