Complementary Role of CD4+ T Cells in Response to Pneumococcal Polysaccharide Vaccines in Humans
Abstract
:1. Introduction
2. Pneumococcal Polysaccharide Capsules (PPSs)
3. PPS-Specific Antibody Response and Memory B Cells
3.1. T Cell-Independent Antibody Production
3.2. Nature of PPS-Specific Antibodies
3.3. Memory B Cell (mB) Responses to the PPS
4. Collaborative T Cell-Dependent B Cell Responses
4.1. CD4+ T Cells Contribute to Effective Memory B Cell Responses
4.2. T Follicular Helper (TFH) Cells and Their Role in the PPS-Specific Humoral Response
4.3. Differential Requirements of CD4+ T Cells in Humoral Response to Whole Cell S. pneumoniae versus the Polysaccharide-Protein Conjugate Vaccine
4.4. Direct Role of CD4+T Cells in Recognizing Capsular Polysaccharide
5. Conclusions and Future Considerations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hu, X.; Chen, Z.; Xiong, K.; Wang, J.; Rao, X.; Cong, Y. Vi capsular polysaccharide: Synthesis, virulence, and application. Crit. Rev. Microbiol. 2017, 43, 440–452. [Google Scholar] [CrossRef] [PubMed]
- Mogasale, V.; Maskery, B.; Ochiai, R.L.; Lee, J.S.; Mogasale, V.V.; Ramani, E.; Kim, Y.E.; Park, J.K.; Wierzba, T.F. Burden of typhoid fever in low-income and middle-income countries: A systematic, literature-based update with risk-factor adjustment. Lancet Glob. Health 2014, 2, e570–e580. [Google Scholar] [CrossRef]
- Navon-Venezia, S.; Kondratyeva, K.; Carattoli, A. Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev. 2017, 41, 252–275. [Google Scholar] [CrossRef] [PubMed]
- Wexler, H.M. Bacteroides: The good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 2007, 20, 593–621. [Google Scholar] [CrossRef] [PubMed]
- Tzianabos, A.O.; Onderdonk, A.B.; Smith, R.S.; Kasper, D.L. Structure-function relationships for polysaccharide-induced intra-abdominal abscesses. Infect. Immun. 1994, 62, 3590–3593. [Google Scholar] [PubMed]
- Tzianabos, A.; Onderdonk, A.; Rosner, B.; Cisneros, R.; Kasper, D. Structural features of polysaccharides that induce intra-abdominal abscesses. Science 1993, 262, 416–419. [Google Scholar] [CrossRef] [PubMed]
- Wahl, B.; O′Brien, K.L.; Greenbaum, A.; Majumder, A.; Liu, L.; Chu, Y.; Luksic, I.; Nair, H.; McAllister, D.A.; Campbell, H.; et al. Burden of Streptococcus pneumoniae and Haemophilus influenzae type B disease in children in the era of conjugate vaccines: Global, regional, and national estimates for 2000-2015. Lancet. Glob. Health 2018, 6, e744–e757. [Google Scholar] [CrossRef]
- CDC. Active Bacterial Core Surveillance Report, Emerging Infections Program Network, Streptococcus Pneumoniae, 2015. Available online: https://www.cdc.gov/abcs/reports-findings/survreports/spneu15.html (accessed on 1 December 2018).
- Song, J.Y.; Nahm, M.H.; Moseley, M.A. Clinical Implications of Pneumococcal Serotypes: Invasive Disease Potential, Clinical Presentations, and Antibiotic Resistance. J. Korean Med. Sci. 2013, 28, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Vornhagen, J.; Adams Waldorf, K.M.; Rajagopal, L. Perinatal Group B Streptococcal Infections: Virulence Factors, Immunity, and Prevention Strategies. Trends Microbiol. 2017, 25, 919–931. [Google Scholar] [CrossRef] [PubMed]
- Peltola, H. Worldwide Haemophilus influenzae Type b Disease at the Beginning of the 21st Century: Global Analysis of the Disease Burden 25 Years after the Use of the Polysaccharide Vaccine and a Decade after the Advent of Conjugates. Clin. Microbiol. Rev. 2000, 13, 302–317. [Google Scholar] [CrossRef] [PubMed]
- Zarei, A.E.; Almehdar, H.A.; Redwan, E.M. Hib vaccines: Past, present, and Future Perspectives. J. Immunol. Res. 2016. [Google Scholar] [CrossRef] [PubMed]
- MacNeil, J.R.; Blain, A.E.; Wang, X.; Cohn, A.C. Current epidemiology and trends in meningococcal disease - United States, 1996–2015. Clin. Infect. Dis. 2018, 66, 1276–1281. [Google Scholar] [CrossRef] [PubMed]
- Poolman, J.T.; Kriz-Kuzemenska, P.; Ashton, F.; Bibb, W.; Dankert, J.; Demina, A.; Frøholm, L.O.; Hassan-King, M.; Jones, D.M.; Lind, I. Serotypes and subtypes of Neisseria meningitidis: Results of an international study comparing sensitivities and specificities of monoclonal antibodies. Clin. Diagn. Lab. Immunol. 1995, 2, 69–72. [Google Scholar] [PubMed]
- Follador, R.; Heinz, E.; Wyres, K.L.; Ellington, M.J.; Kowarik, M.; Holt, K.E.; Thomson, N.R. The diversity of Klebsiella pneumoniae surface polysaccharides. Microb. Genom. 2016, 2. [Google Scholar] [CrossRef] [PubMed]
- Clegg, S.; Murphy, C.N. Epidemiology and Virulence of Klebsiella pneumoniae. Microb. Spectr. 2016, 4. [Google Scholar] [CrossRef] [PubMed]
- Meatherall, B.L.; Gregson, D.; Ross, T.; Pitout, J.D.; Laupland, K.B. Incidence, risk factors, and outcomes of Klebsiella pneumoniae bacteremia. Am. J. Med. 2009, 122, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Paczosa, M.K.; Mecsas, J. Klebsiella pneumoniae: Going on the Offense with a Strong Defense. Microbiol. Mol. Biol. Rev. 2016, 80, 629–661. [Google Scholar] [CrossRef] [PubMed]
- Myron Levine, M.S.; Pasetti, M. The Immunological Basis for Immunization Series: Module 20: Salmonella enterica Serovar Typhi (Typhoid) Vaccines. WHO, October 2011. Available online: http://www.who.int/iris/handle/10665/44752 (accessed on 15 December 2018).
- Brenner, F.W.; Villar, R.G.; Angulo, F.J.; Tauxe, R.; Swaminathan, B. Salmonella Nomenclature. J. Clin. Microbiol. 2000, 38, 2465–2467. [Google Scholar] [PubMed]
- Buckle, G.C.; Walker, C.L.F.; Black, R.E. Typhoid fever and paratyphoid fever: Systematic review to estimate global morbidity and mortality for 2010. J. Glob. Health 2012, 2, 010401. [Google Scholar] [CrossRef] [PubMed]
- Wain, J.; House, D.; Zafar, A.; Baker, S.; Nair, S.; Kidgell, C.; Bhutta, Z.; Dougan, G.; Hasan, R. Vi Antigen Expression in Salmonella enterica Serovar Typhi Clinical Isolates from Pakistan. J. Clin. Microbiol. 2005, 43, 1158–1165. [Google Scholar] [CrossRef] [PubMed]
- Weiser, J.N.; Bae, D.; Fasching, C.; Scamurra, R.W.; Ratner, A.J.; Janoff, E.N. Antibody-enhanced pneumococcal adherence requires IgA1 protease. Proc. Natl. Acad. Sci. USA 2003, 100, 4215–4220. [Google Scholar] [CrossRef] [PubMed]
- Briles, D.E.; Crain, M.J.; Gray, B.M.; Forman, C.; Yother, J. Strong association between capsular type and virulence for mice among human isolates of Streptococcus pneumoniae. Infect. Immun. 1992, 60, 111–116. [Google Scholar] [PubMed]
- Eberhardt, A.; Hoyland, C.N.; Vollmer, D.; Bisle, S.; Cleverley, R.M.; Johnsborg, O.; Håvarstein, L.S.; Lewis, R.J.; Vollmer, W. Attachment of Capsular Polysaccharide to the Cell Wall in Streptococcus pneumoniae. Microb. Drug Resist. 2012, 18, 240–255. [Google Scholar] [CrossRef] [PubMed]
- Standish, A.J.; Morona, R. Capsule Structure, Synthesis, and Regulation. In Streptococcus pneumonia; Brown, J., Hammerschmidt, S., Orihuela, C., Eds.; Academic Press: Amsterdam, The Netherlands, 2015; Chapter 9; pp. 169–179. [Google Scholar]
- Avci, F.Y.; Kasper, D.L. How Bacterial Carbohydrates Influence the Adaptive Immune System. Annu. Rev. Immunol. 2010, 28, 107–130. [Google Scholar] [CrossRef] [PubMed]
- Cobb, B.A.; Kasper, D.L. Microreview: Zwitterionic capsular polysaccharides: The new MHCII-dependent antigens. Cell. Microbiol. 2005, 7, 1398–1403. [Google Scholar] [CrossRef] [PubMed]
- Velez, C.D.; Lewis, C.J.; Kasper, D.L.; Cobb, B.A. Type I Streptococcus pneumoniae carbohydrate utilizes a nitric oxide and MHC II-dependent pathway for antigen presentation. Immunology 2009, 127, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Avci, F.Y.; Li, X.; Tsuji, M.; Kasper, D.L. Carbohydrates and T cells: A sweet twosome. Semin. Immunol. 2013, 25, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Wessels, M.R.; Kasper, D.L. Antibody recognition of the type 14 pneumococcal capsule. Evidence for a conformational epitope in a neutral polysaccharide. J. Exp. Med. 1989, 169, 2121–2131. [Google Scholar]
- Weinberger, D.M.; Trzciński, K.; Lu, Y.-J.; Bogaert, D.; Brandes, A.; Galagan, J.; Anderson, P.W.; Malley, R.; Lipsitch, M. Pneumococcal Capsular Polysaccharide Structure Predicts Serotype Prevalence. PLoS Pathog. 2009, 5, e1000476. [Google Scholar] [CrossRef] [PubMed]
- Vos, Q.; Lees, A.; Wu, Z.Q.; Snapper, C.M.; Mond, J.J. B-cell activation by T-cell-independent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms. Immunol. Rev. 2000, 176, 154–170. [Google Scholar] [PubMed]
- Mond, J.J.; Lees, A.; Snapper, C.M. T cell-independent antigens type 2. Annu. Rev. Immunol. 1995, 13, 655–692. [Google Scholar] [CrossRef] [PubMed]
- Defrance, T.; Taillardet, M.; Genestier, L. T cell-independent B cell memory. Curr. Opin. Immunol. 2011, 23, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.; Sideras, P.; Smith, C.; Vorechovsky, I.; Chapman, V.; Paul, W. Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes. Science 1993, 261, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Rawlings, D.J.; Saffran, D.C.; Tsukada, S.; Largaespada, D.A.; Grimaldi, J.C.; Cohen, L.; Mohr, R.N.; Bazan, J.F.; Howard, M.; Copeland, N.G.; et al. Mutation of unique region of Bruton’s tyrosine kinase in immunodeficient XID mice. Science 1993, 261, 358–361. [Google Scholar] [CrossRef] [PubMed]
- Pryjma, J.; Humphrey, J.H. Prolonged C3 depletion by cobra venom factor in thymus-deprived mice and its implication for the role of C3 as an essential second signal for B-cell triggering. Immunology 1975, 28, 569–576. [Google Scholar] [PubMed]
- Dempsey, P.W.; Allison, M.E.; Akkaraju, S.; Goodnow, C.C.; Fearon, D.T. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 1996, 271, 348–350. [Google Scholar] [CrossRef] [PubMed]
- Bird, P.; Lachmann, P.J. The regulation of IgG subclass production in man: low serum IgG4 in inherited deficiencies of the classical pathway of C3 activation. Eur. J. Immunol. 1988, 18, 1217–1222. [Google Scholar] [CrossRef] [PubMed]
- Griffioen, A.W.; Toebes, E.A.H.; Zegers, B.J.M.; Rijkers, G.T. Role of CR2 in the human adult and neonatal in vitro antibody response to type 4 pneumococcal polysaccharide. Cell. Immunol. 1992, 143, 11–22. [Google Scholar] [CrossRef]
- Wyatt, R.M.; Dawson, J.R. Characterization of a subset of human B lymphocytes interacting with natural killer cells. J. Immunol. 1991, 147, 3381–3388. [Google Scholar] [PubMed]
- Kawano, Y.; Noma, T.; Yata, J. Regulation of human IgG subclass production by cytokines. IFN-gamma and IL-6 act antagonistically in the induction of human IgG1 but additively in the induction of IgG2. J. Immun. 1994, 153, 4948–4958. [Google Scholar] [PubMed]
- Khan, M.N.; Pichichero, M.E. The host immune dynamics of pneumococcal colonization: Implications for novel vaccine development. Hum. Vaccin. Immunother. 2014, 10, 3688–3699. [Google Scholar] [CrossRef] [PubMed]
- Carson, P.J.; Schut, R.L.; Simpson, M.L.; O′Brien, J.; Janoff, E.N. Antibody class and subclass responses to pneumococcal polysaccharides following immunization of human immunodeficiency virus-infected patients. J. Infect. Dis. 1995, 172, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Black, S.B.; Shinefield, H.R.; Ling, S.; Hansen, J.; Fireman, B.; Spring, D.; Noyes, J.; Lewis, E.; Ray, P.; Lee, J.; et al. Effectiveness of heptavalent pneumococcal conjugate vaccine in children younger than five years of age for prevention of pneumonia. Pediatr. Infect. Dis. J. 2002, 21, 810–815. [Google Scholar] [CrossRef] [PubMed]
- Black, S.; Shinefield, H.; Fireman, B.; Lewis, E.; Ray, P.; Hansen, J.R.; Elvin, L.; Ensor, K.M.; Hackell, J.; Siber, G.; et al. Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Pediatr. Infec. Dis. J. 2000, 19, 187–195. [Google Scholar] [CrossRef]
- Usinger, W.R.; Lucas, A.H. Avidity as a determinant of the protective efficacy of human antibodies to pneumococcal capsular polysaccharides. Infect. Immun. 1999, 67, 2366–2370. [Google Scholar] [PubMed]
- Lucas, A.H.; Granoff, D.M.; Mandrell, R.E.; Connolly, C.C.; Shan, A.S.; Powers, D.C. Oligoclonality of serum immunoglobulin G antibody responses to Streptococcus pneumoniae capsular polysaccharide serotypes 6B, 14, and 23F. Infect. Immun. 1997, 65, 5103–5109. [Google Scholar] [PubMed]
- Obukhanych, T.V.; Nussenzweig, M.C. T-independent type II immune responses generate memory B cells. J. Exp. Med. 2006, 203, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.; Weaver, C. Janeway’s Immunobiology, 9th ed.; Garland Science, Taylor & Francis Group, LLC: New York, NY, USA, 2017. [Google Scholar]
- McCool, T.L.; Harding, C.V.; Greenspan, N.S.; Schreiber, J.R. B- and T-Cell Immune Responses to Pneumococcal Conjugate Vaccines: Divergence between Carrier- and Polysaccharide-Specific Immunogenicity. Infect. Immun. 1999, 67, 4862–4869. [Google Scholar] [PubMed]
- Pollard, A.J.; Perrett, K.P.; Beverley, P.C. Maintaining protection against invasive bacteria with protein–polysaccharide conjugate vaccines. Nat. Rev. Immun. 2009, 9, 213. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K.L.; Hochman, M.; Goldblatt, D. Combined schedules of pneumococcal conjugate and polysaccharide vaccines: Is hyporesponsiveness an issue? Lancet Infect. Dis. 2007, 7, 597–606. [Google Scholar] [CrossRef]
- Shi, Y.; Yamazaki, T.; Okubo, Y.; Uehara, Y.; Sugane, K.; Agematsu, K. Regulation of Aged Humoral Immune Defense against Pneumococcal Bacteria by IgM Memory B Cell. J. Immun. 2005, 175, 3262–3267. [Google Scholar] [CrossRef] [PubMed]
- Kruetzmann, S.; Rosado, M.M.; Weber, H.; Germing, U.; Tournilhac, O.; Peter, H.-H.; Berner, R.; Peters, A.; Boehm, T.; Plebani, A.; et al. Human Immunoglobulin M Memory B Cells Controlling Streptococcus pneumoniae Infections Are Generated in the Spleen. J. Exp. Med. 2003, 197, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Khaskhely, N.; Mosakowski, J.; Thompson, R.S.; Khuder, S.; Smithson, S.L.; Westerink, M.A.J. Phenotypic Analysis of Pneumococcal Polysaccharide-Specific B Cells. J. Immun. 2012, 188, 2455–2463. [Google Scholar] [CrossRef] [PubMed]
- Clutterbuck, E.A.; Oh, S.; Hamaluba, M.; Westcar, S.; Beverley, P.C.L.; Pollard, A.J. Serotype-Specific and Age-Dependent Generation of Pneumococcal Polysaccharide-Specific Memory B-Cell and Antibody Responses to Immunization with a Pneumococcal Conjugate Vaccine. Clin. Vaccine Immunol. 2008, 15, 182–193. [Google Scholar] [CrossRef] [PubMed]
- De Roux, A.; Schmöele-Thoma, B.; Siber, G.R.; Hackell, J.G.; Kuhnke, A.; Ahlers, N.; Baker, S.A.; Razmpour, A.; Emini, E.A.; Fernsten, P.D.; et al. Comparison of Pneumococcal Conjugate Polysaccharide and Free Polysaccharide Vaccines in Elderly Adults: Conjugate Vaccine Elicits Improved Antibacterial Immune Responses and Immunological Memory. Clin. Infect. Dis. 2008, 46, 1015–1023. [Google Scholar] [CrossRef] [PubMed]
- Garcia de Vinuesa, C.; O′Leary, P.; Sze, D.M.; Toellner, K.M.; MacLennan, I.C. T-independent type 2 antigens induce B cell proliferation in multiple splenic sites, but exponential growth is confined to extrafollicular foci. Eur. J. Immunol. 1999, 29, 1314–1323. [Google Scholar] [CrossRef]
- De Vinuesa, C.G.; Cook, M.C.; Ball, J.; Drew, M.; Sunners, Y.; Cascalho, M.; Wabl, M.; Klaus, G.G.; MacLennan, I.C. Germinal centers without T cells. J. Exp. Med. 2000, 191, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Lentz, V.M.; Manser, T. Cutting edge: Germinal centers can be induced in the absence of T cells. J. Immunol. 2001, 167, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Tarlinton, D.; Good-Jacobson, K. Diversity Among Memory B Cells: Origin, Consequences, and Utility. Science 2013, 341, 1205–1211. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.P.; Fuhrmann, F.; Feist, R.K.; Lahmann, A.; Al Baz, M.S.; Gentz, L.J.; Vu Van, D.; Mages, H.W.; Haftmann, C.; Riedel, R.; et al. ICOS maintains the T follicular helper cell phenotype by down-regulating Kruppel-like factor 2. J. Exp. Med. 2015, 212, 217–233. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, J.S.; Herman, E.I.; Lainez, B.; Licona-Limón, P.; Esplugues, E.; Flavell, R.; Craft, J. TFH cells progressively differentiate to regulate the germinal center response. Nat. Immunol. 2016, 17, 1197. [Google Scholar] [CrossRef] [PubMed]
- Kar, S.; Colino, J.; Snapper, C.M. Distinct Cellular Pathways for Induction of CD4+ T Cell-Dependent Antibody Responses to Antigen Expressed by Intact Bacteria Versus Isolated Soluble Antigen. J. Immunol. 2016, 196, 4204–4213. [Google Scholar] [CrossRef] [PubMed]
- Abudulai, L.N.; Fernandez, S.; Corscadden, K.; Burrows, S.A.; Hunter, M.; Tjiam, M.C.; Kirkham, L.S.; Post, J.J.; French, M.A. Production of IgG antibodies to pneumococcal polysaccharides is associated with expansion of ICOS+ circulating memory T follicular-helper cells which is impaired by HIV infection. PLoS ONE 2017, 12, e0176641. [Google Scholar] [CrossRef] [PubMed]
- Kar, S.; Arjunaraja, S.; Akkoyunlu, M.; Pier, G.B.; Snapper, C.M. Distinct Mechanisms Underlie Boosted Polysaccharide-Specific IgG Responses Following Secondary Challenge with Intact Gram-Negative versus Gram-Positive Extracellular Bacteria. J. Immun. 2016, 196, 4614–4621. [Google Scholar] [CrossRef] [PubMed]
- Pichichero, M.E. Pneumococcal whole-cell and protein-based vaccines: Changing the paradigm. Expert. Rev. Vaccines 2017, 16, 1181–1190. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.Q.; Lees, A.; Snapper, C.M. Differential regulation of IgG anti-capsular polysaccharide and antiprotein responses to intact Streptococcus pneumoniae in the presence of cognate CD4+ T cell help. J. Immunol. 2004, 172, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Snapper, C.M. Mechanisms underlying in vivo polysaccharide-specific immunoglobulin responses to intact extracellular bacteria. Ann. N Y Acad. Sci. 2012, 1253, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Crotty, S. T follicular helper cell differentiation, function, and roles in disease. Immunity 2014, 41, 529–542. [Google Scholar] [CrossRef] [PubMed]
- Cannons, J.L.; Tangye, S.G.; Schwartzberg, P.L. SLAM Family Receptors and SAP Adaptors in Immunity. Annu. Rev. Immunol. 2011, 29, 665–705. [Google Scholar] [CrossRef] [PubMed]
- Moens, L.; Wuyts, G.; Boon, L.; den Hartog, M.T.; Ceuppens, J.L.; Bossuyt, X. The human polysaccharide- and protein-specific immune response to Streptococcus pneumoniae is dependent on CD4(+) T lymphocytes, CD14(+) monocytes, and the CD40-CD40 ligand interaction. J. Allergy Clin. Immunol. 2008, 122, 1231–1233. [Google Scholar] [CrossRef] [PubMed]
- Jeurissen, A.; Wuyts, G.; Kasran, A.; Ramdien-Murli, S.; Blanckaert, N.; Boon, L.; Ceuppens, J.L.; Bossuyt, X. The human antibody response to pneumococcal capsular polysaccharides is dependent on the CD40-CD40 ligand interaction. Eur. J. Immunol. 2004, 34, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Avci, F.Y.; Li, X.; Tsuji, M.; Kasper, D.L. A mechanism for glycoconjugate vaccine activation of the adaptive immune system and its implications for vaccine design. Nat. Med. 2011, 17, 1602–1609. [Google Scholar] [CrossRef] [PubMed]
- Lai, Z.; Schreiber, J.R. Antigen processing of glycoconjugate vaccines; the polysaccharide portion of the pneumococcal CRM (197) conjugate vaccine co-localizes with MHC II on the antigen processing cell surface. Vaccine 2009, 27, 3137–3144. [Google Scholar] [CrossRef] [PubMed]
- Middleton, D.R.; Sun, L.; Paschall, A.V.; Avci, F.Y. T Cell-Mediated Humoral Immune Responses to Type 3 Capsular Polysaccharide of Streptococcus pneumoniae. J. Immun. 2017, 199, 598–603. [Google Scholar] [CrossRef] [PubMed]
Name (Gram Character and Morphology) | No. of Capsular Serotypes | Type of Illness | Annual Mortality (Cases) | Polysaccharide Vaccines Available | Refs |
---|---|---|---|---|---|
Streptococcus pneumoniae (Gram-positive cocci) | 94 | Pneumonia, Otitis media, Meningitis | 1.5 million (500,000 children ≤ 5 years of age) | PCV-13, PPSV-23 | [8,9] |
Streptococcus agalactiae (Gram-positive cocci) | 9 (type 3 is predominant) | Neonatal sepsis, Meningitis, Pyrogenic infection | 150,000 neonates | None currently licensed | [10] |
Haemophilus influenzae (Gram-negative coccobacilli) | 6 (a–f) (type b is predominant) | Pneumonia, Meningitis, Cellulitis, Arthritis | 371,000, especially children ≤ 4 years of age | PRP-D, PRP-CRM, PRP-OMP, PRP-T | [11,12] |
Neisseria meningitidis (Gram-negative cocci) | 13 (5 types are predominant) | Meningitis, Pneumonia, Arthritis, Septicemia | 15,000 | MPSV4, MCV4 (types A, C, Y, and W-135) | [13,14] |
Klebsiella pneumoniae (Gram-negative bacilli) | >78 K antigens (K2 and K1 are predominant) | Urinary tract infections, Pneumonia, Bacteremia | Not available | None currently licensed | [15,16,17,18] |
Salmonella enterica serovar Typhi (Gram-negative bacilli) | 1 (Vi) | Enteric fever, Gastrointestinal infection, Septicemia | 150 to 210,000 | Ty21a (Oral live attenuated vaccine) and Vi PS* (injectable vaccine) | [1,19,20,21,22] |
Bacteroides fragilis (Gram-negative bacilli) | 2 | Abdominal abscess | Not available | None currently licensed | [4,5,6] |
Stimulus Class | Examples | Receptors | Antibodies Produced | Antibody Isotypes | Recall Memory Responses |
---|---|---|---|---|---|
T-dependent | APC-processed protein peptides with MHC-II | T cell receptor | Antigen-specific | IgM, IgG, IgA, IgE | Yes |
T-independent type 1 (TI-1) | Innate | Polyclonal (not stimulus-specific) | IgM | No | |
LPS (mice) | - TLR-4 | ||||
CpG | - TLR-9 | ||||
Poly-IC (dsRNA) | - TLR-3 | ||||
R848 | - TLR7/8 | ||||
T-independent type 2 (TI-2) | Capsular polysaccharides | B cell receptor | Antigen-specific | IgM, IgG, IgA | +/− |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jha, V.; Janoff, E.N. Complementary Role of CD4+ T Cells in Response to Pneumococcal Polysaccharide Vaccines in Humans. Vaccines 2019, 7, 18. https://doi.org/10.3390/vaccines7010018
Jha V, Janoff EN. Complementary Role of CD4+ T Cells in Response to Pneumococcal Polysaccharide Vaccines in Humans. Vaccines. 2019; 7(1):18. https://doi.org/10.3390/vaccines7010018
Chicago/Turabian StyleJha, Vibha, and Edward N. Janoff. 2019. "Complementary Role of CD4+ T Cells in Response to Pneumococcal Polysaccharide Vaccines in Humans" Vaccines 7, no. 1: 18. https://doi.org/10.3390/vaccines7010018
APA StyleJha, V., & Janoff, E. N. (2019). Complementary Role of CD4+ T Cells in Response to Pneumococcal Polysaccharide Vaccines in Humans. Vaccines, 7(1), 18. https://doi.org/10.3390/vaccines7010018