Using the Past to Maximize the Success Probability of Future Anti-Viral Vaccines
Abstract
:1. Introduction
2. Vaccines Against Diseases Caused by ssRNA, Membrane-Enveloped Viruses
2.1. Past Successes
2.2. Limitations Encountered
3. Vaccines Against Diseases Caused by Viruses of Other Types
4. Glycan Antigens: Vaccines for Bacterial Pathogens
History: Anti-Bacterial Vaccines
5. A Guideline Based on the Above: Support from Fundamental Considerations
5.1. The Guideline
5.2. Some Fundamentals
5.3. Support and Caution from Studies of Coronaviruses in Domestic Animals
6. Implications: Bottom Line
Funding
Acknowledgments
Conflicts of Interest
References
- Jiang, C.; Yao, X.; Zhao, Y.; Wu, J.; Huang, P.; Pan, C.; Liu, S.; Pan, C. Comparative review of respiratory diseases caused by coronaviruses and influenza A viruses during epidemic season. Microbes Infect. 2020, 22, 236–244. [Google Scholar] [CrossRef]
- Cyranoski, D. Profile of a killer: The complex biology powering the coronavirus pandemic. Nature 2020, 581, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Kang, Z.; Yang, D.; Ding, S.; Luo, H.; Xiao, E. A comparison of clinical and chest CT findings in patients with influenza a (H1N1) virus infection and coronavirus disease (COVID-19). AJR Am. J. Roentgenol. 2020, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hilleman, M.R. Vaccines in historic evolution and perspective: A narrative of vaccine discoveries. J. Hum. Virol. 2000, 3, 63–76. [Google Scholar] [CrossRef]
- Hicks, D.J.; Fooks, A.R.; Johnson, N. Developments in rabies vaccines. Clin. Exp. Immunol. 2012, 169, 199–204. [Google Scholar] [CrossRef]
- Armbruster, N.; Jasny, E.; Petsch, B. Advances in RNA vaccines for preventive indications: A case study of a vaccine against rabies. Vaccines (Basel) 2019, 7, 132. [Google Scholar] [CrossRef] [Green Version]
- Gotuzzo, E.; Yactayo, S.; Córdova, E. Efficacy and duration of immunity after yellow fever vaccination: Systematic review on the need for a booster every 10 years. Am. J. Trop. Med. Hyg. 2013, 89, 434–444. [Google Scholar] [CrossRef] [Green Version]
- Staples, J.E.; Barrett, A.D.T.; Wilder-Smith, A.; Hombach, J. Review of data and knowledge gaps regarding yellow fever vaccine-induced immunity and duration of protection. NPJ Vaccines 2020, 5, 54. [Google Scholar] [CrossRef]
- Amicizia, D.; Zangrillo, F.; Lai, P.L.; Iovine, M.; Panatto, D. Overview of Japanese encephalitis disease and its prevention. Focus on IC51 vaccine (IXIARO®). J. Prev. Med. Hyg. 2018, 59, E99–E107. [Google Scholar] [CrossRef]
- Filgueira, L.; Lannes, N. Review of emerging Japanese encephalitis virus: New aspects and concepts about entry into the brain and inter-cellular spreading. Pathogens 2019, 8, 111. [Google Scholar] [CrossRef] [Green Version]
- Houser, K.; Subbarao, K. Influenza vaccines: Challenges and solutions. Cell Host Microbe 2015, 17, 295–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riese, P.; Guzmán, C.A. Roads to advanced vaccines: Influenza case study. Microb. Biotechnol. 2017, 10, 1036–1040. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.; Zaia, J. Why glycosylation matters in building a better flu vaccine. Mol. Cell. Proteom. 2019, 18, 2348–2358. [Google Scholar] [CrossRef] [PubMed]
- Hilleman, M.R. Current overview of the pathogenesis and prophylaxis of measles with focus on practical implications. Vaccine 2001, 20, 651–665. [Google Scholar] [CrossRef]
- Griffin, D.E. Measles vaccine. Viral Immunol. 2018, 31, 86–95. [Google Scholar] [CrossRef]
- Hilleman, M.R.; Weibel, R.E.; Buynak, E.B.; Stokes, J., Jr.; Whitman, J.E., Jr. Live attenuated mumps-virus vaccine. IV. Protective efficacy as measured in a field evaluation. N. Engl. J. Med. 1967, 276, 252–258. [Google Scholar] [CrossRef]
- Su, S.B.; Chang, H.L.; Chen, A.K. Current status of mumps virus infection: Epidemiology, pathogenesis, and vaccine. Int. J. Environ. Res. Public Health 2020, 17, 1686. [Google Scholar] [CrossRef] [Green Version]
- Parkman, P.D.; Meyer, H.M., Jr.; Kirschstein, R.L.; Hopps, H.E. Attenuated rubella virus—Development and laboratory characterization. N. Engl. J. Med. 1966, 275, 569–574. [Google Scholar] [CrossRef]
- Maple, P.A. Application of oral fluid assays in support of mumps, rubella and varicella control programs. Vaccines 2015, 3, 988–1003. [Google Scholar] [CrossRef] [Green Version]
- Stahelin, R.V. Membrane binding and bending in Ebola VP40 assembly and egress. Front. Microbiol. 2014, 5, 300. [Google Scholar] [CrossRef] [Green Version]
- Kasereka, M.C.; Ericson, A.D.; Conroy, A.L.; Tumba, L.; Mwesha, O.D.; Hawkes, M.T. Prior vaccination with recombinant Vesicular Stomatitis Virus-Zaire Ebolavirus vaccine is associated with improved survival among patients with Ebolavirus infection. Vaccine 2020, 38, 3003–3007. [Google Scholar] [CrossRef] [PubMed]
- Thisyakorn, U.; Thisyakorn, C. Latest developments and future directions in dengue vaccines. Adv. Vaccines 2014, 2, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Izmirly, A.M.; Alturki, S.O.; Alturki, S.O.; Connors, J.; Haddad, E.K. Challenges in dengue vaccines development: Pre-existing infections and cross-reactivity. Front. Immunol. 2020, 11, 1055. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.J.; Yoon, I.K. A review of Dengvaxia®: Development to deployment. Hum. Vaccin. Immunother. 2019, 15, 2295–2314. [Google Scholar] [CrossRef] [Green Version]
- Fatima, K.; Syed, N.I. Dengvaxia controversy: Impact on vaccine hesitancy. J. Glob. Health 2018, 8, 010312. [Google Scholar] [CrossRef]
- Eroshenko, N.; Gill, T.; Keaveney, M.K.; Church, G.M.; Trevejo, J.M.; Rajaniemi, H. Implications of antibody-dependent enhancement of infection for SARS-CoV-2 countermeasures. Nat. Biotechnol. 2020, 38, 789–791. [Google Scholar] [CrossRef]
- Kim, H.W.; Canchola, J.G.; Brandt, C.D.; Pyles, G.; Chanock, R.M.; Jensen, K.; Parrot, R.H. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am. J. Epidemiol. 1969, 89, 422–434. [Google Scholar] [CrossRef]
- Dudas, R.A.; Karron, R.A. Respiratory syncytial virus vaccines. Clin. Microbiol. Rev. 1998, 11, 430–439. [Google Scholar] [CrossRef] [Green Version]
- Aranda, S.S.; Polack, F.P. Prevention of pediatric respiratory syncytial virus lower respiratory tract illness: Perspectives for the next decade. Front. Immunol. 2019, 10, 1006. [Google Scholar] [CrossRef] [Green Version]
- Parrino, J.; Graham, B.S. Smallpox vaccines: Past, present, and future. J. Allergy Clin. Immunol. 2006, 118, 1320–1326. [Google Scholar] [CrossRef]
- Novoa, R.R.; Calderita, G.; Arranz, R.; Fontana, J.; Granzow, H.; Risco, C. Virus factories: Associations of cell organelles for viral replication and morphogenesis. Biol. Cell 2005, 97, 147–172. [Google Scholar] [CrossRef] [PubMed]
- Mehndiratta, M.M.; Mehndiratta, P.; Pande, R. Poliomyelitis: Historical facts, epidemiology, and current challenges in eradication. Neurohospitalist 2014, 4, 223–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucker, S.N.; Tingley, D.W.; Scallan, C.D. Oral adenoviral-based vaccines: Historical perspective and future opportunity. Expert Rev. Vaccines 2008, 7, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Boodhoo, N.; Gurung, A.; Sharif, S.; Behboudi, S. Marek’s disease in chickens: A review with focus on immunology. Vet. Res. 2016, 47, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilleman, M.R.; McAleer, W.J.; Buynak, E.B.; McLean, A.A. The preparation and safety of hepatitis B vaccine. J. Infect. 1983, 7, 3–8. [Google Scholar] [CrossRef]
- Liang, T.J. Hepatitis B: The virus and disease. Hepatology 2009, 49, S13–S21. [Google Scholar] [CrossRef] [Green Version]
- Bravo, C.; Mege, L.; Vigne, C.; Thollot, Y. Clinical experience with the inactivated hepatitis A vaccine, Avaxim 80U Pediatric. Expert Rev. Vaccines 2019, 18, 209–223. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H. Herpes zoster vaccination. Korean J. Pain 2013, 26, 242–248. [Google Scholar] [CrossRef]
- Plotkin, S.A.; Orenstein, W.A.; Offit, P.A. Vaccines, 5th ed.; Saunders: Philadelphia, PA, USA, 2008. [Google Scholar]
- Richardson, V.; Hernandez-Pichardo, J.; Quintanar-Solares, M.; Esparza-Aguilar, M.; Johnson, B.; Gomez-Altamirano, C.M.; Parashar, U.; Patel, M. Effect of rotavirus vaccination on death from childhood diarrhea in Mexico. N. Engl. J. Med. 2010, 362, 299–305. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Sings, H.L.; Bryan, J.T.; Wang, B.; Mach, H.; Kosinski, M.; Washabaugh, M.W.; Sitrin, R.; Barr, E. GARDASIL: Prophylactic human papillomavirus vaccine development--from bench top to bed-side. Clin. Pharmacol. Ther. 2007, 81, 259–264. [Google Scholar] [CrossRef]
- Garbuglia, A.R.; Lapa, D.; Sias, C.; Capobianchi, M.R.; Del Porto, P. The use of both therapeutic and prophylactic vaccines in the therapy of papillomavirus disease. Front. Immunol. 2020, 11, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Offit, P.A. Vaccinated: One Man’s Quest to Defeat the World’s Deadliest Diseases; Smithsonian Books/Collins: New York, NY, USA, 2007. [Google Scholar]
- Hilleman, M.R.; Ellis, R. Vaccines made from recombinant yeast cells. Vaccine 1986, 4, 75–76. [Google Scholar] [CrossRef]
- Plotkin, S. History of vaccination. Proc. Natl. Acad. Sci. USA 2014, 111, 12283–12287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishat, S.; Andreana, P.R. Entirely carbohydrate-based vaccines: An emerging field for specific and selective immune responses. Vaccines 2016, 4, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneerson, R.; Barrera, O.; Sutton, A.; Robbins, J.B. Preparation, characterization, and immunogenicity of Haemophilus influenzae type b polysaccharide-protein conjugates. J. Exp. Med. 1980, 152, 361–376. [Google Scholar] [CrossRef] [Green Version]
- Daniels, C.C.; Rogers, P.D.; Shelton, C.M. A review of pneumococcal vaccines: Current polysaccharide vaccine recommendations and future protein antigens. J. Pediatr. Pharmacol. Ther. 2016, 21, 27–35. [Google Scholar] [CrossRef]
- McCarthy, P.C.; Sharyan, A.; Sheikhi Moghaddam, L. Meningococcal vaccines: Current status and emerging strategies. Vaccines 2018, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Chandler, K.B.; Costello, C.E. Glycomics and glycoproteomics of membrane proteins and cell-surface receptors: Present trends and future opportunities. Electrophoresis 2016, 37, 1407–1419. [Google Scholar] [CrossRef] [Green Version]
- Schuster, B.; Sleytr, U.B. Relevance of glycosylation of S-layer proteins for cell surface properties. Acta Biomater. 2015, 19, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Hargett, A.A.; Renfrow, M.B. Glycosylation of viral surface proteins probed by mass spectrometry. Curr. Opin. Virol. 2019, 36, 56–66. [Google Scholar] [CrossRef]
- McAleer, W.J.; Buynak, E.B.; Maigetter, R.Z.; Wampler, D.E.; Miller, W.J.; Hilleman, M.R. Human hepatitis B vaccine from recombinant yeast. Nature 1984, 307, 178–180. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Sugahara, K.; Shiosaki, K.; Mizokami, H.; Takeo, K. Fine structure of hepatitis B virus surface antigen produced by recombinant yeast: Comparison with HBsAg of human origin. FEMS Microbiol. Lett. 1998, 165, 363–367. [Google Scholar] [CrossRef]
- Hyakumura, M.; Walsh, R.; Thaysen-Andersen, M.; Kingston, N.J.; La, M.; Lu, L.; Lovrecz, G.; Packer, N.H.; Locarnini, S.; Netter, H.J. Modification of asparagine-linked glycan density for the design of hepatitis B virus virus-like particles with enhanced immunogenicity. J. Virol. 2015, 89, 11312–13122. [Google Scholar] [CrossRef] [Green Version]
- Joe, C.C.D.; Chatterjee, S.; Lovrecz, G.; Thaysen-Andersen, M.; Walsh, R.; Locarnini, S.A.; Smooker, P.; Netter, H.J. Glycoengineered hepatitis B virus-like particles with enhanced immunogenicity. Vaccine 2020, 38, 3892–3901. [Google Scholar] [CrossRef]
- Serwer, P. Optimizing anti-viral vaccine responses: Input from a non-specialist. Antibiotics 2020, 9, 255. [Google Scholar] [CrossRef]
- Mullard, A. COVID-19 vaccine development pipeline gears up. Lancet 2020, 395, 1751–1752. [Google Scholar] [CrossRef]
- Koirala, A.; Joo, Y.J.; Khatami, A.; Chiu, C.; Britton, P.N. Vaccines for COVID-19: The current state of play. Paediatr. Respir. Rev. 2020, 18. [Google Scholar] [CrossRef]
- Takeuchi, O.; Akira, S. Pattern recognition receptors and inflammation. Cell 2010, 140, 805–820. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Chen, Y.; Wang, H.Y.; Wang, R.F. Mechanisms and pathways of innate immune activation and regulation in health and cancer. Hum. Vaccin. Immunother. 2014, 10, 3270–3285. [Google Scholar] [CrossRef] [Green Version]
- Fischer, S. Pattern recognition receptors and control of innate immunity: Role of nucleic acids. Curr. Pharm. Biotechnol. 2018, 19, 1203–1209. [Google Scholar] [CrossRef]
- Parker, L.C.; Prince, L.R.; Sabroe, I. Translational mini-review series on Toll-like receptors: Networks regulated by Toll-like receptors mediate innate and adaptive immunity. Clin. Exp. Immunol. 2007, 147, 199–207. [Google Scholar] [CrossRef]
- Javaid, N.; Yasmeen, F.; Choi, S. Toll-like receptors and relevant emerging therapeutics with reference to delivery methods. Pharmaceutics 2019, 11, 441. [Google Scholar] [CrossRef] [Green Version]
- Gustafson, H.H.; Holt-Casper, D.; Grainger, D.W.; Ghandehari, H. Nanoparticle uptake: The phagocyte problem. Nano Today 2015, 10, 487–510. [Google Scholar] [CrossRef] [Green Version]
- Fam, S.Y.; Chee, C.F.; Yong, C.Y.; Ho, K.L.; Mariatulqabtiah, A.R.; Tan, W.S. Stealth coating of nanoparticles in drug-delivery systems. Nanomater 2020, 10, 787. [Google Scholar] [CrossRef] [Green Version]
- Wood, W.B.; Eiserling, F.A.; Crowther, R.A. Long tail fibers: Genes, proteins, structure, and assembly. In Molecular Biology of Bacteriophage T4; Karam, J.D., Ed.; ASM Press: Washington DC, USA, 1994; pp. 282–290. [Google Scholar]
- Arisaka, F.; Yap, M.L.; Kanamaru, S.; Rossmann, M.G. Molecular assembly and structure of the bacteriophage T4 tail. Biophys. Rev. 2016, 8, 385–396. [Google Scholar] [CrossRef] [Green Version]
- Bandea, C.I. Aβ, tau, α-synuclein, huntingtin, TDP-43, PrP and AA are members of the innate immune system: A unifying hypothesis on the etiology of AD, PD, HD, ALS, CJD and RSA as innate immunity disorders. bioRxiv 2013. bioRxiv:000604. Available online: http://biorxiv.org/content/early/2013/11/18/000604 (accessed on 15 August 2020).
- Serwer, P.; Hayes, S.J. Two-dimensional agarose gel electrophoresis. In Electrophoresis ’86; Dunn, M.J., Ed.; VCH: Weinheim, Germany, 1986; pp. 243–252. [Google Scholar]
- Tietz, D.; Aldroubi, A.; Schneerson, R.; Unser, M.; Chrambach, A. The distribution of particles characterized by size and free mobility within polydisperse populations of protein-polysaccharide conjugates, determined from two-dimensional agarose electropherograms. Electrophoresis 1991, 12, 46–54. [Google Scholar] [CrossRef]
- Tizard, I.R. Vaccination against coronaviruses in domestic animals. Vaccine 2020, 38, 5123–5130. [Google Scholar] [CrossRef]
- Olsen, C.W.; Corapi, W.V.; Ngichabe, C.K.; Baines, J.D.; Scott, F.W. Monoclonal antibodies to the spike protein of feline infectious peritonitis virus mediate antibody-dependent enhancement of infection of feline macrophages. J. Virol. 1992, 66, 956–965. [Google Scholar] [CrossRef] [Green Version]
- Tekes, G.; Thiel, H.J. Feline coronaviruses: Pathogenesis of feline infectious peritonitis. Adv. Virus Res. 2016, 96, 193–218. [Google Scholar] [CrossRef]
- Hilleman, M.R. Overview of the needs and realities for developing new and improved vaccines in the 21st century. Intervirology 2002, 45, 199–211. [Google Scholar] [CrossRef]
- CDC: Vaccines & Preventable Diseases Home. Available online: https://www.cdc.gov/vaccines/vpd/vaccines-list.html (accessed on 15 August 2020).
Virus | Year(s) | Vaccine Type(s) | References |
---|---|---|---|
Rabies | 1885 | LA, IW | [4,5,6] |
Yellow Fever | 1935–1937 | LA | [4,7,8] |
Japanese B Encephalitis | 1944 | IW, LA | [4,9,10] |
Influenza | 1945 | LA, IW, IS, RS | [4,11,12,13] |
Measles | 1962 | LA | [4,14,15] |
Mumps | 1966 | LA | [4,16,17] |
Rubella | 1969–1979 | LA | [4,18,19] |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serwer, P. Using the Past to Maximize the Success Probability of Future Anti-Viral Vaccines. Vaccines 2020, 8, 566. https://doi.org/10.3390/vaccines8040566
Serwer P. Using the Past to Maximize the Success Probability of Future Anti-Viral Vaccines. Vaccines. 2020; 8(4):566. https://doi.org/10.3390/vaccines8040566
Chicago/Turabian StyleSerwer, Philip. 2020. "Using the Past to Maximize the Success Probability of Future Anti-Viral Vaccines" Vaccines 8, no. 4: 566. https://doi.org/10.3390/vaccines8040566
APA StyleSerwer, P. (2020). Using the Past to Maximize the Success Probability of Future Anti-Viral Vaccines. Vaccines, 8(4), 566. https://doi.org/10.3390/vaccines8040566