Virus-Like Particle Systems for Vaccine Development against Viruses in the Flaviviridae Family
Abstract
:1. Introduction
2. Yellow Fever Virus
3. West Nile Virus
4. Japanese Encephalitis Virus
5. Hepatitis C Virus
6. Dengue Virus
7. Zika Virus
8. Tick-Borne Encephalitis Virus and Powassan Virus
9. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lindenbach, B.D.; Murray, C.L.; Thiel, H.; Rice, C.M. Flaviviridae. In Fields Virology, 6th ed.; Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013. [Google Scholar]
- Fatmi, S.S.; Zehra, R.; Carpenter, D.O. Powassan virus—A new reemerging tick-borne disease. Front. Public Health 2017, 5, 342. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.H.; Metz, S.W. Progress and Works in Progress: Update on Flavivirus Vaccine Development. Clin. Ther. 2017, 39, 1519–1536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chevaliez, S.; Pawlotsky, J.-M. HCV genome and life cycle. Hepat. C Viruses Genomes Mol. Biol. 2006, 1, 5–47. [Google Scholar]
- Ishikawa, T.; Yamanaka, A.; Konishi, E. A review of successful flavivirus vaccines and the problems with those flaviviruses for which vaccines are not yet available. Vaccine 2014, 32, 1326–1337. [Google Scholar] [CrossRef] [PubMed]
- Castaño-Osorio, J.C.; Giraldo-Garcia, A.M.; Giraldo, M.I. Current Status of Vaccines against Dengue Virus. In Dengue Fever—a Resilient Threat in the Face of Innovation; Falcón-Lezama, J.A., Betancourt-Cravioto, M., Tapia-Conyer, R., Eds.; IntechOpen: London, UK, 2018. [Google Scholar]
- Krol, E.; Brzuska, G.; Szewczyk, B. Production and Biomedical Application of Flavivirus-like Particles. Trends Biotechnol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Baumert, T.F.; Ito, S.; Wong, D.T.; Liang, T.J. Hepatitis C Virus Structural Proteins Assemble into Viruslike Particles in Insect Cells. J. Virol. 1998, 72, 3827–3836. [Google Scholar] [Green Version]
- Mohsen, M.O.; Zha, L.; Cabral-Miranda, G.; Bachmann, M.F. Major findings and recent advances in virus–like particle (VLP)-based vaccines. Semin. Immunol. 2017, 34, 123–132. [Google Scholar] [CrossRef]
- Garg, H.; Mehmetoglu-Gurbuz, T.; Joshi, A. Recent Advances in Zika Virus Vaccines. Viruses 2018, 10, 631. [Google Scholar] [CrossRef]
- McGuinness, I.; Beckham, J.D.; Tyler, K.L.; Pastula, D.M. An Overview of Yellow Fever Virus Disease. Neurohospitalist 2017, 7, 157–158. [Google Scholar] [CrossRef]
- Javelle, E.; Gautret, P.; Raoult, D. Towards the risk of yellow fever transmission in Europe. Clin. Microbiol. Infect. 2019, 25, 10–12. [Google Scholar] [CrossRef]
- Neilson, A.A.; A Mayer, C. Yellow fever-prevention in travellers. Aust. Fam. Physician 2010, 39, 570–573. [Google Scholar] [PubMed]
- Shearer, F.M.; Longbottom, J.; Browne, A.J.; Pigott, D.M.; Brady, O.J.; Kraemer, M.U.G.; Marinho, F.; Yactayo, S.; Araújo, V.E.M.D.; Da Nóbrega, A.A.; et al. Existing and potential infection risk zones of yellow fever worldwide: A modelling analysis. Lancet Glob. Health 2018, 6, e270–e278. [Google Scholar] [CrossRef]
- Gardner, C.L.; Ryman, K.D. Yellow Fever: A Reemerging Threat. Clin. Lab. Med. 2010, 30, 237–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Possas, C.; Lourenço-De-Oliveira, R.; Tauil, P.L.; Pinheiro, F.D.P.; Pissinatti, A.; Da Cunha, R.V.; Freire, M.; Martins, R.M.; Homma, A. Yellow fever outbreak in Brazil: The puzzle of rapid viral spread and challenges for immunisation. Memórias Do Inst. Oswaldo Cruz 2018, 113. [Google Scholar] [CrossRef] [PubMed]
- Barrett, A.D.; Higgs, S. Yellow Fever: A Disease that Has Yet to be Conquered. Annu. Rev. Èntomol. 2007, 52, 209–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, R.; Khanna, P.; Chawla, S. Yellow fever vaccine: An effective vaccine for travelers. Hum. Vaccines Immunother 2014, 10, 126–128. [Google Scholar] [CrossRef] [PubMed]
- Paules, C.I.; Fauci, A.S. Yellow Fever—Once Again on the Radar Screen in the Americas. N. Engl. J. Med. 2017, 367, 1397–1399. [Google Scholar] [CrossRef]
- Pushko, P.; Lukashevich, I.S.; Weaver, S.C.; Tretyakova, I. DNA-launched live-attenuated vaccines for biodefense applications. Expert Rev. Vaccines 2016, 15, 1223–1234. [Google Scholar] [CrossRef]
- Mason, P.W.; Shustov, A.V.; Frolov, I. Production and characterization of vaccines based on flaviviruses defective in replication. Virology 2006, 351, 432–443. [Google Scholar] [CrossRef] [Green Version]
- Shustov, A.V.; Mason, P.W.; Frolov, I. Production of Pseudoinfectious Yellow Fever Virus with a Two-Component Genome. J. Virol. 2007, 81, 11737–11748. [Google Scholar] [CrossRef] [Green Version]
- Julander, J.G.; Testori, M.; Cheminay, C.; Volkmann, A. Immunogenicity and Protection After Vaccination with a Modified Vaccinia Virus Ankara-Vectored Yellow Fever Vaccine in the Hamster Model. Front. Immunol. 2018, 9, 1756. [Google Scholar] [CrossRef] [PubMed]
- Smithburn, K.C.; Hughes, T.P.; Burke, A.W.; Paul, J.H. A Neurotropic Virus Isolated from the Blood of a Native of Uganda 1. Am. J. Trop. Med. Hyg. 1940, 1, 471–492. [Google Scholar] [CrossRef]
- Zeller, H.G.; Schuffenecker, I. West Nile Virus: An Overview of Its Spread in Europe and the Mediterranean Basin in Contrast to Its Spread in the Americas. Eur. J. Clin. Microbiol. Infect. Dis. 2004, 23, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Ng, T.; Hathaway, D.; Jennings, N.; Champ, D.; Chiang, Y.; Chu, H. Equine vaccine for West Nile virus. Dev. Biol. 2003, 114, 221–227. [Google Scholar]
- El Garch, H.; Minke, J.; Rehder, J.; Richard, S.; Toulemonde, C.E.; Dinic, S.; Andreoni, C.; Audonnet, J.; Nordgren, R.; Juillard, V. A West Nile virus (WNV) recombinant canarypox virus vaccine elicits WNV-specific neutralizing antibodies and cell-mediated immune responses in the horse. Veter-Immunol. Immunopathol. 2008, 123, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Monath, T.P. Prospects for development of a vaccine against the West Nile virus. Ann. N. Y. Acad. Sci. 2001, 951, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Brandler, S.; Tangy, F. Vaccines in Development against West Nile Virus. Viruses 2013, 5, 2384–2409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, S.M.; Koraka, P.; Osterhaus, A.D.; Martina, B.E. West Nile Virus: Immunity and Pathogenesis. Viruses 2011, 3, 811–828. [Google Scholar] [CrossRef]
- Qiao, M.; Ashok, M.; Bernard, K.A.; Palacios, G.; Zhou, Z.H.; Lipkin, W.I.; Liang, T.J. Induction of Sterilizing Immunity against West Nile Virus (WNV), by Immunization with WNV-Like Particles Produced in Insect Cells. J. Infect. Dis. 2004, 190, 2104–2108. [Google Scholar] [CrossRef]
- Spohn, G.; Jennings, G.T.; Martina, B.E.; Keller, I.; Beck, M.; Pumpens, P.; Osterhaus, A.D.; Bachmann, M.F. A VLP-based vaccine targeting domain III of the West Nile virus E protein protects from lethal infection in mice. Virol. J. 2010, 7, 146. [Google Scholar] [CrossRef]
- Ohtaki, N.; Takahashi, H.; Kaneko, K.; Gomi, Y.; Ishikawa, T.; Higashi, Y.; Kurata, T.; Sata, T.; Kojima, A. Immunogenicity and efficacy of two types of West Nile virus-like particles different in size and maturation as a second-generation vaccine candidate. Vaccine 2010, 28, 6588–6596. [Google Scholar] [CrossRef] [PubMed]
- Taylor, T.J.; Diaz, F.; Colgrove, R.C.; Bernard, K.A.; DeLuca, N.A.; Whelan, S.P.; Knipe, D.M. Production of immunogenic West Nile virus-like particles using a herpes simplex virus 1 recombinant vector. Virology 2016, 496, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Erra, E.O.; Askling, H.H.; Yoksan, S.; Rombo, L.; Riutta, J.; Vene, S.; Lindquist, L.; Vapalahti, O.; Kantele, A. Cross-Protective Capacity of Japanese Encephalitis (JE) Vaccines Against Circulating Heterologous JE Virus Genotypes. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2012, 56, 267–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, L.; Fu, S.; Gao, X.; Li, M.; Cui, S.; Li, X.; Cao, Y.; Lei, W.; Lu, Z.; He, Y. Low protective efficacy of the current Japanese encephalitis vaccine against the emerging genotype 5 Japanese encephalitis virus. PLoS Negl. Trop. Dis. 2016, 10, e0004686. [Google Scholar] [CrossRef] [PubMed]
- Konishi, E.; Pincus, S.; Paoletti, E.; Shope, R.E.; Burrage, T.; Mason, P.W. Mice immunized with a subviral particle containing the japanese encephalitis virus prM/M and E proteins are protected from lethal JEV infection. Virology 1992, 188, 714–720. [Google Scholar] [CrossRef]
- Konishi, E.; Win, K.S.; Kurane, I.; Mason, P.W.; Shope, R.E.; Ennis, F.A. Particulate vaccine candidate for Japanese encephalitis induces long-lasting virus-specific memory T lymphocytes in mice. Vaccine 1997, 15, 281–286. [Google Scholar] [CrossRef]
- Konishi, E.; Fujii, A.; Mason, P.W. Generation and Characterization of a Mammalian Cell Line Continuously Expressing Japanese Encephalitis Virus Subviral Particles. J. Virol. 2001, 75, 2204–2212. [Google Scholar] [CrossRef] [Green Version]
- Kojima, A.; Yasuda, A.; Asanuma, H.; Ishikawa, T.; Takamizawa, A.; Yasui, K.; Kurata, T. Stable High-Producer Cell Clone Expressing Virus-Like Particles of the Japanese Encephalitis Virus E Protein for a Second-Generation Subunit Vaccine. J. Virol. 2003, 77, 8745–8755. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.-C.; Chen, J.-M.; Lin, J.-W.; Chen, Y.-Y.; Wu, G.-H.; Su, K.-H.; Chiou, M.-T.; Wu, S.-R.; Yin, J.-H.; Liao, J.-W.; et al. Genotype I of Japanese Encephalitis Virus Virus-like Particles Elicit Sterilizing Immunity against Genotype I and III Viral Challenge in Swine. Sci. Rep. 2018, 8, 7481. [Google Scholar] [CrossRef]
- Hunt, A.R.; Cropp, C.; Chang, G.-J.J. A recombinant particulate antigen of Japanese encephalitis virus produced in stably-transformed cells is an effective noninfectious antigen and subunit immunogen. J. Virol. Methods 2001, 97, 133–149. [Google Scholar] [CrossRef]
- Hua, R.-H.; Li, Y.-N.; Chen, Z.-S.; Liu, L.-K.; Huo, H.; Wang, X.-L.; Guo, L.-P.; Shen, N.; Wang, J.-F.; Bu, Z.-G. Generation and characterization of a new mammalian cell line continuously expressing virus-like particles of Japanese encephalitis virus for a subunit vaccine candidate. BMC Biotechnol. 2014, 14, 62. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Ma, W.; Zhang, L.; Aasa-Chapman, M.; Zhang, H. Expression of particulate-form of Japanese encephalitis virus envelope protein in a stably transfected Drosophila cell line. Virol. J. 2007, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Yamaji, H.; Segawa, M.; Nakamura, M.; Katsuda, T.; Kuwahara, M.; Konishi, E. Production of Japanese encephalitis virus-like particles using the baculovirus–insect cell system. J. Biosci. Bioeng. 2012, 114, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Yamaji, H.; Konishi, E. Production of Japanese encephalitis virus-like particles in insect cells. Bioengineered 2013, 4, 438–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, R.; Yin, F.; Wang, M.; Hu, Z.; Wang, H.; Deng, F. Glycoprotein E of the Japanese encephalitis virus forms virus-like particles and induces syncytia when expressed by a baculovirus. J. Gen. Virol. 2015, 96, 1006–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuda, S.; Nerome, R.; Maegawa, K.; Kotaki, A.; Sugita, S.; Kawasaki, K.; Kuroda, K.; Yamaguchi, R.; Takasaki, T.; Nerome, K. Development of a Japanese encephalitis virus-like particle vaccine in silkworms using codon-optimised prM and envelope genes. Heliyon 2017, 3, e00286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Global hepatitis Report 2017; Licence: CC BY-NC-SA 3.0 IGO; WHO: Geneva, Switzerland, 2017; p. 3. [Google Scholar]
- Lauer, G.M.; Barnes, E.; Lucas, M.; Timm, J.; Ouchi, K.; Kim, A.Y.; Day, C.L.; Robbins, G.K.; Casson, D.R.; Reiser, M.; et al. High resolution analysis of cellular immune responses in resolved and persistent hepatitis C virus infection. Gastroenterology 2004, 127, 924–936. [Google Scholar] [CrossRef] [PubMed]
- Baumert, T.F.; Vergalla, J.; Satoi, J.; Thomson, M.; Lechmann, M.; Herion, D.; Greenberg, H.B.; Ito, S.; Liang, T. Hepatitis C virus-like particles synthesized in insect cells as a potential vaccine candidate. Gastroenterology 1999, 117, 1397–1407. [Google Scholar] [CrossRef]
- Lechmann, M.; Murata, K.; Satoi, J.; Vergalla, J.; Baumert, T.F.; Liang, T.J. Hepatitis C virus–like particles induce virus-specific humoral and cellular immune responses in mice. Hepatology 2001, 34, 417–423. [Google Scholar] [CrossRef]
- Elmowalid, G.A.; Qiao, M.; Jeong, S.-H.; Borg, B.B.; Baumert, T.F.; Sapp, R.K.; Hu, Z.; Murthy, K.; Liang, T.J. Immunization with hepatitis C virus-like particles results in control of hepatitis C virus infection in chimpanzees. Proc. Natl. Acad. Sci. USA 2007, 104, 8427–8432. [Google Scholar] [CrossRef] [Green Version]
- Choo, Q.; Kuo, G.; Ralston, R.E.C.; Weiner, A.; Chien, D.; Van Nest, G.; Han, J.; Berger, K.; Thudium, K.; Kuo, C. Vaccination of chimpanzees against infection by the hepatitis C virus. Proc. Natl. Acad. Sci. USA 1994, 91, 1294–1298. [Google Scholar] [CrossRef] [PubMed]
- Chua, B.Y.; Johnson, D.; Tan, A.; Earnest-Silveira, L.; Sekiya, T.; Chin, R.; Torresi, J.; Jackson, D.C. Hepatitis C VLPs delivered to dendritic cells by a TLR2 targeting lipopeptide results in enhanced antibody and cell-mediated responses. PLoS ONE 2012, 7, e47492. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Krishnadas, D.K.; Li, J.; Tyrrell, D.L.J.; Agrawal, B.; Tyrrell, D.L.J. Induction of Primary Human T Cell Responses against Hepatitis C Virus-Derived Antigens NS3 or Core by Autologous Dendritic Cells Expressing Hepatitis C Virus Antigens: Potential for Vaccine and Immunotherapy. J. Immunol. 2006, 176, 6065–6075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Earnest-Silveira, L.; Chua, B.; Chin, R.; Christiansen, D.; Johnson, D.; Herrmann, S.; Ralph, S.A.; Vercauteren, K.; Mesalam, A.; Meuleman, P.; et al. Characterization of a hepatitis C virus-like particle vaccine produced in a human hepatocyte-derived cell line. J. Gen. Virol. 2016, 97, 1865–1876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christiansen, D.; Earnest-Silveira, L.; Chua, B.; Meuleman, P.; Boo, I.; Grubor-Bauk, B.; Jackson, D.C.; Keck, Z.Y.; Foung, S.K.H.; Drummer, H.E.; et al. Immunological responses following administration of a genotype 1a/1b/2/3a quadrivalent HCV VLP vaccine. Sci. Rep. 2018, 8, 6483. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, D.; Earnest-Silveira, L.; Grubor-Bauk, B.; Wijesundara, D.K.; Boo, I.; Ramsland, P.A.; Vincan, E.; Drummer, H.E.; Gowans, E.J.; Torresi, J. Pre-clinical evaluation of a quadrivalent HCV VLP vaccine in pigs following microneedle delivery. Sci. Rep. 2019, 9, 9251. [Google Scholar] [CrossRef] [PubMed]
- Patient, R.; Hourioux, C.; Vaudin, P.; Pages, J.-C.; Roingeard, P. Chimeric hepatitis B and C viruses envelope proteins can form subviral particles: Implications for the design of new vaccine strategies. New Biotechnol. 2009, 25, 226–234. [Google Scholar] [CrossRef]
- Beaumont, E.; Patient, R.; Hourioux, C.; Dimier-Poisson, I.; Roingeard, P. Chimeric hepatitis B virus/hepatitis C virus envelope proteins elicit broadly neutralizing antibodies and constitute a potential bivalent prophylactic vaccine. Hepatology 2013, 57, 1303–1313. [Google Scholar] [CrossRef]
- Beaumont, E.; Roch, E.; Chopin, L.; Roingeard, P. Hepatitis C Virus E1 and E2 Proteins Used as Separate Immunogens Induce Neutralizing Antibodies with Additive Properties. PLoS ONE 2016, 11, 0151626. [Google Scholar] [CrossRef]
- Desjardins, D.; Huret, C.; Dalba, C.; Kreppel, F.; Kochanek, S.; Cosset, F.-L.; Tangy, F.; Klatzmann, D.; Bellier, B. Recombinant retrovirus-like particle forming DNA vaccines in prime-boost immunization and their use for hepatitis C virus vaccine development. J. Gene Med. 2009, 11, 313–325. [Google Scholar] [CrossRef]
- Garrone, P.; Fluckiger, A.-C.; Mangeot, P.E.; Gauthier, E.; Dupeyrot-Lacas, P.; Mancip, J.; Cangialosi, A.; Du Chéné, I.; Legrand, R.; Mangeot, I.; et al. A Prime-Boost Strategy Using Virus-Like Particles Pseudotyped for HCV Proteins Triggers Broadly Neutralizing Antibodies in Macaques. Sci. Transl. Med. 2011, 3, 94ra71. [Google Scholar] [CrossRef] [PubMed]
- Murray, N.E.A.; Quam, M.B.; Wilder-Smith, A. Epidemiology of dengue: Past, present and future prospects. Clin. Epidemiol. 2013, 5, 299–309. [Google Scholar] [PubMed]
- Murphy, B.R.; Whitehead, S.S. Immune Response to Dengue Virus and Prospects for a Vaccine *. Annu. Rev. Immunol. 2011, 29, 587–619. [Google Scholar] [CrossRef] [PubMed]
- Dejnirattisai, W.; Supasa, P.; Wongwiwat, W.; Rouvinski, A.; Barba-Spaeth, G.; Duangchinda, T.; Sakuntabhai, A.; Cao-Lormeau, V.-M.; Malasit, P.; A Rey, F.; et al. Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus. Nat. Immunol. 2016, 17, 1102–1108. [Google Scholar] [CrossRef]
- Wilder-Smith, A. Serostatus-dependent performance of the first licensed dengue vaccine: Implications for travellers. J. Travel Med. 2018, 25, tay057. [Google Scholar] [CrossRef]
- Tan, B.-H.; Fu, J.L.; Sugrue, R.J. Characterization of the Dengue Virus Envelope Glycoprotein Expressed in Pichia pastoris. Adv. Struct. Saf. Stud. 2007, 379, 163–176. [Google Scholar]
- Liu, W.; Jiang, H.; Zhou, J.; Yang, X.; Tang, Y.; Fang, D.; Jiang, L. Recombinant dengue virus-like particles from Pichia pastoris: Efficient production and immunological properties. Virus Genes 2010, 40, 53–59. [Google Scholar] [CrossRef]
- Zhang, S.; Liang, M.; Gu, W.; Li, C.; Miao, F.; Wang, X.; Jin, C.; Zhang, L.; Zhang, F.; Zhang, Q.; et al. Vaccination with dengue virus-like particles induces humoral and cellular immune responses in mice. Virol. J. 2011, 8, 333. [Google Scholar] [CrossRef]
- Tang, Y.-X.; Jiang, L.-F.; Zhou, J.-M.; Yin, Y.; Yang, X.-M.; Liu, W.-Q.; Fang, D.-Y. Induction of virus-neutralizing antibodies and T cell responses by dengue virus type 1 virus-like particles prepared from Pichia pastoris. Chin. Med. J. 2012, 125, 1986–1992. [Google Scholar]
- Arora, U.; Tyagi, P.; Swaminathan, S.; Khanna, N. Chimeric Hepatitis B core antigen virus-like particles displaying the envelope domain III of dengue virus type 2. J. Nanobiotechnol. 2012, 10, 30. [Google Scholar] [CrossRef]
- Arora, U.; Tyagi, P.; Swaminathan, S.; Khanna, N. Virus-like particles displaying envelope domain III of dengue virus type 2 induce virus-specific antibody response in mice. Vaccine 2013, 31, 873–878. [Google Scholar] [CrossRef] [PubMed]
- Suphatrakul, A.; Yasanga, T.; Keelapang, P.; Sriburi, R.; Roytrakul, T.; Pulmanausahakul, R.; Utaipat, U.; Kawilapan, Y.; Puttikhunt, C.; Kasinrerk, W.; et al. Generation and preclinical immunogenicity study of dengue type 2 virus-like particles derived from stably transfected mosquito cells. Vaccine 2015, 33, 5613–5622. [Google Scholar] [CrossRef] [PubMed]
- Mani, S.; Tripathi, L.; Raut, R.; Tyagi, P.; Arora, U.; Barman, T.; Sood, R.; Galav, A.; Wahala, W.; De Silva, A.; et al. Pichia pastoris-Expressed Dengue 2 Envelope Forms Virus-Like Particles without Pre-Membrane Protein and Induces High Titer Neutralizing Antibodies. PLoS ONE 2013, 8, e64595. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, L.; Mani, S.; Raut, R.; Poddar, A.; Tyagi, P.; Arora, U.; De Silva, A.; Swaminathan, S.; Khanna, N. Pichia pastoris-expressed dengue 3 envelope-based virus-like particles elicit predominantly domain III-focused high titer neutralizing antibodies. Front. Microbiol. 2015, 6, 787. [Google Scholar] [CrossRef] [PubMed]
- Poddar, A.; Ramasamy, V.; Shukla, R.; Rajpoot, R.K.; Arora, U.; Jain, S.K.; Swaminathan, S.; Khanna, N. Virus-like particles derived from Pichia pastoris-expressed dengue virus type 1 glycoprotein elicit homotypic virus-neutralizing envelope domain III-directed antibodies. BMC Biotechnol. 2016, 16, 50. [Google Scholar] [CrossRef]
- Khetarpal, N.; Shukla, R.; Rajpoot, R.K.; Poddar, A.; Pal, M.; Swaminathan, S.; Arora, U.; Khanna, N. Recombinant Dengue Virus 4 Envelope Glycoprotein Virus-Like Particles Derived from Pichia pastoris are Capable of Eliciting Homotypic Domain III-Directed Neutralizing Antibodies. Am. J. Trop. Med. Hyg. 2017, 96, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Shukla, R.; Rajpoot, R.K.; Arora, U.; Poddar, A.; Swaminathan, S.; Khanna, N. Pichia pastoris-Expressed Bivalent Virus-Like Particulate Vaccine Induces Domain III-Focused Bivalent Neutralizing Antibodies without Antibody-Dependent Enhancement in Vivo. Front. Microbiol. 2017, 8, 2644. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, J.; Yu, Z.; Fang, D.; Fu, C.; Zhu, X.; He, Z.; Yan, H.; Jiang, L. Tetravalent recombinant dengue virus-like particles as potential vaccine candidates: Immunological properties. BMC Microbiol. 2014, 14, 313. [Google Scholar] [CrossRef]
- Urakami, A.; Tun, M.M.N.; Moi, M.L.; Sakurai, A.; Ishikawa, M.; Kuno, S.; Ueno, R.; Morita, K.; Akahata, W. An Envelope-Modified Tetravalent Dengue Virus-Like-Particle Vaccine Has Implications for Flavivirus Vaccine Design. J. Virol. 2017, 91, e01181-17. [Google Scholar] [CrossRef] [Green Version]
- Ramasamy, V.; Arora, U.; Shukla, R.; Poddar, A.; Shanmugam, R.K.; White, L.J.; Mattocks, M.M.; Raut, R.; Perween, A.; Tyagi, P.; et al. A tetravalent virus-like particle vaccine designed to display domain III of dengue envelope proteins induces multi-serotype neutralizing antibodies in mice and macaques which confer protection against antibody dependent enhancement in AG129 mice. PLoS Negl. Trop. Dis. 2018, 12, e0006191. [Google Scholar] [CrossRef]
- Rajpoot, R.K.; Shukla, R.; Arora, U.; Swaminathan, S.; Khanna, N. Dengue envelope-based ‘four-in-one’ virus-like particles produced using Pichia pastoris induce enhancement-lacking, domain III-directed tetravalent neutralising antibodies in mice. Sci. Rep. 2018, 8, 8643. [Google Scholar] [CrossRef] [PubMed]
- Musso, D.; Gubler, D.J. Zika Virus. Clin. Microbiol. Rev. 2016, 29, 487–524. [Google Scholar] [CrossRef] [Green Version]
- Kindhauser, M.K.; Allen, T.; Frank, V.; Santhana, R.S.; Dye, C. Zika: The origin and spread of a mosquito-borne virus. Bull. World Health Organ. 2016, 94, 675. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Zika Epidemiology Update. Available online: https://www.who.int/emergencies/diseases/zika/zika-epidemiology-update-july-2019.pdf (accessed on 10 August 2019).
- Shan, C.; Xie, X.; Shi, P.-Y. Zika Virus Vaccine: Progress and Challenges. Cell Host Microbe 2018, 24, 12–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, A.D.T. Current status of Zika vaccine development: Zika vaccines advance into clinical evaluation. NPJ Vaccines 2018, 3, 24. [Google Scholar] [CrossRef]
- Poland, G.A.; Kennedy, R.B.; Ovsyannikova, I.G.; Palacios, R.; Ho, P.L.; Kalil, J. Development of vaccines against Zika virus. Lancet Infect. Dis. 2018, 18, e211–e219. [Google Scholar] [CrossRef] [Green Version]
- LaRocca, R.A.; Abbink, P.; Peron, J.P.S.; Zanotto, P.M.D.A.; Iampietro, M.J.; Badamchi-Zadeh, A.; Boyd, M.; Ng’Ang’A, D.; Kirilova, M.; Nityanandam, R.; et al. Vaccine Protection Against Zika Virus from Brazil. Nature 2016, 536, 474. [Google Scholar] [CrossRef]
- Abbink, P.; LaRocca, R.A.; De La Barrera, R.A.; Bricault, C.A.; Moseley, E.T.; Boyd, M.; Kirilova, M.; Li, Z.; Ng’Ang’A, D.; Nanayakkara, O.; et al. Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys. Science 2016, 353, 1129–1132. [Google Scholar] [CrossRef] [Green Version]
- Sapparapu, G.; Fernandez, E.; Kose, N.; Cao, B.; Fox, J.M.; Bombardi, R.G.; Zhao, H.; Nelson, C.A.; Bryan, A.L.; Barnes, T.; et al. Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice. Nature 2016, 540, 443. [Google Scholar] [CrossRef]
- Modjarrad, K.; Lin, L.; George, S.L.; Stephenson, K.E.; Eckels, K.H.; De La Barrera, R.A.; Jarman, R.G.; Sondergaard, E.; Tennant, J.; Ansel, J.L.; et al. Safety and immunogenicity of a purified inactivated Zika virus vaccine candidate: Preliminary aggregate results from three phase 1a randomized, double-blind, placebo controlled clinical trials. Lancet 2018, 391, 563. [Google Scholar] [CrossRef]
- Gaudinski, M.R.; Houser, K.V.; Morabito, K.M.; Hu, Z.; Yamshchikov, G.; Rothwell, R.S.; Berkowitz, N.; Mendoza, F.; Saunders, J.G.; Novik, L.; et al. Safety, tolerability, and immunogenicity of two Zika virus DNA vaccine candidates in healthy adults: Randomised, open-label, phase 1 clinical trials. Lancet 2018, 391, 552–562. [Google Scholar] [CrossRef]
- Tebas, P.; Roberts, C.C.; Muthumani, K.; Reuschel, E.L.; Kudchodkar, S.B.; Zaidi, F.I.; White, S.; Khan, A.S.; Racine, T.; Choi, H.; et al. Safety and Immunogenicity of an Anti-Zika Virus DNA Vaccine–Preliminary Report. N. Engl. J. Med. 2017. [Google Scholar] [CrossRef]
- Garg, H.; Sedano, M.; Plata, G.; Punke, E.B.; Joshi, A. Development of Virus-Like-Particle Vaccine and Reporter Assay for Zika Virus. J. Virol. 2017, 91, e00834-17. [Google Scholar] [CrossRef] [Green Version]
- Boigard, H.; Alimova, A.; Martin, G.R.; Katz, A.; Gottlieb, P.; Galarza, J.M. Zika virus-like particle (VLP) based vaccine. PLoS Negl. Trop. Dis. 2017, 11, e0005608. [Google Scholar] [CrossRef]
- Dai, S.; Zhang, T.; Zhang, Y.; Wang, H.; Deng, F. Zika Virus Baculovirus-Expressed Virus-Like Particles Induce Neutralizing Antibodies in Mice. Virol. Sin. 2018, 33, 213–226. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Lai, H.; Sun, H.; Chen, Q. Virus-like particles that display Zika virus envelope protein domain III induce potent neutralizing immune responses in mice. Sci. Rep. 2017, 7, 7679. [Google Scholar] [CrossRef]
- López-Camacho, C.; Abbink, P.; LaRocca, R.A.; Dejnirattisai, W.; Boyd, M.; Badamchi-Zadeh, A.; Wallace, Z.R.; Doig, J.; Velazquez, R.S.; Neto, R.D.L.; et al. Rational Zika vaccine design via the modulation of antigen membrane anchors in chimpanzee adenoviral vectors. Nat. Commun. 2018, 9, 2441. [Google Scholar] [CrossRef]
- Elong Ngono, A.; Vizcarra, E.A.; Tang, W.W.; Sheets, N.; Joo, Y.; Kim, K.; Gorman, M.J.; Diamond, M.S.; Shresta, S. Mapping and Role of the CD8+ T Cell Response During Primary Zika Virus Infection in Mice. Cell Host Microbe 2017, 21, 35–46. [Google Scholar] [CrossRef]
- Pesko, K.N.; Torres-Perez, F.; Hjelle, B.L.; Ebel, G.D. Molecular epidemiology of Powassan virus in North America. J. Gen. Virol. 2010, 91, 2698–2705. [Google Scholar] [CrossRef]
- Bogovic, P.; Strle, F. Tick-borne encephalitis: A review of epidemiology, clinical characteristics, and management. World J. Clin. Cases 2015, 3, 430–441. [Google Scholar] [CrossRef]
- Kaaijk, P.; Luytjes, W. Are we prepared for emerging flaviviruses in Europe? Challenges for vaccination. Hum. Vaccin Immunother. 2018, 14, 337–344. [Google Scholar] [CrossRef]
- Koraka, P.; Martina, B.E.E.; Osterhaus, A.D.M.E. Bioinformatics in New Generation Flavivirus Vaccines. J. Biomed. Biotechnol. 2010, 2010, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Price, W.H.; Parks, J.J.; Ganaway, J.; O’Leary, W.; Lee, R. The Ability of an Attenuated Isolate of Langat Virus to Protect Primates and Mice against Other Members of the Russian Spring-Summer Virus Complex *. Am. J. Trop. Med. Hyg. 1963, 12, 787–799. [Google Scholar] [CrossRef]
- McAuley, A.J.; Sawatsky, B.; Ksiazek, T.; Torres, M.; Korva, M.; Lotrič-Furlan, S.; Avšič-Županc, T.; Von Messling, V.; Holbrook, M.R.; Freiberg, A.N.; et al. Cross-neutralisation of viruses of the tick-borne encephalitis complex following tick-borne encephalitis vaccination and/or infection. NPJ Vaccines 2017, 2, 5. [Google Scholar] [CrossRef]
- VanBlargan, L.A.; Himansu, S.; Foreman, B.M.; Ebel, G.D.; Pierson, T.C.; Diamond, M.S. An mRNA Vaccine Protects Mice against Multiple Tick-Transmitted Flavivirus Infections. Cell Rep. 2018, 25, 3382–3392. [Google Scholar] [CrossRef]
- Allison, S.L.; Stadler, K.; Mandl, C.W.; Kunz, C.; Heinz, F.X. Synthesis and secretion of recombinant tick-borne encephalitis virus protein E in soluble and particulate form. J. Virol. 1995, 69, 5816–5820. [Google Scholar]
- Schalich, J.; Allison, S.L.; Stiasny, K.; Mandl, C.W.; Kunz, C.; Heinz, F.X. Recombinant subviral particles from tick-borne encephalitis virus are fusogenic and provide a model system for studying flavivirus envelope glycoprotein functions. J. Virol. 1996, 70, 4549–4557. [Google Scholar] [Green Version]
- Yoshii, K.; Hayasaka, D.; Goto, A.; Obara, M.; Araki, K.; Yoshimatsu, K.; Arikawa, J.; Ivanov, L.; Mizutani, T.; Kariwa, H.; et al. Enzyme-linked immunosorbent assay using recombinant antigens expressed in mammalian cells for serodiagnosis of tick-borne encephalitis. J. Virol. Methods 2003, 108, 171–179. [Google Scholar] [CrossRef]
- Gehrke, R.; Ecker, M.; Aberle, S.W.; Allison, S.L.; Heinz, F.X.; Mandl, C.W. Incorporation of Tick-Borne Encephalitis Virus Replicons into Virus-Like Particles by a Packaging Cell Line. J. Virol. 2003, 77, 8924–8933. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Si, B.-Y.; Hu, Y.; Zhang, Y.; Yang, Y.-H.; Zhu, Q.-Y. [Expression of tick-borne encephalitis virus prM-E protein in insect cells and studies on its antigenicity]. Zhonghua shi yan he lin chuang bing du xue za zhi = Zhonghua shiyan he linchuang bingduxue Zazhi = Chin. J. Exp. Clin. Virol. 2005, 19, 335–339. [Google Scholar]
- Yun, S.-M.; Jeong, Y.E.; Wang, E.; Lee, Y.-J.; Han, M.G.; Park, C.; Lee, W.-J.; Choi, W. Cloning and Expression of Recombinant Tick-Borne Encephalitis Virus-like Particles in Pichia pastoris. Osong Public Health Res. Perspect. 2014, 5, 274–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neddermeyer, A.H.; Hultenby, K.; Paidikondala, M.; Schuchman, R.M.; Bidokhti, M.R.M. Investigating Tick-borne Flaviviral-like Particles as a Delivery System for Gene Therapy. Curr. Ther. Res. Clin. Exp. 2018, 88, 8–17. [Google Scholar] [CrossRef] [PubMed]
Virus (Strain) | Viral Proteins | Vector System | Producer Cell | Development Stage | Triggered Immunity | Ref. |
---|---|---|---|---|---|---|
YFV (17D) | prM and E | Capsid-deleted YFV | BHK-21 | In vivo | Antibody | [21,22] |
YFV (17D) | prM and E | MVA-BN | Primary chicken embryo fibroblast | Phase I clinical trial | Antibody | [23] |
WNV (HNY1999) | C, prM, and E | Recombinant baculovirus | Sf9 | In vivo | Antibody | [31] |
WNV (NY99) | EDIII | Bacteriophage (AP205) | E.coli | In vivo | Antibody | [32] |
WNV (NY99) | prM and E | Plasmid DNA | CHO | In vivo | Antibody | [33] |
WNV | prM, and E | Recombinant HSV-1 | E11 | In vivo | Antibody | [34] |
JEV (Nakayama) | prM and E | Recombinant vaccinia virus | Hela | In vivo | Antibody and T cells | [37,38] |
JEV (Nakayama) | prM and E | Plasmid DNA | CHO-K1 | In vivo | Antibody | [39] |
JEV (Beijing) | prM and E | Plasmid DNA | RK13 | In vivo | Antibody | [40] |
JEV (YL2009-4; G1) | prM and E | Plasmid DNA | CHO | In vivo | Antibody | [41] |
JEV (Nakayama) | prM and E | Plasmid DNA | COS-1 | In vivo | Antibody | [42] |
JEV (SA14-14-2) | prM and E | Plasmid DNA | BHK-21 | In vivo | Antibody | [43] |
JEV (SA14) | prM and E | Drosophila Expression System | S2 | In vivo | Antibody | [44] |
JEV (Nakayama) | prM and E | Recombinant baculovirus | Sf9 | In vitro | Not tested | [45,46] |
JEV (P3) | prM and E | Recombinant baculovirus | Sf9 | In vitro | Not tested | [47] |
JEV (Nakayama) | prM and E | Recombinant baculovirus | BM-N | In vivo | Antibody | [48] |
HCV (GT 1b) | C, E1, and E2 | Recombinant baculovirus | Sf9 | In vitro | Not tested | [8] |
HCV (GT 1b) | C, E1, and E2 | Recombinant baculovirus | Sf9 | In vivo | Antibody | [51] |
HCV (GT 1b) | C, E1, and E2 | Recombinant baculovirus | Sf9 | In vivo | Antibody, CD4+ and CD8+ T cells | [52] |
HCV (GT 1b) | C, E1, and E2 | Recombinant baculovirus | Sf9 | In vivo | CD4+ and CD8+ T cells | [53] |
HCV (GT 1a) | C, E1, and E2 | Recombinant adenovirus | Huh-7 | In vivo | Antibody | [55] |
HCV (GT 1a) | C, E1, and E2 | Recombinant adenovirus | Huh-7 | In vivo | Antibody and CD8+ T cell | [57] |
HCV (GT 1a, 1b, 2a, and 3a) | C, E1, and E2 | Recombinant adenovirus | Huh-7 | In vivo | Antibody, CD4+ and CD8+ T cells | [58,59] |
HCV (GT 1a) | E1 and E2; E1-HBsAg and E2-HBsAg | Lentiviral vector | CHO | In vivo | Antibody | [61,62] |
HCV (GT 1a) | E1 and E2 | Retroviral vector | 293T | In vivo | Antibody and CD8+ T cell | [63,64] |
DENV-1 | C, prM, and E | Plasmid DNA | P. pastoris | In vivo | Antibody | [69] |
DENV-2 | prM and E | Plasmid DNA | P. pastoris | In vivo | Antibody | [70] |
DENV-1; DENV-2; DENV-3; DENV-4 | prM and E | Plasmid DNA | 293T | In vivo | Antibody and IFN-γ | [71] |
DENV-1 | prM and E | Plasmid DNA | P. pastoris | In vivo | Antibody and T cell | [72] |
DENV-2 | HBcAg-EDIII | Plasmid DNA | E. coli | In vivo | Antibody | [73] |
DENV-2 | HBcAg-EDIII | Plasmid DNA | P. pastoris | In vivo | Antibody | [74] |
DENV-2 | EDIII | Plasmid DNA | C6/36 | In vivo | Antibody | [75] |
DENV-1; DENV-2; DENV-3; DENV-4 | Ecto E | Plasmid DNA | P. pastoris | In vivo | Antibody | [76,77,78,79] |
DENV-1/2 (Bivalent) | Ecto E | Plasmid DNA | P. pastoris | In vivo | Antibody | [80] |
DENV-1/2/3/4 (Tetravalent) | prM and E | Plasmid DNA | P. pastoris | In vivo | Antibody, TNF-α and IL-10 | [81] |
DENV-1/2/3/4 (Tetravalent) | prM and E with F108A mutation | Plasmid DNA | FreeStyle 293F | In vivo | Antibody | [82] |
DENV-1/2/3/4 (Tetravalent) | HBsAg and Ecto E | Plasmid DNA | P. pastoris | In vivo | Antibody | [83] |
DENV-1/2/3/4 (Tetravalent) | Ecto E | Plasmid DNA | P. pastoris | In vivo | Antibody | [84] |
ZIKV (Z1106033) | C, prM, and E; prM and E | Plasmid DNA | 293T | In vivo | Antibody | [97] |
ZIKV (H/PF/2013) | C, prM, and E | Plasmid DNA | Expi293 | In vivo | Antibody | [98] |
ZIKV (PRVABC59) | EDIII | Recombinant tobacco mosaic virus | N. benthamiana | In vivo | Antibody and IFN-γ | [100] |
ZIKV (Z1106033) | C, prM, and E | Plasmid DNA | 293T | In vivo | Antibody | [97] |
ZIKV (Asian) | prM and E | Recombinant adenovirus | HEK293 | Phase I clinical trial | Antibody and IFN-γ | [101] |
TBEV | prM and E | Plasmid DNA | COS-1 | In vitro | Not tested | [110,111] |
TBEV | prM and E | Plasmid DNA | 293T | In vitro | Not tested | [112] |
TBEV (Neudoerfl) | prM and E | Plasmid DNA | CHO-ME | In vitro | Not tested | [113] |
TBEV | prM and E | Recombinant baculovirus | Sf9 | In vitro | Not tested | [114] |
TBEV (KrM 93) | prM and E | Plasmid DNA | P. pastoris | In vitro | Not tested | [115] |
TBEV (Torö-2003 Swedish) | C, prM, and E; prM and E | Plasmid DNA | COS-1 or BHK-21 | In vitro | Not tested | [116] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, S.H.; Jassey, A.; Wang, J.Y.; Wang, W.-C.; Liu, C.-H.; Lin, L.-T. Virus-Like Particle Systems for Vaccine Development against Viruses in the Flaviviridae Family. Vaccines 2019, 7, 123. https://doi.org/10.3390/vaccines7040123
Wong SH, Jassey A, Wang JY, Wang W-C, Liu C-H, Lin L-T. Virus-Like Particle Systems for Vaccine Development against Viruses in the Flaviviridae Family. Vaccines. 2019; 7(4):123. https://doi.org/10.3390/vaccines7040123
Chicago/Turabian StyleWong, Shu Hui, Alagie Jassey, Jonathan Y. Wang, Wei-Cheng Wang, Ching-Hsuan Liu, and Liang-Tzung Lin. 2019. "Virus-Like Particle Systems for Vaccine Development against Viruses in the Flaviviridae Family" Vaccines 7, no. 4: 123. https://doi.org/10.3390/vaccines7040123
APA StyleWong, S. H., Jassey, A., Wang, J. Y., Wang, W. -C., Liu, C. -H., & Lin, L. -T. (2019). Virus-Like Particle Systems for Vaccine Development against Viruses in the Flaviviridae Family. Vaccines, 7(4), 123. https://doi.org/10.3390/vaccines7040123