DNA Vaccines: Recent Developments and the Future
Abstract
:1. Introduction
2. Progress in Gene Vaccination
2.1. DNA and RNA Modifications
2.2. Adjuvants, Carriers and Delivery Systems
2.3. Adaptive Immunity
2.4. Prime and Boost
2.5. Clinical Immunotherapy and Prophylaxis
2.5.1. Veterinary Applications
2.5.2. Human Studies
2.6. Cancer
Infectious Diseases | Cancer | Other |
---|---|---|
Human immunodeficiency virus | B-cell lymphoma | Type I Diabetes |
Influenza (Seasonal, Pandemic) | Prostate | Asthma |
Malaria | Breast | |
Hepatitis B | Melanoma | |
Seasonal Acute Respiratory Syndrome | Ovarian | |
Marburg | Cervical (Precancerous In Situ) | |
Ebola | Hepatocellular | |
Human Papilloma Virus (see Cancer) | Bladder | |
West Nile Virus | Lung | |
Dengue | Sarcoma | |
Herpes Simplex Virus | Renal cell | |
Measles | Lymphoplasmacytic lymphoma | |
Cytomegalovirus | Colorectal |
3. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ulmer, J.B.; Donnelly, J.J.; Parker, S.E.; Rhodes, G.H.; Felgner, P.L.; Dwarki, V.J.; Gromkowski, S.H.; Deck, R.R.; DeWitt, C.M.; Friedman, A.; et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 1993, 259, 1745–1749. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.A. DNA vaccines: An historical perspective and view to the future. Immunol. Rev. 2011, 239, 62–84. [Google Scholar] [CrossRef] [PubMed]
- Ledgerwood, J.E.; Pierson, T.C.; Hubka, S.A.; Desai, N.; Rucker, S.; Gordon, I.J.; Enama, M.E.; Nelson, S.; Nason, M.; Gu, W.; et al. A West Nile virus DNA vaccine utilizing a modified promoter induces neutralizing antibody in younger and older healthy adults in a phase I clinical trial. J. Infect. Dis. 2011, 203, 1396–1404. [Google Scholar] [CrossRef] [PubMed]
- Wloch, M.K.; Smith, L.R.; Boutsaboualoy, S.; Reyes, L.; Han, C.; Kehler, J.; Smith, H.D.; Selk, L.; Nakamura, R.; Brown, J.M.; et al. Safety and immunogenicity of a bivalent cytomegalovirus DNA vaccine in healthy adult subjects. J. Infect. Dis. 2008, 197, 1634–1642. [Google Scholar] [CrossRef] [PubMed]
- Hammer, S.M.; Sobieszczyk, M.E.; Janes, H.; Karuna, S.T.; Mulligan, M.J.; Grove, D.; Koblin, B.A.; Buchbinder, S.P.; Keefer, M.C.; Tomaras, G.D.; et al. Efficacy trial of a DNA/rAd5 HIV-1 preventive vaccine. N. Engl. J. Med. 2013, 369, 2083–2092. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S.G.; Sacha, J.B.; Hughes, C.M.; Ford, J.C.; Burwitz, B.J.; Scholz, I.; Gilbride, R.M.; Lewis, M.S.; Gilliam, A.N.; Ventura, A.B.; et al. Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms. Science 2013, 340. [Google Scholar] [CrossRef]
- Nilsson, C.; Godoy-Ramirez, K.; Hejdeman, B.; Brave, A.; Gudmundsdotter, L.; Hallengard, D.; Currier, J.R.; Wieczorek, L.; Hasselrot, K.; Earl, P.L.; et al. Broad and potent cellular and humoral immune responses after a second late HIV-modified vaccinia virus Ankara vaccination in HIV-DNA-primed and HIV-modified vaccinia virus Ankara-boosted Swedish vaccinees. AIDS Res. Hum. Retroviruses 2014, 30, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, P.; Utz, P.J.; Robinson, W.; Steinman, L. Clinical optimization of antigen specific modulation of type 1 diabetes with the plasmid DNA platform. Clin. Immunol. 2013, 149, 297–306. [Google Scholar] [CrossRef] [PubMed]
- A service of the U.S. National Institute of Health. Available online: http://clinicaltrials.gov/ (accessed on 1 September 2014).
- Felber, B.; Valentin, A.; Rosati, M.; Bergamaschi, C.; Pavlakis, G. HIV DNA vaccine: Stepwise improvements make a difference. Vaccines 2014, 2, 354–379. [Google Scholar] [CrossRef]
- Williams, J.A. Vector design for improved DNA vaccine efficacy, safety and production. Vaccines 2013, 1, 225–249. [Google Scholar] [CrossRef]
- Ertl, H.C. Rabies DNA vaccines for protection and therapeutic treatment. Expert Opin. Biol. Ther. 2003, 3, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.; Broderick, K.; Wilkinson, E.R.; Shaia, C.I.; Bell, T.M.; Shurtleff, A.C.; Spik, K.W.; Badger, C.W.; Guttieri, M.C.; Sardesai, N.; et al. Enhanced efficacy of a codon-optimized DNA vaccine encoding the glycoprotein procursor gene of Lassa virus in a guinea pig disease model when delivered by dermal electroporation. Vaccines 2013, 1, 262–277. [Google Scholar] [CrossRef]
- Petrini, S.; Ramadori, G.; Villa, R.; Borghetti, P.; de Angelis, E.; Cantoni, A.M.; Corradi, A.; Amici, A.; Ferrari, M. Evaluation of different DNA vaccines against Porcine Reproductive and Respiratory Syndrome (PRRS) in pigs. Vaccines 2013, 1, 463–480. [Google Scholar] [CrossRef]
- Cu, Y.; Broderick, K.E.; Banerjee, K.; Hickman, J.; Otten, G.; Barnett, S.; Kichaev, G.; Sardesai, N.Y.; Ulmer, J.B.; Geall, A. Enhanced delivery and potency of self-amplifying mRNA vaccines by electroporation in situ. Vaccines 2013, 1, 367–383. [Google Scholar] [CrossRef]
- Stenler, S.; Wiklander, O.P.; Badal-Tejedor, M.; Turunen, J.; Nordin, J.Z.; Hallengard, D.; Wahren, B.; Andaloussi, S.E.; Rutland, M.W.; Smith, C.I.E.; et al. Micro-minicircle gene therapy: Implications of size on fermentation, complexation, shearing resistance, and expression. Mol. Ther. Nucleic Acids 2014, 2, e140. [Google Scholar] [CrossRef] [PubMed]
- Hallengard, D.; Applequist, S.E.; Nystrom, S.; Maltais, A.K.; Marovich, M.; Moss, B.; Earl, P.; Nihlmark, K.; Wahren, B.; Brave, A. Immunization with multiple vaccine modalities induce strong HIV-specific cellular and humoral immune responses. Viral. Immunol. 2012, 25, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.G.; Vasilakos, J.P.; Tross, D.; Smirnov, D.; Klinman, D.M. Combination therapy targeting toll like receptors 7, 8 and 9 eliminates large established tumors. J. Immunother. Cancer 2014. [Google Scholar] [CrossRef]
- Kobiyama, K.; Jounai, N.; Aoshi, T.; Tozuka, M.; Takeshita, F.; Coban, C.; Ishi, K.J. Innate immune signaling by, and genetic adjuvants for DNA vaccination. Vaccines 2013, 1, 278–292. [Google Scholar] [CrossRef]
- Shedlock, D.; Colleen, T.; Mahadevan, L.; Hutnick, N.; Reuschel, E.; Kudchodkar, S.; Flingai, S.; Yan, J.; Kim, J.J.; Ugen, K.E.; et al. Co-administration of molecular adjuvants expressing NF-kappa B subunit p65/RelA or type-1 transactivator T-bet enhance antigen specific DNA vaccine-induced immunity. Vaccines 2014, 2, 196–215. [Google Scholar] [CrossRef]
- Iyer, S.S.; Amara, R.R. DNA/MVA vaccines for HIV/AIDS. Vaccines 2014, 2, 160–178. [Google Scholar] [CrossRef]
- Nyström, S.; Bråve, A.; Falkeborn, T.; DeVito, C.; Rissiek, B.; Johansson, D.; Schröder, U.; Uematsu, S.; Akira, S.; Hinkula, J.; et al. DNA-encoded Flagellin activates Toll-like receptor 5 (TLR5), Nod-like receptor family CARD domain-containing protein 4 (NRLC4) and acts as an epidermal, systemic, and mucosal adjuvant. Vaccines 2013, 1, 415–443. [Google Scholar] [CrossRef]
- Flingai, S.; Czerwonko, M.; Goodman, J.; Kudchodkar, S.B.; Muthumani, K.; Weiner, D.B. Synthetic DNA vaccines: Improved vaccine potency by electroporation and co-delivered genetic adjuvants. Front Immunol. 2013. [Google Scholar] [CrossRef]
- Okuda, K.; Wada, Y.; Shimada, M. Recent developments in preclinical DNA vaccination. Vaccines 2014, 2, 89–106. [Google Scholar] [CrossRef]
- Bakari, M.; Aboud, S.; Nilsson, C.; Francis, J.; Buma, D.; Moshiro, C.; Aris, E.A.; Lyamuya, E.F.; Janabi, M.; Godoy-Ramirez, K.; et al. Broad and potent immune responses to a low dose intradermal HIV-1 DNA boosted with HIV-1 recombinant MVA among healthy adults in Tanzania. Vaccine 2011, 29, 8417–8428. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, J.M.; Amante, D.; Kichaev, G.; Knott, C.; Kiosses, W.; Smith, T.R.F.; Sardesai, N.; Broderick, K. Elucidating the kinetics of expression and immune cell infiltration resulting from plasmid gene delivery enhanced by surface dermal electroporation. Vaccines 2013, 1, 384–397. [Google Scholar] [CrossRef]
- Borggren, M.; Vinner, L.; Skovgaard Andresen, B.; Grevstad, B.; Repits, J.; Melchers, M.; Elvang, T.L.; Sanders, R.W.; Martinon, F.; Dereuddre-Bosquet, N.; et al. Optimization of HIV-1 envelope DNA vaccine candidates within three different animal models, guinea pigs, rabbits and Cynomolgus macaques. Vaccines 2013, 1, 305–327. [Google Scholar] [CrossRef]
- Hallengard, D.; Brave, A.; Isaguliants, M.; Blomberg, P.; Enger, J.; Stout, R.; King, A.; Wahren, B. A combination of intradermal jet-injection and electroporation overcomes in vivo dose restriction of DNA vaccines. Genet. Vaccines Ther. 2012, 10. [Google Scholar] [CrossRef]
- Staff, C.; Mozaffari, F.; Haller, K.B.; Frödin, J.E.; Wahren, B.; Mellstedt, H.; Liljefors, M. DNA immunization targeting carcinoembryonic antigen in colorectal cancer patients. PhD Thesis, Karolinska Institutet, Stockholm, Seweden, 2014. [Google Scholar]
- Davis, B.S.; Chang, G.J.; Cropp, B.; Roehrig, J.T.; Martin, D.A.; Mitchell, C.J.; Bowen, R.; Bunning, M.L. West Nile virus recombinant DNA vaccine protects mouse and horse from virus challenge and expresses in vitro a noninfectious recombinant antigen that can be used in enzyme-linked immunosorbent assays. J. Virol. 2001, 75, 4040–4047. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, A.M.; Dupuis, A.P.; Chang, G.J.; Kramer, L.D. DNA vaccination of American robins (Turdus migratorius) against West Nile virus. Vector Borne Zoonotic Dis. 2010, 10, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.E.; Pierson, T.C.; Hubka, S.; Rucker, S.; Gordon, I.J.; Enama, M.E.; Andrews, C.A.; Xu, Q.; Davis, B.S.; Nason, M.; et al. A West Nile virus DNA vaccine induces neutralizing antibody in healthy adults during a phase 1 clinical trial. J. Infect. Dis. 2007, 196, 1732–1740. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, S.; Lu, S. Pilot study on the use of DNA priming immunization to enhance Y. pestis LcrV-specific B cell responses elicited by a recombinant Lcr protein vaccine. Vaccines 2014, 2, 36–48. [Google Scholar] [CrossRef]
- Garcia-Arriaza, J.; Cepeda, V.; Hallengard, D.; Sorzano, C.O.; Kummerer, B.M.; Liljestrom, P.; Esteban, M. A novel poxvirus-based vaccine, MVA-CHIKV, is highly immunogenic and protects mice against chikungunya infection. J. Virol. 2014, 88, 3527–3547. [Google Scholar] [CrossRef] [PubMed]
- Mallilankaraman, K.; Shedlock, D.J.; Bao, H.; Kawalekar, O.U.; Fagone, P.; Ramanathan, A.A.; Ferraro, B.; Stabenow, J.; Vijayachari, P.; Sundaram, S.G.; et al. A DNA vaccine against chikungunya virus is protective in mice and induces neutralizing antibodies in mice and nonhuman primates. PLoS Negl. Trop. Dis. 2011, 5, e928. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.; Langermans, J.A.; Gilbert, S.C.; Blanchard, T.J.; Twigg, S.; Naitza, S.; Hannan, C.M.; Aidoo, M.; Crisanti, A.; Robson, K.J.; et al. A prime-boost immunisation regimen using DNA followed by recombinant modified vaccinia virus Ankara induces strong cellular immune responses against the Plasmodium falciparum TRAP antigen in chimpanzees. Vaccine 2001, 19, 4595–4602. [Google Scholar] [CrossRef] [PubMed]
- Kimani, D.; Jagne, Y.J.; Cox, M.; Kimani, E.; Bliss, C.M.; Gitau, E.; Ogwang, C.; Afolabi, M.O.; Bowyer, G.; Collins, K.A.; et al. Translating the immunogenicity of prime-boost immunization with ChAd63 and MVA ME-TRAP from malaria naive to malaria-endemic populations. Mol. Ther. 2014. [Google Scholar] [CrossRef]
- Bruffaerts, N.; Romano, M.; Denis, O.; Jurion, F.; Huygen, K. Increasing the vaccine potential of live M. bovis BCG by co-administration with plasmid DNA encoding a Tuberculosis prototype antigen. Vaccines 2014, 2, 181–195. [Google Scholar] [CrossRef]
- Holvold, L.B.; Myhr, A.I.; Dalmo, R.A. Strategies and hurdles using DNA vaccines to fish. Vet. Res. 2014. [Google Scholar] [CrossRef] [Green Version]
- Ault, A.; Zajac, A.M.; Kong, W.P.; Gorres, J.P.; Royals, M.; Wei, C.J.; Bao, S.; Yang, Z.Y.; Reedy, S.E.; Sturgill, T.L.; et al. Immunogenicity and clinical protection against equine influenza by DNA vaccination of ponies. Vaccine 2012, 30, 3965–3974. [Google Scholar] [CrossRef] [PubMed]
- Calarota, S.; Bratt, G.; Nordlund, S.; Hinkula, J.; Leandersson, A.C.; Sandstrom, E.; Wahren, B. Cellular cytotoxic response induced by DNA vaccination in HIV-1-infected patients. Lancet 1998, 351, 1320–1325. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.R.; Wloch, M.K.; Chaplin, J.A.; Gerber, M.; Rolland, A. Clinical development of a Cytomegalovirus DNA vaccine: From product concept to pivotal Phase 3 trial. Vaccines 2013, 1, 398–414. [Google Scholar] [CrossRef]
- Palma, P.; Romiti, M.L.; Montesano, C.; Santilli, V.; Mora, N.; Aquilani, A.; Dispinseri, S.; Tchidjou, H.K.; Montano, M.; Eriksson, L.E.; et al. Therapeutic DNA vaccination of vertically HIV-infected children: report of the first pediatric randomised trial (PEDVAC). PLoS One 2013, 8, e79957. [Google Scholar] [CrossRef]
- Palma, P.; Gudmundsdotter, L.; Finocchi, A.; Eriksson, L.; Mora, N.; Santilli, V.; Aquilani, A.; Manno, E.; Zangari, P.; Romiti, M.L.; et al. Immunotherapy with an HIV-DNA vaccine in children and adults. Vaccines 2014, 2, 563–580. [Google Scholar] [CrossRef]
- Richardson, J.S.; Dekker, J.D.; Croyle, M.A.; Kobinger, G.P. Recent advances in Ebolavirus vaccine development. Hum. Vaccin. 2010, 6, 439–449. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Allergy and Infectous diseases. Ebola/Marburg. Available online: http://www.niaid.nih.gov/topics/ebolamarburg/research/pages/default.aspx/ (accessed on 1 September 2014).
- Matijevic, M.; Hedley, M.L.; Urban, R.G.; Chicz, R.M.; Lajoie, C.; Luby, T.M. Immunization with a poly (lactide co-glycolide) encapsulated plasmid DNA expressing antigenic regions of HPV 16 and 18 results in an increase in the precursor frequency of T cells that respond to epitopes from HPV 16, 18, 6 and 11. Cell. Immunol. 2011, 270, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Small, E.J.; Higano, C.S.; Kantoff, P.W.; Whitmore, J.B.; Frohlich, M.W.; Petrylak, D.P. Time to disease-related pain and first opioid use in patients with metastatic castration-resistant prostate cancer treated with sipuleucel-T. Prostate Cancer Prostatic Dis. 2014, 17, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Ku, G.Y.; Adamow, M.; Mu, Z.; Tandon, S.; Hannaman, D.; Chapman, P.; Schwartz, G.; Carvajal, R.; Panageas, K.S.; et al. Immunologic responses to xenogeneic tyrosinase DNA vaccine administered by electroporation in patients with malignant melanoma. J. Immunother. Cancer 2013. [Google Scholar] [CrossRef]
- Staff, C.; Mozaffari, F.; Haller, B.K.; Wahren, B.; Liljefors, M. A Phase I safety study of plasmid DNA immunization targeting carcinoembryonic antigen in colorectal cancer patients. Vaccine 2011, 29, 6817–6822. [Google Scholar] [CrossRef] [PubMed]
- Chudley, L.; McCann, K.; Mander, A.; Tjelle, T.; Campos-Perez, J.; Godeseth, R.; Creak, A.; Dobbyn, J.; Johnson, B.; Bass, P.; et al. DNA fusion-gene vaccination in patients with prostate cancer induces high-frequency CD8+ T-cell responses and increases PSA doubling time. Cancer Immunol. Immunother. 2012, 61, 2161–2170. [Google Scholar] [CrossRef]
- Eriksson, F.; Totterman, T.; Maltais, A.K.; Pisa, P.; Yachnin, J. DNA vaccine coding for the rhesus prostate specific antigen delivered by intradermal electroporation in patients with relapsed prostate cancer. Vaccine 2013, 31, 3843–3848. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, R.E.; Zhu, D.; Ovecka, M.; Winter, G.; Hamblin, T.J.; Long, A.; Stevenson, F.K. Idiotypic vaccination against human B-cell lymphoma. Rescue of variable region gene sequences from biopsy material for assembly as single-chain Fv personal vaccines. Blood 1994, 83, 3279–3288. [Google Scholar] [PubMed]
- Timmerman, J.M.; Singh, G.; Hermanson, G.; Hobart, P.; Czerwinski, D.K.; Taidi, B.; Rajapaksa, R.; Caspar, C.B.; van Beckhoven, A.; Levy, R. Immunogenicity of a plasmid DNA vaccine encoding chimeric idiotype in patients with B-cell lymphoma. Cancer Res. 2002, 62, 5845–5852. [Google Scholar] [PubMed]
- Ruffini, P.A.; Os, A.; Dolcetti, R.; Tjonnfjord, G.E.; Munthe, L.A.; Bogen, B. Targeted DNA vaccines eliciting crossreactive anti-idiotypic antibody responses against human B cell malignancies in mice. J. Transl. Med. 2014. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wahren, B.; Liu, M.A. DNA Vaccines: Recent Developments and the Future. Vaccines 2014, 2, 785-796. https://doi.org/10.3390/vaccines2040785
Wahren B, Liu MA. DNA Vaccines: Recent Developments and the Future. Vaccines. 2014; 2(4):785-796. https://doi.org/10.3390/vaccines2040785
Chicago/Turabian StyleWahren, Britta, and Margaret A. Liu. 2014. "DNA Vaccines: Recent Developments and the Future" Vaccines 2, no. 4: 785-796. https://doi.org/10.3390/vaccines2040785
APA StyleWahren, B., & Liu, M. A. (2014). DNA Vaccines: Recent Developments and the Future. Vaccines, 2(4), 785-796. https://doi.org/10.3390/vaccines2040785