Choice and Design of Adjuvants for Parenteral and Mucosal Vaccines
Abstract
:1. Introduction
2. Immune Mechanisms of Adjuvant Action
2.1. Signal 0 Facilitation
Adjuvant | Immune mechanism (presumed) | Immune SIGNAL | (Innate) ligands or receptor | Adaptive immune response type |
---|---|---|---|---|
Alum- and oil-based emulsions including IFA, Montanide®, MF59® | Ag depot effect MHC presentation | 1 | Unknown | DC, recruitment Th2, neutralizing Ab Th1, opsonizing Ab CTL, MF activation |
MPL + alum (AS04®) | DC activation + migration | 1 | B memory, Ab | |
Liposomes | Depot effect + APC modulation | 1 | C-type lectin Card9 (unknown) | Th1, Th2, Th17 |
Saponins, ISCOM | Antigen delivery and T helper polarization | 1 and 2 | MyD88-dependent TLR-independent Unknown receptor | Th1, Th2, CTL, Ab |
PRR agonist TLR-, NLR-, RLR, RLH agonists | Innate immune cell activation | 0 leading to 2 | PRR, including TLR, NLR, RLR, RLH agonists | Various, including Th1 pathways |
MDP (example) | NRLP3 inflammasome activation | 2 | NOD2 | Various, including Th1 pathway |
ISCOMs, QS21 | T helper polarization | 3 | Unknown, Mincle receptor | Various, including Th1 |
LT, CT, mucosal delivery | Homing to mucosal tissue | 4 | GM-1 | Mucosal IgA and T cell activity |
2.2. Signal 1 Facilitation
2.3. Signal 2 Facilitation
2.4. Signal 3 Facilitation
2.5. Signal 4 Facilitation
3. Selected Adjuvants and Immunostimulation
3.1. Oil-Based Emulsions
3.2. Alum-Based Adjuvants
3.3. Damage-Associated Molecular Patterns
3.4. Innate Immune Cell Receptor Agonists
3.5. Conjugated and Multivalent Vaccines to Improve Immunogenicity
4. Mucosal Vaccines
4.1. Mucosal Immunity versus Tolerance
4.2. Mucosal Adjuvants
5. Future Perspectives
6. Conclusions
Author Contributions
Conflicts of Interest
References
- O’Hagan, D.T.; Rappuoli, R. The safety of vaccines. Drug Discov. Today 2004, 9, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Batista-Duharte, A.; Portuondo, D.; Perez, O.; Carlos, I.Z. Systemic immunotoxicity reactions induced by adjuvanted vaccines. Int. Immunopharmacol. 2014, 20, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Subbarao, K.; Murphy, B.R.; Fauci, A.S. Development of effective vaccines against pandemic influenza. Immunity 2006, 24, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Lambert, L.C.; Fauci, A.S. Influenza vaccines for the future. N. Engl. J. Med. 2010, 363, 2036–2044. [Google Scholar] [CrossRef] [PubMed]
- Bodewes, R.; Geelhoed-Mieras, M.M.; Heldens, J.G.; Glover, J.; Lambrecht, B.N.; Fouchier, R.A.; Osterhaus, A.D.; Rimmelzwaan, G.F. The novel adjuvant covaccineht increases the immunogenicity of cell-culture derived influenza a/H5N1 vaccine and induces the maturation of murine and human dendritic cells in vitro. Vaccine 2009, 27, 6833–6839. [Google Scholar] [CrossRef] [PubMed]
- Lambrecht, B.N.; Kool, M.; Willart, M.A.; Hammad, H. Mechanism of action of clinically approved adjuvants. Curr. Opin. Immunol. 2009, 21, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Coffman, R.L.; Sher, A.; Seder, R.A. Vaccine adjuvants: Putting innate immunity to work. Immunity 2010, 33, 492–503. [Google Scholar] [CrossRef] [PubMed]
- Tangye, S.G.; Tarlinton, D.M. Memory B cells: Effectors of long-lived immune responses. Eur. J. Immunol. 2009, 39, 2065–2075. [Google Scholar] [CrossRef] [PubMed]
- Akbar, A.N.; Fletcher, J.M. Memory T cell homeostasis and senescence during aging. Curr. Opin. Immunol. 2005, 17, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Tobin, G.J.; Trujillo, J.D.; Bushnell, R.V.; Lin, G.; Chaudhuri, A.R.; Long, J.; Barrera, J.; Pena, L.; Grubman, M.J.; Nara, P.L. Deceptive imprinting and immune refocusing in vaccine design. Vaccine 2008, 26, 6189–6199. [Google Scholar] [CrossRef] [PubMed]
- Cusi, M.G.; Martorelli, B.; di Genova, G.; Terrosi, C.; Campoccia, G.; Correale, P. Age related changes in T cell mediated immune response and effector memory to respiratory syncytial virus (RSV) in healthy subjects. Immunity Ageing 2010. [Google Scholar] [CrossRef]
- Schijns, V.E. Immunological concepts of vaccine adjuvant activity. Curr. Opin. Immunol. 2000, 12, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Schijns, V.E. Mechanisms of vaccine adjuvant activity: Initiation and regulation of immune responses by vaccine adjuvants. Vaccine 2003, 21, 829–831. [Google Scholar] [CrossRef] [PubMed]
- Schijns, V.E. Induction and direction of immune responses by vaccine adjuvants. Crit. Rev. Immunol. 2001, 21, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Schijns, V.E. Antigen delivery systems and immunostimulation. Vet. Immunol. Immunopathol. 2002, 87, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Eksteen, B.; Mora, J.R.; Haughton, E.L.; Henderson, N.C.; Lee-Turner, L.; Villablanca, E.J.; Curbishley, S.M.; Aspinall, A.I.; von Andrian, U.H.; Adams, D.H. Gut homing receptors on CD8 T cells are retinoic acid dependent and not maintained by liver dendritic or stellate cells. Gastroenterology 2009, 137, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Sigmundsdottir, H.; Pan, J.; Debes, G.F.; Alt, C.; Habtezion, A.; Soler, D.; Butcher, E.C. DCs metabolize sunlight-induced vitamin D3 to “program” T cell attraction to the epidermal chemokine CCL27. Nat. Immunol. 2007, 8, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Marrack, P.; McKee, A.S.; Munks, M.W. Towards an understanding of the adjuvant action of aluminium. Nat. Rev. Immunol. 2009, 9, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, M.F.; Jennings, G.T. Vaccine delivery: A matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 2010, 10, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, D.; Yong, M.; Schroder, W.; Black, M.; Tirrell, M.; Olive, C. Dual stimulation of myd88-dependent toll-like receptors induces synergistically enhanced production of inflammatory cytokines in murine bone marrow-derived dendritic cells. J. Infect. Dis. 2010, 202, 318–329. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Willingham, S.B.; Ting, J.P.; Re, F. Cutting edge: Inflammasome activation by alum and alum’s adjuvant effect are mediated by NLRP3. J. Immunol. 2008, 181, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Ulanova, M.; Tarkowski, A.; Hahn-Zoric, M.; Hanson, L.A. The common vaccine adjuvant aluminum hydroxide up-regulates accessory properties of human monocytes via an interleukin-4-dependent mechanism. Infect. Immunity 2001, 69, 1151–1159. [Google Scholar] [CrossRef]
- Lindblad, E.B. Aluminium compounds for use in vaccines. Immunol. Cell Biol. 2004, 82, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Petrovsky, N.; Aguilar, J.C. Vaccine adjuvants: Current state and future trends. Immunol. Cell Biol. 2004, 82, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R.; Preston-Hurlburt, P.; Janeway, C.A., Jr. A human homologue of the drosophila toll protein signals activation of adaptive immunity. Nature 1997, 388, 394–397. [Google Scholar] [CrossRef] [PubMed]
- Petrovsky, N. Freeing vaccine adjuvants from dangerous immunological dogma. Expert Rev. Vaccines 2008, 7, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Kool, M.; Soullie, T.; van Nimwegen, M.; Willart, M.A.; Muskens, F.; Jung, S.; Hoogsteden, H.C.; Hammad, H.; Lambrecht, B.N. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J. Exp. Med. 2008, 205, 869–882. [Google Scholar] [CrossRef] [PubMed]
- Al-Akl, N.S.; Chakhtoura, M.; Kazzi, N.F.; Usta, J.; Chamoun, C.A.; Abdelnoor, A.M. Uric acid: A possible mediator of the adjuvant effect of alum in mice immunized with ovalbumin. World J. Vaccines 2011, 1, 148–155. [Google Scholar] [CrossRef]
- Vajdy, M.; Srivastava, I.; Polo, J.; Donnelly, J.; O’Hagan, D.; Singh, M. Mucosal adjuvants and delivery systems for protein-, DNA- and RNA-based vaccines. Immunol. Cell Biol. 2004, 82, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Coban, C.; Kobiyama, K.; Aoshi, T.; Takeshita, F.; Horii, T.; Akira, S.; Ishii, K.J. Novel strategies to improve DNA vaccine immunogenicity. Curr. Gene Ther. 2011, 11, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Flingai, S.; Czerwonko, M.; Goodman, J.; Kudchodkar, S.B.; Muthumani, K.; Weiner, D.B. Synthetic DNA vaccines: Improved vaccine potency by electroporation and co-delivered genetic adjuvants. Front. Immunol. 2013. [Google Scholar] [CrossRef]
- Marichal, T.; Ohata, K.; Bedoret, D.; Mesnil, C.; Sabatel, C.; Kobiyama, K.; Lekeux, P.; Coban, C.; Akira, S.; Ishii, K.J.; et al. DNA released from dying host cells mediates aluminum adjuvant activity. Nat. Med. 2011, 17, 996–1002. [Google Scholar] [CrossRef] [PubMed]
- Mattsson, J.; Yrlid, U.; Stensson, A.; Schon, K.; Karlsson, M.C.; Ravetch, J.V.; Lycke, N.Y. Complement activation and complement receptors on follicular dendritic cells are critical for the function of a targeted adjuvant. J. Immunol. 2011, 187, 3641–3652. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, N.; Gnjatic, S.; Sawhney, N.B. TLR agonists: Are they good adjuvants? Cancer J. 2010, 16, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Orr, M.T.; Beebe, E.A.; Hudson, T.E.; Moon, J.J.; Fox, C.B.; Reed, S.G.; Coler, R.N. A dual TLR agonist adjuvant enhances the immunogenicity and protective efficacy of the tuberculosis vaccine antigen ID93. PLOS ONE 2014, 9, e83884. [Google Scholar] [CrossRef] [PubMed]
- O’Hagan, D.T.; Valiante, N.M. Recent advances in the discovery and delivery of vaccine adjuvants. Nat. Rev. Drug Discov. 2003, 2, 727–735. [Google Scholar] [CrossRef] [PubMed]
- O’Hagan, D.T. New generation vaccine adjuvants. eLS 2007. [Google Scholar] [CrossRef]
- Rappuoli, R.; Mandl, C.W.; Black, S.; de Gregorio, E. Vaccines for the twenty-first century society. Nat. Rev. Immunol. 2011, 11, 865–872. [Google Scholar] [PubMed]
- Antonova, G.; Lichtenbeld, H.; Xia, T.; Chatterjee, A.; Dimitropoulou, C.; Catravas, J.D. Functional significance of hsp90 complexes with NOS and sGC in endothelial cells. Clin. Hemorheol. Microcirc. 2007, 37, 19–35. [Google Scholar] [PubMed]
- Nishikawa, M.; Takemoto, S.; Takakura, Y. Heat shock protein derivatives for delivery of antigens to antigen presenting cells. Int. J. Pharm. 2008, 354, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Colaco, C.A.; Bailey, C.R.; Walker, K.B.; Keeble, J. Heat shock proteins: Stimulators of innate and acquired immunity. BioMed Res. Int. 2013. [Google Scholar] [CrossRef]
- Glass, E.J. Genetic variation and responses to vaccines. Anim. Health Res. Rev. 2004, 5, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Long, A.B.; Ferguson, A.M.; Majumder, P.; Nagarajan, U.M.; Boss, J.M. Conserved residues of the bare lymphocyte syndrome transcription factor RFXAP determine coordinate MHC class II expression. Mol. Immunol. 2006, 43, 395–409. [Google Scholar] [CrossRef] [PubMed]
- Evans, T.I.; Reeves, R.K. All-trans-retinoic acid imprints expression of the gut-homing marker alpha4beta7 while suppressing lymph node homing of dendritic cells. Clin. Vaccine Immunol. 2013, 20, 1642–1646. [Google Scholar] [CrossRef] [PubMed]
- Connell, T.D. Cholera toxin, LT-I, LT-IIa and LT-IIb: The critical role of ganglioside binding in immunomodulation by type I and type II heat-labile enterotoxins. Expert Rev. Vaccines 2007, 6, 821–834. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.B.; Czerkinsky, C.; Holmgren, J. Mucosally induced immunological tolerance, regulatory T cells and the adjuvant effect by cholera toxin B subunit. Scandinavian J. Immunol. 2010, 71, 1–11. [Google Scholar] [CrossRef]
- Sun, J.B.; Eriksson, K.; Li, B.L.; Lindblad, M.; Azem, J.; Holmgren, J. Vaccination with dendritic cells pulsed in vitro with tumor antigen conjugated to cholera toxin efficiently induces specific tumoricidal CD8+ cytotoxic lymphocytes dependent on cyclic amp activation of dendritic cells. Clin. Immunol. 2004, 112, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Veglia, F.; Sciaraffia, E.; Riccomi, A.; Pinto, D.; Negri, D.R.; de Magistris, M.T.; Vendetti, S. Cholera toxin impairs the differentiation of monocytes into dendritic cells, inducing professional antigen-presenting myeloid cells. Infect. Immunity 2011, 79, 1300–1310. [Google Scholar] [CrossRef]
- Gustafsson, T.; Hua, Y.J.; Dahlgren, M.W.; Livingston, M.; Johansson-Lindbom, B.; Yrlid, U. Direct interaction between cholera toxin and dendritic cells is required for oral adjuvant activity. Eur. J. Immunol. 2013, 43, 1779–1788. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhang, X.; Darrah, P.A.; Mosser, D.M. The regulation of th1 responses by the p38 mapk. J. Immunol. 2010, 185, 6205–6213. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, N.; Komine, H.; Grolleau-Julius, A.; Pilon-Thomas, S.; Mule, J.J. Targeting marco can lead to enhanced dendritic cell motility and anti-melanoma activity. Cancer Immunol. Immunother. 2010, 59, 875–884. [Google Scholar] [CrossRef] [PubMed]
- Tovey, M.G.; Lallemand, C. Adjuvant activity of cytokines. Methods Mol. Biol. 2010, 626, 287–309. [Google Scholar] [PubMed]
- Sharp, F.A.; Ruane, D.; Claass, B.; Creagh, E.; Harris, J.; Malyala, P.; Singh, M.; O’Hagan, D.T.; Petrilli, V.; Tschopp, J.; et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the nalp3 inflammasome. Proc. Natl. Acad. Sci. USA 2009, 106, 870–875. [Google Scholar] [CrossRef] [PubMed]
- Mathew, S.; Lendlein, A.; Wischke, C. Characterization of protein-adjuvant coencapsulation in microparticles for vaccine delivery. Eur. J. Pharm. Biopharm. 2014, 87, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Schijns, V.E.; Horzinek, M.C. Cytokines in Veterinary Medicine; CAB International: Wallingford, Oxon, UK; New York, NY, USA, 1998. [Google Scholar]
- Schijns, V.E.; Scholtes, N.C.; Zuilekom, H.I.; Sanders, L.E.; Nicolson, L.; Argyle, D.J. Facilitation of antibody forming responses to viral vaccine antigens in young cats by recombinant baculovirus-expressed feline ifn-gamma. Vaccine 2002, 20, 1718–1724. [Google Scholar] [CrossRef] [PubMed]
- Degen, W.G.; van Zuilekom, H.I.; Scholtes, N.C.; van Daal, N.; Schijns, V.E. Potentiation of humoral immune responses to vaccine antigens by recombinant chicken IL-18 (rCHIL-18). Vaccine 2005, 23, 4212–4218. [Google Scholar] [CrossRef] [PubMed]
- Tarpey, I.; Davis, P.J.; Sondermeijer, P.; van Geffen, C.; Verstegen, I.; Schijns, V.E.; Kolodsick, J.; Sundick, R. Expression of chicken interleukin-2 by turkey herpesvirus increases the immune response against marek’s disease virus but fails to increase protection against virulent challenge. Avian Pathol. 2007, 36, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Schijns, V.E.; Degen, W.G. Vaccine immunopotentiators of the future. Clin. Pharmacol. Ther. 2007, 82, 750–755. [Google Scholar] [CrossRef] [PubMed]
- Perret, R.; Sierro, S.R.; Botelho, N.K.; Corgnac, S.; Donda, A.; Romero, P. Adjuvants that improve the ratio of antigen-specific effector to regulatory t cells enhance tumor immunity. Cancer Res. 2013, 73, 6597–6608. [Google Scholar] [CrossRef] [PubMed]
- Bayry, J. Regulatory T cells as adjuvant target for enhancing the viral disease vaccine efficacy. Virusdisease 2014, 25, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Maisonneuve, C.; Bertholet, S.; Philpott, D.J.; de Gregorio, E. Unleashing the potential of nod- and toll-like agonists as vaccine adjuvants. Proc. Natl. Acad. Sci. USA 2014, 111, 12294–12299. [Google Scholar] [CrossRef] [PubMed]
- Diener, K.R.; Moldenhauer, L.M.; Lyons, A.B.; Brown, M.P.; Hayball, J.D. Human Flt-3-ligand-mobilized dendritic cells require additional activation to drive effective immune responses. Exp. Hematol. 2008, 36, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Johansen, P.; Mohanan, D.; Martinez-Gomez, J.M.; Kundig, T.M.; Gander, B. Lympho-geographical concepts in vaccine delivery. J. Control. Release 2010, 148, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Morrow, M.P.; Yan, J.; Pankhong, P.; Ferraro, B.; Lewis, M.G.; Khan, A.S.; Sardesai, N.Y.; Weiner, D.B. Unique Th1/Th2 phenotypes induced during priming and memory phases by use of interleukin-12 (IL-12) or IL-28B vaccine adjuvants in rhesus macaques. Clin. Vaccine Immunol. 2010, 17, 1493–1499. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Wang, F.; Yang, F.; Wang, Y.; Zhang, X.; Sun, S. Augmented humoral and cellular immune response of hepatitis b virus DNA vaccine by micro-needle vaccination using Flt3l as an adjuvant. Vaccine 2010, 28, 1357–1362. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, H.L.; Ruby, C.E.; Hughes, T.; Slingluff, C.L., Jr. Current status of granulocyte-macrophage colony-stimulating factor in the immunotherapy of melanoma. J. Immunother. Cancer 2014. [Google Scholar] [CrossRef]
- Lee, J.B.; Jang, J.E.; Song, M.K.; Chang, J. Intranasal delivery of cholera toxin induces Th17-dominated T-cell response to bystander antigens. PLOS ONE 2009, 4, e5190. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.L.; Staats, H.F. Cytokines: The future of intranasal vaccine adjuvants. Clin. Dev. Immunol. 2011, 2011, 289597. [Google Scholar] [CrossRef] [PubMed]
- Tamura, S. Studies on the usefulness of intranasal inactivated influenza vaccines. Vaccine 2010, 28, 6393–6397. [Google Scholar] [CrossRef] [PubMed]
- Hailemichael, Y.; Dai, Z.; Jaffarzad, N.; Ye, Y.; Medina, M.A.; Huang, X.F.; Dorta-Estremera, S.M.; Greeley, N.R.; Nitti, G.; Peng, W.; et al. Persistent antigen at vaccination sites induces tumor-specific CD8+ T cell sequestration, dysfunction and deletion. Nat. Med. 2013, 19, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Sandoval, F.; Terme, M.; Nizard, M.; Badoual, C.; Bureau, M.F.; Freyburger, L.; Clement, O.; Marcheteau, E.; Gey, A.; Fraisse, G.; et al. Mucosal imprinting of vaccine-induced CD8+ T cells is crucial to inhibit the growth of mucosal tumors. Sci. Transl. Med. 2013. [Google Scholar] [CrossRef]
- Macho-Fernandez, E.; Cruz, L.J.; Ghinnagow, R.; Fontaine, J.; Bialecki, E.; Frisch, B.; Trottein, F.; Faveeuw, C. Targeted delivery of alpha-galactosylceramide to CD8alpha+ dendritic cells optimizes type I NKT cell-based antitumor responses. J. Immunol. 2014, 193, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Blander, J.M.; Medzhitov, R. Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 2006, 440, 808–812. [Google Scholar] [CrossRef] [PubMed]
- Kasturi, S.P.; Skountzou, I.; Albrecht, R.A.; Koutsonanos, D.; Hua, T.; Nakaya, H.I.; Ravindran, R.; Stewart, S.; Alam, M.; Kwissa, M.; et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 2011, 470, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Salazar, L.G.; Coveler, A.L.; Swensen, R.E.; Gooley, T.A.; Goodell, V.; Schiffman, K.; Disis, M.L. Kinetics of tumor-specific T-cell response development after active immunization in patients with HER-2/neu overexpressing cancers. Clin. Immunol. 2007, 125, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.Y.; Kim, S.Y.; Lee, H.J.; Lee, S.E.; Lim, S.C.; Rhee, J.H.; Lee, J.J. A bacterial flagellin in combination with proinflammatory cytokines activates human monocyte-derived dendritic cells to generate cytotoxic T lymphocytes having increased homing signals to cancer. J. Immunother. 2014, 37, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Jansen, T.; Hofmans, M.P.; Theelen, M.J.; Manders, F.; Schijns, V.E. Structure- and oil type-based efficacy of emulsion adjuvants. Vaccine 2006, 24, 5400–5405. [Google Scholar] [CrossRef] [PubMed]
- Jansen, T.; Hofmans, M.P.; Theelen, M.J.; Schijns, V.E. Structure-activity relations of water-in-oil vaccine formulations and induced antigen-specific antibody responses. Vaccine 2005, 23, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
- Del Giudice, G.; Fragapane, E.; Bugarini, R.; Hora, M.; Henriksson, T.; Palla, E.; O’Hagan, D.; Donnelly, J.; Rappuoli, R.; Podda, A. Vaccines with the MF59 adjuvant do not stimulate antibody responses against squalene. Clin. Vaccine Immunol. 2006, 13, 1010–1013. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H. Detection of human papillomavirus (HPV) l1 gene DNA possibly bound to particulate aluminum adjuvant in the hpv vaccine gardasil. J. Inorg. Biochem. 2012, 117, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Didierlaurent, A.M.; Morel, S.; Lockman, L.; Giannini, S.L.; Bisteau, M.; Carlsen, H.; Kielland, A.; Vosters, O.; Vanderheyde, N.; Schiavetti, F.; et al. AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J. Immunol. 2009, 183, 6186–6197. [Google Scholar] [CrossRef] [PubMed]
- Hem, S.L.; Hogenesch, H. Relationship between physical and chemical properties of aluminum-containing adjuvants and immunopotentiation. Expert Rev. Vaccines 2007, 6, 685–698. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Hearnden, C.H.; Oleszycka, E.; Lavelle, E.C. NLRP3 inflammasome activation and cytotoxicity induced by particulate adjuvants. Methods Mol. Biol. 2013, 1040, 41–63. [Google Scholar] [PubMed]
- Mori, A.; Oleszycka, E.; Sharp, F.A.; Coleman, M.; Ozasa, Y.; Singh, M.; O’Hagan, D.T.; Tajber, L.; Corrigan, O.I.; McNeela, E.A.; et al. The vaccine adjuvant alum inhibits IL-12 by promoting PI3 kinase signaling while chitosan does not inhibit IL-12 and enhances Th1 and Th17 responses. Eur. J. Immunol. 2012, 42, 2709–2719. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.; Sharp, F.A.; Lavelle, E.C. The role of inflammasomes in the immunostimulatory effects of particulate vaccine adjuvants. Eur. J. Immunol. 2010, 40, 634–638. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Hogenesch, H. Kinetics of the inflammatory response following intramuscular injection of aluminum adjuvant. Vaccine 2013, 31, 3979–3986. [Google Scholar] [CrossRef] [PubMed]
- Matzinger, P. The danger model: A renewed sense of self. Science 2002, 296, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, E.; Coban, C.; Ishii, K.J. Particulate Adjuvant and Innate Immunity: Past Achievements, Present Findings, and Future Prospects. Int. Rev. Immunol. 2013, 32, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Miyaji, E.N.; Carvalho, E.; Oliveira, M.L.; Raw, I.; Ho, P.L. Trends in adjuvant development for vaccines: DAMPs and PAMPs as potential new adjuvants. Braz. J. Med. Biol. Res. 2011, 44, 500–513. [Google Scholar] [CrossRef] [PubMed]
- De Gregorio, E.; Caproni, E.; Ulmer, J.B. Vaccine adjuvants: Mode of action. Front. Immunol. 2013. [Google Scholar] [CrossRef]
- Mbow, M.L.; de Gregorio, E.; Valiante, N.M.; Rappuoli, R. New adjuvants for human vaccines. Curr. Opin. Immunol. 2010, 22, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.L.; Meng, T.C.; Tomai, M.A. The antiviral activity of toll-like receptor 7 and 7/8 agonists. Drug News Perspect. 2008, 21, 69–87. [Google Scholar] [CrossRef] [PubMed]
- Bodera, P.; Stankiewicz, W.; Kocik, J. Synthetic immunostimulatory oligonucleotides in experimental and clinical practice. Pharmacol. Rep. 2012, 64, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Jain, V.; Vyas, S.P.; Kohli, D.V. Well-defined and potent liposomal hepatitis B vaccines adjuvanted with lipophilic mdp derivatives. Nanomed. Nanotechnol. Biol. Med. 2009, 5, 334–344. [Google Scholar] [CrossRef]
- Siegrist, C.A.; Pihlgren, M.; Tougne, C.; Efler, S.M.; Morris, M.L.; AlAdhami, M.J.; Cameron, D.W.; Cooper, C.L.; Heathcote, J.; Davis, H.L.; et al. Co-administration of CpG oligonucleotides enhances the late affinity maturation process of human anti-hepatitis B vaccine response. Vaccine 2004, 23, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Leroux-Roels, G. Unmet needs in modern vaccinology: Adjuvants to improve the immune response. Vaccine 2010, 28, C25–C36. [Google Scholar] [CrossRef] [PubMed]
- Duthie, M.S.; Windish, H.P.; Fox, C.B.; Reed, S.G. Use of defined TLR ligands as adjuvants within human vaccines. Immunol. Rev. 2011, 239, 178–196. [Google Scholar] [CrossRef] [PubMed]
- Nierkens, S.; den Brok, M.H.; Garcia, Z.; Togher, S.; Wagenaars, J.; Wassink, M.; Boon, L.; Ruers, T.J.; Figdor, C.G.; Schoenberger, S.P.; et al. Immune adjuvant efficacy of CpG oligonucleotide in cancer treatment is founded specifically upon tlr9 function in plasmacytoid dendritic cells. Cancer Res. 2011, 71, 6428–6437. [Google Scholar] [CrossRef] [PubMed]
- Rappuoli, R. Conjugates and reverse vaccinology to eliminate bacterial meningitis. Vaccine 2001, 19, 2319–2322. [Google Scholar] [CrossRef] [PubMed]
- Levine, O.S.; Knoll, M.D.; Jones, A.; Walker, D.G.; Risko, N.; Gilani, Z. Global status of haemophilus influenzae type B and pneumococcal conjugate vaccines: Evidence, policies, and introductions. Curr. Opin. Infect. Dis. 2010, 23, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Pasetti, M.F.; Simon, J.K.; Sztein, M.B.; Levine, M.M. Immunology of gut mucosal vaccines. Immunol. Rev. 2011, 239, 125–148. [Google Scholar] [CrossRef] [PubMed]
- Lundin, B.S.; Johansson, C.; Svennerholm, A.M. Oral immunization with a salmonella enterica serovar Typhi vaccine induces specific circulating mucosa-homing CD4+ and CD8+ T cells in humans. Infect. Immunity 2002, 70, 5622–5627. [Google Scholar] [CrossRef]
- Mowat, A.M. Dendritic cells and immune responses to orally administered antigens. Vaccine 2005, 23, 1797–1799. [Google Scholar] [CrossRef] [PubMed]
- Mann, J.F.; Ferro, V.A.; Mullen, A.B.; Tetley, L.; Mullen, M.; Carter, K.C.; Alexander, J.; Stimson, W.H. Optimisation of a lipid based oral delivery system containing a/panama influenza haemagglutinin. Vaccine 2004, 22, 2425–2429. [Google Scholar] [CrossRef] [PubMed]
- Gebril, A.; Alsaadi, M.; Acevedo, R.; Mullen, A.B.; Ferro, V.A. Optimizing efficacy of mucosal vaccines. Expert Rev. Vaccines 2012, 11, 1139–1155. [Google Scholar] [CrossRef] [PubMed]
- Rescigno, M. Mucosal immunology and bacterial handling in the intestine. Best Pract. Res. Clin. Gastroenterol. 2013, 27, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Keijzer, C.; van der Zee, R.; van Eden, W.; Broere, F. Treg inducing adjuvants for therapeutic vaccination against chronic inflammatory diseases. Front. Immunol. 2013. [Google Scholar] [CrossRef]
- Chen, K.; Cerutti, A. Vaccination strategies to promote mucosal antibody responses. Immunity 2010, 33, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Lawson, L.B.; Norton, E.B.; Clements, J.D. Defending the mucosa: Adjuvant and carrier formulations for mucosal immunity. Curr. Opin. Immunol. 2011, 23, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Read, R.C.; Naylor, S.C.; Potter, C.W.; Bond, J.; Jabbal-Gill, I.; Fisher, A.; Illum, L.; Jennings, R. Effective nasal influenza vaccine delivery using chitosan. Vaccine 2005, 23, 4367–4374. [Google Scholar] [CrossRef] [PubMed]
- Baaten, B.J.; Clarke, B.; Strong, P.; Hou, S. Nasal mucosal administration of chitin microparticles boosts innate immunity against influenza a virus in the local pulmonary tissue. Vaccine 2010, 28, 4130–4137. [Google Scholar] [CrossRef] [PubMed]
- Bolhassani, A.; Javanzad, S.; Saleh, T.; Hashemi, M.; Aghasadeghi, M.R.; Sadat, S.M. Polymeric nanoparticles: Potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum. Vaccines Immunother. 2014, 10, 321–332. [Google Scholar] [CrossRef]
- Rhee, J.H.; Lee, S.E.; Kim, S.Y. Mucosal vaccine adjuvants update. Clin. Exp. Vaccine Res. 2012, 1, 50–63. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savelkoul, H.F.J.; Ferro, V.A.; Strioga, M.M.; Schijns, V.E.J.C. Choice and Design of Adjuvants for Parenteral and Mucosal Vaccines. Vaccines 2015, 3, 148-171. https://doi.org/10.3390/vaccines3010148
Savelkoul HFJ, Ferro VA, Strioga MM, Schijns VEJC. Choice and Design of Adjuvants for Parenteral and Mucosal Vaccines. Vaccines. 2015; 3(1):148-171. https://doi.org/10.3390/vaccines3010148
Chicago/Turabian StyleSavelkoul, Huub F. J., Valerie A. Ferro, Marius M. Strioga, and Virgil E. J. C. Schijns. 2015. "Choice and Design of Adjuvants for Parenteral and Mucosal Vaccines" Vaccines 3, no. 1: 148-171. https://doi.org/10.3390/vaccines3010148
APA StyleSavelkoul, H. F. J., Ferro, V. A., Strioga, M. M., & Schijns, V. E. J. C. (2015). Choice and Design of Adjuvants for Parenteral and Mucosal Vaccines. Vaccines, 3(1), 148-171. https://doi.org/10.3390/vaccines3010148