Current State and Challenges in Developing Respiratory Syncytial Virus Vaccines
Abstract
:1. Introduction
1.1. Epidemiology
1.2. Molecular Characteristics of Respiratory Syncytial Virus
1.3. Prophylaxis
1.4. Target Population
2. Particle-Based Vaccines
3. Vector-Based Vaccines
4. Subunit Vaccines
5. Live-Attenuated and Chimeric Vaccines
6. Monoclonal Antibodies
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stein, R.T.; Bont, L.J.; Zar, H.; Polack, F.P.; Park, C.; Claxton, A.; Borok, G.; Butylkova, Y.; Wegzyn, C. Respiratory syncytial virus hospitalization and mortality: Systematic review and meta-analysis. Pediatr. Pulmonol. 2017, 52, 556–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwane, M.K.; Chaves, S.S.; Szilagyi, P.G.; Edwards, K.M.; Hall, C.B.; Staat, M.A.; Brown, C.J.; Griffin, M.R.; Weinberg, G.A.; Poehling, K.A.; et al. Disparities between black and white children in hospitalizations associated with acute respiratory illness and laboratory-confirmed influenza and respiratory syncytial virus in 3 US Counties—2002–2009. Am. J. Epidemiol. 2013, 177, 656–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, H.; Nokes, D.J.; Gessner, B.D.; Dherani, M.; Madhi, S.A.; Singleton, R.J.; O’Brien, K.L.; Roca, A.; Wright, P.F.; Bruce, N.; et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: A systematic review and meta-analysis. Lancet Lond. Engl. 2010, 375, 1545–1555. [Google Scholar] [CrossRef] [Green Version]
- Shi, T.; McAllister, D.A.; O’Brien, K.L.; Simoes, E.A.F.; Madhi, S.A.; Gessner, B.D.; Polack, F.P.; Balsells, E.; Acacio, S.; Aguayo, C.; et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: A systematic review and modelling study. Lancet 2017, 390, 946–958. [Google Scholar] [CrossRef] [Green Version]
- Falsey, A.R.; Hennessey, P.A.; Formica, M.A.; Cox, C.; Walsh, E.E. Respiratory Syncytial Virus Infection in Elderly and High-Risk Adults. N. Engl. J. Med. 2005, 352, 1749–1759. [Google Scholar] [CrossRef]
- Thompson, W.W.; Shay, D.K.; Weintraub, E.; Brammer, L.; Cox, N.; Anderson, L.J.; Fukuda, K. Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA 2003, 289, 179–186. [Google Scholar] [CrossRef]
- Vandini, S.; Biagi, C.; Lanari, M. Respiratory syncytial virus: The influence of serotype and genotype variability on clinical course of infection. Int. J. Mol. Sci. 2017, 18, 1717. [Google Scholar] [CrossRef]
- Melero, J.A.; Mas, V.; McLellan, J.S. Structural, antigenic and immunogenic features of respiratory syncytial virus glycoproteins relevant for vaccine development. Vaccine 2017, 35, 461–468. [Google Scholar] [CrossRef] [Green Version]
- Martinez, I.; Valdes, O.; Delfraro, A.; Arbiza, J.; Russi, J.; Melero, J.A. Evolutionary pattern of the G glycoprotein of human respiratory syncytial viruses from antigenic group B: The use of alternative termination codons and lineage diversification. J. Gen. Virol. 1999, 80, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Hendry, R.M.; Talis, A.L.; Godfrey, E.; Anderson, L.J.; Fernie, B.F.; McIntosh, K. Concurrent circulation of antigenically distinct strains of respiratory syncytial virus during community outbreaks. J. Infect. Dis. 1986, 153, 291–297. [Google Scholar] [CrossRef]
- Venter, M.; Madhi, S.A.; Tiemessen, C.T.; Schoub, B.D. Genetic diversity and molecular epidemiology of respiratory syncytial virus over four consecutive seasons in South Africa: Identification of New Subgroup A and B Genotypes. J. Gen. Virol. 2001, 82, 2117–2124. [Google Scholar] [CrossRef]
- White, L.J.; Waris, M.; Cane, P.A.; Nokes, D.J.; Medley, G.F. The transmission dynamics of groups A and B Human Respiratory Syncytial Virus (HRSV) in England & Wales and Finland: Seasonality and cross-protection. Epidemiol. Infect. 2005, 133, 279–289. [Google Scholar]
- Johnson, T.R.; Graham, B.S. Contribution of respiratory syncytial virus g antigenicity to vaccine-enhanced illness and the implications for severe disease during primary respiratory syncytial virus infection. Pediatr. Infect. Dis. J. 2004, 23, S46–S57. [Google Scholar] [CrossRef] [PubMed]
- Mazur, N.I.; Higgins, D.; Nunes, M.C.; Melero, J.A.; Langedijk, A.C.; Horsley, N.; Buchholz, U.J.; Openshaw, P.J.; McLellan, J.S.; Englund, J.A.; et al. Respiratory syncytial virus network (ReSViNET) foundation. The respiratory syncytial virus vaccine landscape: Lessons from the graveyard and promising candidates. Lancet Infect. Dis. 2018, 18, e295–e311. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, K.; Hosoya, M. Neutralizing epitopes of RSV and Palivizumab resistance in Japan. FUKUSHIMA J. Med. Sci. 2017, 63, 127–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- RSV|Prevention|Respiratory Syncytial Virus|CDC. Available online: https://www.cdc.gov/rsv/about/prevention.html (accessed on 1 October 2020).
- Resch, B. Product review on the monoclonal antibody Palivizumab for prevention of respiratory syncytial virus infection. Hum. Vaccines Immunother. 2017, 13, 2138–2149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mac, S.; Sumner, A.; Duchesne-Belanger, S.; Stirling, R.; Tunis, M.; Sander, B. Cost-Effectiveness of Palivizumab for respiratory syncytial virus: A systematic review. Pediatrics 2019, 143. [Google Scholar] [CrossRef]
- Griffin, M.P.; Yuan, Y.; Takas, T.; Domachowske, J.B.; Madhi, S.A.; Manzoni, P.; Simões, E.A.F.; Esser, M.T.; Khan, A.A.; Dubovsky, F.; et al. Nirsevimab study group. Single-Dose Nirsevimab for prevention of RSV in preterm infants. N. Engl. J. Med. 2020, 383, 415–425. [Google Scholar] [CrossRef]
- Kim, H.W.; Canchola, J.G.; Brandt, C.D.; Pyles, G.; Chanock, R.M.; Jensen, K.; Parrott, R.H. Respiratory Syncytial Virus disease in infants despite prior administrationof antigenic inactivated vaccine 12. Am. J. Epidemiol. 1969, 89, 422–434. [Google Scholar] [CrossRef]
- Kapikian, A.Z.; Mitchell, R.H.; Chanock, R.M.; Shvedoff, R.A.; Stewart, C.E. An epidemiologic study of altered clinical reactivity to Respiratory Syncytial (RS) Virus infection in childern previously vaccinated with an inactivated RS Virus vaccine. Am. J. Epidemiol. 1969, 89, 405–421. [Google Scholar] [CrossRef]
- Blanken, M.O.; Rovers, M.M.; Molenaar, J.M.; Winkler-Seinstra, P.L.; Meijer, A.; Kimpen, J.L.L.; Bont, L. Dutch RSV neonatal network. respiratory Syncytial Virus and recurrent wheeze in healthy preterm infants. N. Engl. J. Med. 2013, 368, 1791–1799. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.; Seong, B.L. Exploiting Virus-like particles as innovative vaccines against emerging viral infections. J. Microbiol. 2017, 55, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.; Wu, Y.; Massare, M.; Liu, Y. Recombinant Nanoparticle Rsv F Vaccine for Respiratory Syncytial Virus. WO2013049342A1. 2013. Available online: https://patents.google.com/patent/WO2013049342A1/en (accessed on 10 November 2020).
- Gilbert, B.E.; Patel, N.; Lu, H.; Liu, Y.; Guebre-Xabier, M.; Piedra, P.A.; Glenn, G.; Ellingsworth, L.; Smith, G. Respiratory Syncytial Virus fusion nanoparticle vaccine immune responses target multiple neutralizing epitopes that contribute to protection against wild-type and palivizumab-resistant mutant virus challenge. Vaccine 2018, 36, 8069–8078. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.; Raghunandan, R.; Wu, Y.; Liu, Y.; Massare, M.; Nathan, M.; Zhou, B.; Lu, H.; Boddapati, S.; Li, J.; et al. Respiratory syncytial virus fusion glycoprotein expressed in insect cells form protein nanoparticles that induce protective immunity in cotton rats. PLoS ONE 2012, 7, e50852. [Google Scholar] [CrossRef]
- Glenn, G.M.; Fries, L.F.; Thomas, D.N.; Smith, G.; Kpamegan, E.; Lu, H.; Flyer, D.; Jani, D.; Hickman, S.P.; Piedra, P.A. A randomized, blinded, controlled, dose-ranging study of a respiratory syncytial virus recombinant fusion (F) nanoparticle vaccine in healthy women of childbearing age. J. Infect. Dis. 2016, 213, 411–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- August, A.; Glenn, G.M.; Kpamegan, E.; Hickman, S.P.; Jani, D.; Lu, H.; Thomas, D.N.; Wen, J.; Piedra, P.A.; Fries, L.F. A phase 2 randomized, observer-blind, placebo-controlled, dose-ranging trial of aluminum-adjuvanted respiratory syncytial virus f particle vaccine formulations in healthy women of childbearing age. Vaccine 2017, 35, 3749–3759. [Google Scholar] [CrossRef]
- Fries, L.; Shinde, V.; Stoddard, J.J.; Thomas, D.N.; Kpamegan, E.; Lu, H.; Smith, G.; Hickman, S.P.; Piedra, P.; Glenn, G.M. Immunogenicity and safety of a respiratory syncytial virus fusion protein (RSV F) nanoparticle vaccine in older adults. Immun. Ageing A 2017, 14, 8. [Google Scholar] [CrossRef]
- Novavax Announces Positive Top-Line Data From RSV F Vaccine Phase 1 Clinical Trial in Pediatrics | NovavaxInc. Available online: https://ir.novavax.com/news-releases/news-release-details/novavax-announces-positive-top-line-data-rsv-f-vaccine-phase-1 (accessed on 1 October 2020).
- Muňoz, F.M.; Swamy, G.K.; Hickman, S.P.; Agrawal, S.; Piedra, P.A.; Glenn, G.M.; Patel, N.; August, A.M.; Cho, I.; Fries, L. Safety and Immunogenicity of a respiratory syncytial virus fusion (F) protein nanoparticle vaccine in healthy third-trimester pregnant women and their infants. J. Infect. Dis. 2019, 220, 1802–1815. [Google Scholar] [CrossRef]
- Madhi, S.A.; Polack, F.P.; Piedra, P.A.; Munoz, F.M.; Trenholme, A.A.; Simões, E.A.F.; Swamy, G.K.; Agrawal, S.; Ahmed, K.; August, A.; et al. Respiratory syncytial virus vaccination during pregnancy and effects in infants. N. Engl. J. Med. 2020, 383, 426–439. [Google Scholar] [CrossRef]
- Novavax Provides Updates on the Global Pathways to Licensure for ResVaxTM | Novavax Inc. Available online: https://ir.novavax.com/news-releases/news-release-details/novavax-provides-updates-global-pathways-licensure-resvaxtm (accessed on 1 October 2020).
- Novavax Announces Topline RSV F Vaccine Data from Two Clinical Trials in Older Adults | Novavax Inc. Available online: https://ir.novavax.com/news-releases/news-release-details/novavax-announces-topline-rsv-f-vaccine-data-two-clinical-trials (accessed on 1 October 2020).
- Novavax Announces Positive Topline Data from Phase 2 Older Adult Trial and Provides Path Forward for RSV F Vaccine Programs | Novavax Inc. Available online: https://ir.novavax.com/news-releases/news-release-details/novavax-announces-positive-topline-data-phase-2-older-adult (accessed on 1 October 2020).
- Van Braeckel-Budimir, N.; Haijema, B.J.; Leenhouts, K. Bacterium-like particles for efficient immune stimulation of existing vaccines and new subunit vaccines in mucosal applications. Front. Immunol. 2013, 4, 282. [Google Scholar] [CrossRef] [Green Version]
- Ascough, S.; Vlachantoni, I.; Kalyan, M.; Haijema, B.-J.; Wallin-Weber, S.; Dijkstra-Tiekstra, M.; Ahmed, M.S.; van Roosmalen, M.; Grimaldi, R.; Zhang, Q.; et al. Local and systemic immunity against respiratory syncytial virus induced by a novel intranasal vaccine. A randomized, double-blind, placebo-controlled clinical trial. Am. J. Respir. Crit. Care Med. 2019, 200, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Rigter, A.; Widjaja, I.; Versantvoort, H.; Coenjaerts, F.E.J.; van Roosmalen, M.; Leenhouts, K.; Rottier, P.J.M.; Haijema, B.J.; de Haan, C.A.M. A protective and safe intranasal RSV vaccine based on a recombinant prefusion-like form of the f protein bound to bacterium-like particles. PLoS ONE 2013, 8, e71072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- First-in-Human Results of SynGEM Demonstrate that the RSV Vaccine Is Well Tolerated. Available online: https://www.virtuvax.nl/single-post/2019/03/06/First-in-Human-Results-of-SynGEM-Demonstrate-that-the-RSV-Vaccine-Is-Well-Tolerated-and-Capable-of-Inducing-Long-Lasting-Immune-Responses (accessed on 2 October 2020).
- Glenn, G.M.; Smith, G.; Fries, L.; Raghunandan, R.; Lu, H.; Zhou, B.; Thomas, D.N.; Hickman, S.P.; Kpamegan, E.; Boddapati, S.; et al. Safety and immunogenicity of a Sf9 insect cell-derived respiratory syncytial virus fusion protein nanoparticle vaccine. Vaccine 2013, 31, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Novavax. A Phase II Randomized, Observer-Blind, Placebo- Controlled Study to Evaluate the Immunogenicity and Safety of Respiratory Syncytial Virus (RSV) F Vaccine in Healthy Elderly Subjects and to Estimate the Incidence Rate of Medically-Attended RSV Disease in Vaccine and Placebo Recipients; Clinical Trial Registration NCT02266628; clinicaltrials.gov: Bethesda, MD, USA, 2017.
- Novavax. A Phase II Randomized, Observer-Blind, Placebo-Controlled Study to Evaluate the Immunogenicity and Safety of a Respiratory Syncytial Virus (RSV) Recombinant F Nanoparticle Vaccine in Healthy Older Adult Subjects Previously Treated With the Same Vaccine, or Placebo, in the Prior Year; and to Estimate the Incidence Rate of RSV Disease and Vaccine Efficacy in Subjects Based on Their RSV F Vaccine Experience Over Two Consecutive Years; Clinical Trial Registration NCT02593071; clinicaltrials.gov: Bethesda, MD, USA, 2017.
- Frey, S.E.; Winokur, P.L.; Salata, R.A.; El-Kamary, S.S.; Turley, C.B.; Walter, E.B.; Hay, C.M.; Newman, F.K.; Hill, H.R.; Zhang, Y.; et al. Safety and immunogenicity of IMVAMUNE® smallpox vaccine using different strategies for a post event scenario. Vaccine 2013, 31, 3025–3033. [Google Scholar] [CrossRef] [Green Version]
- von Sonnenburg, F.; Perona, P.; Darsow, U.; Ring, J.; von Krempelhuber, A.; Vollmar, J.; Roesch, S.; Baedeker, N.; Kollaritsch, H.; Chaplin, P. Safety and immunogenicity of modified vaccinia ankara as a smallpox vaccine in people with atopic dermatitis. Vaccine 2014, 32, 5696–5702. [Google Scholar] [CrossRef]
- Samy, N.; Reichhardt, D.; Schmidt, D.; Chen, L.M.; Silbernagl, G.; Vidojkovic, S.; Meyer, T.P.; Jordan, E.; Adams, T.; Weidenthaler, H.; et al. Safety and immunogenicity of novel modified vaccinia ankara-vectored rsv vaccine: A randomized phase I clinical trial. Vaccine 2020, 38, 2608–2619. [Google Scholar] [CrossRef]
- Jordan, E.; Lawrence, S.J.; Meyer, T.P.H.; Schmidt, D.; Schultz, S.; Mueller, J.; Stroukova, D.; Koenen, B.; Gruenert, R.; Silbernagl, G.; et al. Broad antibody and cellular immune response from a phase 2 clinical trial with a novel multivalent poxvirus-based respiratory syncytial virus vaccine. J. Infect. Dis. 2020, jiaa460. [Google Scholar] [CrossRef]
- MVA-BN RSV Vaccine | Bavarian Nordic. Available online: https://www.bavarian-nordic.com/what-we-do/infectious-diseases/rsv.aspx (accessed on 2 October 2020).
- Green, C.A.; Scarselli, E.; Sande, C.J.; Thompson, A.J.; de Lara, C.M.; Taylor, K.S.; Haworth, K.; Del Sorbo, M.; Angus, B.; Siani, L.; et al. Chimpanzee adenovirus- and MVA-Vectored Respiratory syncytial virus vaccine is safe and immunogenic in adults. Sci. Transl. Med. 2015, 7, 300ra126. [Google Scholar] [CrossRef] [Green Version]
- Green, C.A.; Sande, C.J.; Scarselli, E.; Capone, S.; Vitelli, A.; Nicosia, A.; Silva-Reyes, L.; Thompson, A.J.; de Lara, C.M.; Taylor, K.S.; et al. Novel genetically-modified chimpanzee adenovirus and mva-vectored respiratory syncytial virus vaccine safely boosts humoral and cellular immunity in healthy older adults. J. Infect. 2019, 78, 382–392. [Google Scholar] [CrossRef]
- Joyce, C.; Scallan, C.D.; Mateo, R.; Belshe, R.B.; Tucker, S.N.; Moore, A.C. Orally administered adenoviral-based vaccine induces respiratory mucosal memory and protection against RSV infection in cotton rats. Vaccine 2018, 36, 4265–4277. [Google Scholar] [CrossRef]
- Vaxart. A Phase 1, Randomized, Double-Blind, Placebo-Controlled, Dose-Ranging Trial to Determine the Safety and Immunogenicity of an Adenoviral-Vector Based Respiratory Syncytial Virus (RSV) F Protein Vaccine (VXA-RSV-f) Expressing Protein F and DsRNA Adjuvant Administered Orally to Healthy Volunteers; Clinical Trial Registration NCT02830932; clinicaltrials.gov: Bethesda, MD, USA, 2018.
- Widjojoatmodjo, M.N.; Bogaert, L.; Meek, B.; Zahn, R.; Vellinga, J.; Custers, J.; Serroyen, J.; Radošević, K.; Schuitemaker, H. Recombinant low-seroprevalent adenoviral vectors Ad26 and Ad35 Expressing the Respiratory Syncytial Virus (RSV) fusion protein induce protective immunity against RSV Infection in cotton rats. Vaccine 2015, 33, 5406–5414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadoff, J.; De Paepe, E.; Haazen, W.; Omoruyi, E.; Bastian, A.R.; Comeaux, C.; Heijnen, E.; Strout, C.; Schuitemaker, H.; Callendret, B. safety and immunogenicity of the Ad26.RSV.pref investigational vaccine coadministered with an influenza vaccine in older adults. J. Infect. Dis. 2020, jiaa409. [Google Scholar] [CrossRef] [PubMed]
- Janssen Vaccines & Prevention B.V. A Randomized, Double-Blind, Placebo-Controlled Phase 2b Study to Assess the Efficacy, Immunogenicity and Safety of an Ad26.RSV.PreF-Based Regimen in the Prevention of RT PCR-Confirmed RSV-Mediated Lower Respiratory Tract Disease in Adults Aged 65 Years and Older; Clinical Trial Registration NCT03982199; clinicaltrials.gov: Bethesda, MD, USA, 2020.
- Janssen Vaccines & Prevention B.V. A Randomized, Double-Blind, Placebo-Controlled Phase 1/2a Study for Safety and Immunogenicity Evaluations for Regimen Selection of Ad26.RSV.PreF and/or RSV PreF Protein Combinations Followed by Expanded Safety Evaluation in Adults Aged 60 Years and Older; Clinical Trial Registration Study/NCT03502707; clinicaltrials.gov: Bethesda, MD, USA, 2020.
- Janssen Vaccines & Prevention B.V. A Randomized, Double-Blind, Phase 1/2a Study to Evaluate the Safety, Tolerability and Immunogenicity of Ad26.RSV.PreF in Adults 18 to 50 Years of Age, RSV-Seropositive Toddlers 12 to 24 Months of Age; Clinical Trial Registration study/NCT03303625; clinicaltrials.gov: Bethesda, MD, USA, 2020.
- Janssen Vaccines & Prevention B.V. A Randomized, Controlled, Observer-Blind, Phase 1/2a Study to Evaluate the Safety, Reactogenicity, and Immunogenicity of Ad26.RSV.PreF in RSV-Seronegative Toddlers 12 to 24 Months of Age; Clinical Trial Registration NCT03606512; clinicaltrials.gov: Bethesda, MD, USA, 2020.
- Cicconi, P.; Jones, C.; Sarkar, E.; Silva-Reyes, L.; Klenerman, P.; de Lara, C.; Hutchings, C.; Moris, P.; Janssens, M.; Fissette, L.A.; et al. First-in-Human randomized study to assess the safety and immunogenicity of an investigational respiratory syncytial virus (RSV) vaccine based on Chimpanzee-Adenovirus-155 Viral vector-expressing RSV fusion, nucleocapsid, and antitermination viral proteins in healthy adults. Clin. Infect. Dis. 2020, 70, 2073–2081. [Google Scholar] [CrossRef] [PubMed]
- GlaxoSmithKline. A Study to Evaluate Safety, Reactogenicity and Immunogenicity of GSK Biologicals’ RSV Investigational Vaccine Based on Viral Proteins Encoded by Chimpanzee-Derived Adenovector (ChAd155-RSV) (GSK3389245A) in RSV-Seropositive Infants; Clinical Trial Registration NCT02927873; clinicaltrials.gov: Bethesda, MD, USA, 2020.
- GlaxoSmithKline. A Study to Evaluate Safety, Reactogenicity and Immunogenicity of GSK Biologicals’ RSV Investigational Vaccine Based on Viral Proteins Encoded by Chimpanzee-Derived Adenovector (ChAd155-RSV) (GSK3389245A) in Infants; Clinical Trial Registration NCT03636906; clinicaltrials.gov: Bethesda, MD, USA, 2020.
- Haller, A.A.; Miller, T.; Mitiku, M.; Coelingh, K. Expression of the Surface glycoproteins of human parainfluenza virus Type 3 by bovine parainfluenza virus type 3, a novel attenuated virus vaccine vector. J. Virol. 2000, 74, 11626–11635. [Google Scholar] [CrossRef] [Green Version]
- Gomez, M.; Mufson, M.A.; Dubovsky, F.; Knightly, C.; Zeng, W.; Losonsky, G. Phase-I Study MEDI-534, of a live, attenuated intranasal vaccine against respiratory syncytial virus and parainfluenza-3 virus in seropositive children. Pediatr. Infect. Dis. J. 2009, 28, 655–658. [Google Scholar] [CrossRef]
- Bernstein, D.I.; Malkin, E.; Abughali, N.; Falloon, J.; Yi, T.; Dubovsky, F. MI-CP149 investigators. phase 1 study of the safety and immunogenicity of a live, attenuated respiratory syncytial virus and parainfluenza virus type 3 vaccine in seronegative children. Pediatr. Infect. Dis. J. 2012, 31, 109–114. [Google Scholar] [CrossRef]
- Yang, C.-F.; Wang, C.K.; Malkin, E.; Schickli, J.H.; Shambaugh, C.; Zuo, F.; Galinski, M.S.; Dubovsky, F.; Tang, R.S. Implication of respiratory syncytial virus (rsv) f transgene sequence heterogeneity observed in phase 1 evaluation of MEDI-534, a live attenuated parainfluenza type 3 vectored RSV vaccine. Vaccine 2013, 31, 2822–2827. [Google Scholar] [CrossRef]
- Jones, B.G.; Sealy, R.E.; Rudraraju, R.; Traina-Dorge, V.L.; Finneyfrock, B.; Cook, A.; Takimoto, T.; Portner, A.; Hurwitz, J.L. Sendai virus-based RSV vaccine protects African green monkeys from RSV infection. Vaccine 2012, 30, 959–968. [Google Scholar] [CrossRef] [Green Version]
- National Institute of Allergy and Infectious Diseases (NIAID). A Phase I Double-Blind Placebo Controlled Trial to Evaluate the Safety and Immunogenicity of Intranasal Sendai Virus Vectored Respiratory Syncytial Virus (SeVRSV) Vaccine in Healthy Adults; Clinical Trial Registration NCT03473002; clinicaltrials.gov: Bethesda, MD, USA, 2019.
- Janssen Vaccines & Prevention B.V. A Randomized, Double-Blind, First-in-Human Phase 1 Study to Evaluate the Safety, Tolerability and Immunogenicity of Two Vaccinations of Ad26.RSV.PreF One Year Apart in Adults Aged 60 Years and Older in Stable Health; Clinical Trial Registration NCT02926430; clinicaltrials.gov: Bethesda, MD, USA, 2019.
- Janssen Vaccines & Prevention B.V. Open Label, Single Arm Phase 1 Study to Evaluate the Shedding, Biodistribution, Safety and Immunogenicity of Ad26.RSV.PreF Vaccine in Adults; Clinical Trial Registration NCT03795441; clinicaltrials.gov: Bethesda, MD, USA, 2019.
- Janssen Vaccines & Prevention B.V. An Exploratory, Phase 2a, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Prophylactic Efficacy of a Single Immunization of Ad26.RSV.PreF Against Respiratory Syncytial Virus Infection in a Virus Challenge Model in Healthy 18 to 50 Year-Old Adults; Clinical Trial Registration NCT03334695; clinicaltrials.gov: Bethesda, MD, USA, 2019.
- Jaberolansar, N.; Toth, I.; Young, P.R.; Skwarczynski, M. Recent advances in the development of subunit-based RSV vaccines. Expert Rev. Vaccines 2016, 15, 53–68. [Google Scholar] [CrossRef]
- Rossey, I.; Saelens, X. Vaccines against human respiratory syncytial virus in clinical trials, where are we now? Expert Rev. Vaccines 2019, 18, 1053–1067. [Google Scholar] [CrossRef]
- McLellan, J.S. Neutralizing epitopes on the respiratory syncytial virus fusion glycoprotein. Curr. Opin. Virol. 2015, 11, 70–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beugeling, M.; De Zee, J.; Woerdenbag, H.J.; Frijlink, H.W.; Wilschut, J.C.; Hinrichs, W.L.J. Respiratory syncytial virus subunit vaccines based on the viral envelope glycoproteins intended for pregnant women and the elderly. Expert Rev. Vaccines 2019, 18, 935–950. [Google Scholar] [CrossRef] [PubMed]
- McLellan, J.S.; Chen, M.; Joyce, M.G.; Sastry, M.; Stewart-Jones, G.B.E.; Yang, Y.; Zhang, B.; Chen, L.; Srivatsan, S.; Zheng, A.; et al. Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Science 2013, 342, 592–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Institute of Allergy and Infectious Diseases (NIAID). VRC 317: A Phase I Randomized, Open-Label Clinical Trial to Evaluate Dose, Safety, Tolerability and Immunogenicity of a Stabilized Prefusion RSV F Subunit Protein Vaccine, VRC-RSVRGP084-00-VP (DS-Cav1), Alone or with Alum Adjuvant, in Healthy Adults; Clinical Trial Registration NCT03049488; clinicaltrials.gov: Bethesda, MD, USA, 2020.
- Crank, M.C.; Ruckwardt, T.J.; Chen, M.; Morabito, K.M.; Phung, E.; Costner, P.J.; Holman, L.A.; Hickman, S.P.; Berkowitz, N.M.; Gordon, I.J.; et al. A proof of concept for structure-based vaccine design targeting RSV in humans. Science 2019, 365, 505–509. [Google Scholar] [CrossRef]
- Pfizer. A Pahse 1/2, Placbo-Controlled, Randomized, Observer-Blind, Dose-Finding, First-in-Human Study to Describe the Safety, Tolerability, and Immunogenicity of a Respiratory Syncytial Virus (RSV) Vaccine in Healthy Adults; Clinical Trial Registration NCT03529773; clinicaltrials.gov: Bethesda, MD, USA, 2020.
- Pfizer. A Pahse 1/2, Placbo-Controlled, Randomized, Observer-Blind, Dose-Finding, Irst-in-Human Study to Describe the Safety, Tolerability, and Immunogenicity of an AdjuvantRespiratory Syncytial Virus (RSV) Vaccine in Healthy Older Adults; Clinical Trial Registration NCT03572062; clinicaltrials.gov: Bethesda, MD, USA, 2020.
- Pfizer. A Phase 2b, Placbo-Controlled, Randomized, Observer-Blind Study to Evaluatethe Safety, Tolerability, and Immunogenicity of a Respiratory Syncytial Virus (RSV) Vaccine when Administered Concomitantly with Tetanus, Diphteria, and Acellular Pertussis Vaccine (TDAP) in Healthy non Pregnant Women 18 through 49 Years of Age; Clinical Trial Registration NCT04071158; clinicaltrials.gov: Bethesda, MD, USA, 2020.
- Pfizer. A Phase 2b, Randomized, Placebo-Controlled, Observer-Blinded Trial to Evaluate the Safety, Tollerability, and Immunogenicity of a Respiratory Syncytial Virus (RSV) Vaccine in Pregnant Women 18 through 49 Years of Age and Their Infants; Clinical Trial Registration NCT04032093; clinicaltrials.gov: Bethesda, MD, USA, 2020.
- Langley, J.M.; MacDonald, L.D.; Weir, G.M.; MacKinnon-Cameron, D.; Ye, L.; McNeil, S.; Schepens, B.; Saelens, X.; Stanford, M.M.; Halperin, S.A. A respiratory syncytial virus vaccine based on the small hydrophobic protein ectodomain presented with a novel lipid-based formulation is highly immunogenic and safe in adults: A First-in-humans study. J. Infect. Dis. 2018, 218, 378–387. [Google Scholar] [CrossRef]
- RSV and mAb Trial Tracker—PATH Vaccine Resource Library. Available online: https://vaccineresources.org/details.php?i=2682 (accessed on 3 October 2020).
- ANZCTR—Registration. Available online: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=375236 (accessed on 3 October 2020).
- GlaxoSmithKline. A Study to Evaluate the Safety, Reactogenicity and Immunogenicity of GSK Biologicals’ Investigational Unadjuvanted RSV Maternal Vaccine Compared to Placebo When Administered to Healthy Non-Pregnant Women; Clinical Trial Registration NCT03674177; clinicaltrials.gov: Bethesda, MD, USA, 2020.
- GlaxoSmithKline. A Phase II Study of 2 Dose Levels of an Investigational RSV Maternal Vaccine, Given Alone or With Boostrix, to Healthy Non-Pregnant Women; Clinical Trial Registration NCT04138056; clinicaltrials.gov: Bethesda, MD, USA, 2020.
- GlaxoSmithKline. A Phase II, Randomised, Observer-Blind, Placebo Controlled Multi-Country Study to Assess the Safety, Reactogenicity and Immunogenicity of a Single Intramuscular Dose of GSK Biologicals’ Investigational RSV Maternal Unadjuvanted Vaccine (GSK3888550A), in Healthy Pregnant Women Aged 18 to 40 Years and Infants Born to Vaccinated Mothers; Clinical Trial Registration NCT04126213; clinicaltrials.gov: Bethesda, MD, USA, 2020.
- Falloon, J.; Yu, J.; Esser, M.T.; Villafana, T.; Yu, L.; Dubovsky, F.; Takas, T.; Levin, M.J.; Falsey, A.R. An adjuvanted, postfusion F protein–based vaccine did not prevent respiratory syncytial virus illness in older adults. J. Infect. Dis. 2017, 216, 1362–1370. [Google Scholar] [CrossRef]
- A Study to Evaluate the Safety and Reactogenicity of DPX-RSV(A), a Respiratory Syncytial Virus Vaccine. Available online: https://clinicaltrials.gov/ct2/show/NCT02472548 (accessed on 10 October 2020).
- GlaxoSmithKline. Phase I/II, Observer-Blind, Safety, Reactogenicity and Immunogenicity Study of GSK Biologicals’ Respiratory Syncytial Virus (RSV) Vaccine GSK3844766A in Subjects Aged 18-40 or 60-80 Years; Clinical Trial Registration NCT03814590; clinicaltrials.gov: Bethesda, MD, USA, 2020.
- GlaxoSmithKline. Phase I, Observer-Blind, Safety, Reactogenicity and Immunogenicity Study of GSK’s Respiratory Syncytial Virus (RSV) Vaccine GSK3844766A in Japanese Subjects Aged 60-80 Years; Clinical Trial Registration NCT04090658; clinicaltrials.gov: Bethesda, MD, USA, 2020.
- Killikelly, A.; Tunis, M.; House, A.; Quach, C.; Vaudry, W.; Moore, D. Overview of the respiratory syncytial virus vaccine candidate pipeline in Canada. Can. Commun. Dis. Rep. 2020, 46, 56–61. [Google Scholar] [CrossRef]
- Wright, P.F.; Karron, R.A.; Belshe, R.B.; Shi, J.R.; Randolph, V.B.; Collins, P.L.; O’Shea, A.F.; Gruber, W.C.; Murphy, B.R. The absence of enhanced disease with wild type respiratory syncytial virus infection occurring after receipt of live, attenuated, respiratory syncytial virus vaccines. Vaccine 2007, 25, 7372–7378. [Google Scholar] [CrossRef] [Green Version]
- Karron, R.A.; Buchholz, U.J.; Collins, P.L. Live-attenuated respiratory syncytial virus vaccines. Curr. Top. Microbiol. Immunol. 2013, 372, 259–284. [Google Scholar] [CrossRef] [Green Version]
- Soto, J.A.; Stephens, L.M.; Waldstein, K.A.; Canedo-Marroquín, G.; Varga, S.M.; Kalergis, A.M. Current insights in the development of efficacious vaccines against RSV. Front. Immunol. 2020, 11, 1507. [Google Scholar] [CrossRef]
- McFarland, E.J.; Karron, R.A.; Muresan, P.; Cunningham, C.K.; Valentine, M.E.; Perlowski, C.; Thumar, B.; Gnanashanmugam, D.; Siberry, G.K.; Schappell, E.; et al. International Maternal Pediatric Adolescent AIDS Clinical Trials (IMPAACT) 2000 study team. Live-Attenuated respiratory syncytial virus vaccine candidate with deletion of RNA synthesis regulatory protein M2-2 is highly immunogenic in children. J. Infect. Dis. 2018, 217, 1347–1355. [Google Scholar] [CrossRef] [PubMed]
- Karron, R.A.; Luongo, C.; Thumar, B.; Loehr, K.M.; Englund, J.A.; Collins, P.L.; Buchholz, U.J. A Gene deletion that up-regulates viral gene expression yields an attenuated rsv vaccine with improved antibody responses in children. Sci. Transl. Med. 2015, 7, 312ra175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunningham, C.K.; Karron, R.; Muresan, P.; McFarland, E.J.; Perlowski, C.; Libous, J.; Thumar, B.; Gnanashanmugam, D.; Moye, J.; Schappell, E.; et al. International Maternal Pediatric Adolescent AIDS Clinical Trials (IMPAACT) 2012 study team. Live-attenuated respiratory syncytial virus vaccine with deletion of RNA synthesis regulatory protein M2-2 and cold passage mutations is overattenuated. Open Forum Infect. Dis. 2019, 6, ofz212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McFarland, E.J.; Karron, R.A.; Muresan, P.; Cunningham, C.K.; Libous, J.; Perlowski, C.; Thumar, B.; Gnanashanmugam, D.; Moye, J.; Schappell, E.; et al. Live respiratory syncytial virus attenuated by M2-2 deletion and stabilized temperature sensitivity mutation 1030s is a promising vaccine candidate in children. J. Infect. Dis. 2020, 221, 534–543. [Google Scholar] [CrossRef] [PubMed]
- McFarland, E.J.; Karron, R.A.; Muresan, P.; Cunningham, C.K.; Perlowski, C.; Libous, J.; Oliva, J.; Jean-Philippe, P.; Moye, J.; Schappell, E.; et al. Live-attenuated respiratory syncytial virus vaccine with M2-2 deletion and with small hydrophobic noncoding region is highly immunogenic in children. J. Infect. Dis. 2020, 221, 2050–2059. [Google Scholar] [CrossRef] [PubMed]
- Stobart, C.C.; Rostad, C.A.; Ke, Z.; Dillard, R.S.; Hampton, C.M.; Strauss, J.D.; Yi, H.; Hotard, A.L.; Meng, J.; Pickles, R.J.; et al. A live RSV vaccine with engineered thermostability is immunogenic in cotton rats despite high attenuation. Nat. Commun. 2016, 7, 13916. [Google Scholar] [CrossRef] [PubMed]
- Malkin, E.; Yogev, R.; Abughali, N.; Sliman, J.; Wang, C.K.; Zuo, F.; Yang, C.-F.; Eickhoff, M.; Esser, M.T.; Tang, R.S.; et al. Safety and immunogenicity of a live attenuated RSV vaccine in healthy RSV-Seronegative children 5 to 24 months of age. PLoS ONE 2013, 8, e77104. [Google Scholar] [CrossRef]
- Buchholz, U.J.; Cunningham, C.K.; Muresan, P.; Gnanashanmugam, D.; Sato, P.; Siberry, G.K.; Rexroad, V.; Valentine, M.; Perlowski, C.; Schappell, E.; et al. International Maternal Pediatric Adolescent AIDS Clinical Trials (IMPAACT) P1114 study team. Live Respiratory Syncytial Virus (RSV) vaccine candidate containing stabilized temperature-sensitivity mutations is highly attenuated in RSV-Seronegative infants and children. J. Infect. Dis. 2018, 217, 1338–1346. [Google Scholar] [CrossRef]
- Bakre, A.; Wu, W.; Hiscox, J.; Spann, K.; Teng, M.N.; Tripp, R.A. Human respiratory syncytial virus non-structural protein NS1 modifies MiR-24 expression via transforming growth Factor-β. J. Gen. Virol. 2015, 96, 3179–3191. [Google Scholar] [CrossRef] [Green Version]
- Liesman, R.M.; Buchholz, U.J.; Luongo, C.L.; Yang, L.; Proia, A.D.; DeVincenzo, J.P.; Collins, P.L.; Pickles, R.J. RSV-Encoded NS2 promotes epithelial cell shedding and distal airway obstruction. J. Clin. Investig. 2014, 124, 2219–2233. [Google Scholar] [CrossRef] [Green Version]
- Valarcher, J.-F.; Furze, J.; Wyld, S.; Cook, R.; Conzelmann, K.-K.; Taylor, G. Role of alpha/beta interferons in the attenuation and immunogenicity of recombinant bovine respiratory syncytial viruses lacking NS proteins. J. Virol. 2003, 77, 8426–8439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitehead, S.S.; Bukreyev, A.; Teng, M.N.; Firestone, C.-Y.; Claire, M.; Elkins, W.R.; Collins, P.L.; Murphy, B.R. Recombinant respiratory syncytial virus bearing a deletion of either the NS2 or SH gene is attenuated in chimpanzees. J. Virol. 1999, 73, 3438–3442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karron, R.A.; Luongo, C.; Mateo, J.S.; Wanionek, K.; Collins, P.L.; Buchholz, U.J. Safety and immunogenicity of the respiratory syncytial virus vaccine RSV/ΔNS2/Δ1313/I1314L in RSV-seronegative children. J. Infect. Dis. 2020, 222, 82–91. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Allergy and Infectious Diseases (NIAID). Randomized Phase I/II Study of the Safety and Immunogenicity of a Single Dose of the Recombinant Live-Attenuated Respiratory Syncytial Virus (RSV) Vaccines RSV ΔNS2/Δ1313/I1314L, RSV 6120/ΔNS2/1030s, RSV 276 or Placebo, Delivered as Nose Drops to RSV-Seronegative Children 6 to 24 Months of Age; Clinical Trial Registration NCT03916185; clinicaltrials.gov: Bethesda, MD, USA, 2020.
- National Institute of Allergy and Infectious Diseases (NIAID). Phase I Placebo-Controlled Study of the Infectivity, Safety and Immunogenicity of a Single Dose of a Recombinant Live-Attenuated Respiratory Syncytial Virus Vaccine, RSV 6120/∆NS2/1030s, Lot RSV#012A, Delivered as Nose Drops to RSV-Seropositive Children 12 to 59 Months of Age and RSV-Seronegative Infants and Children 6 to 24 Months of Age; Clinical Trial Registration NCT03387137; clinicaltrials.gov: Bethesda, MD, USA, 2020.
- National Institute of Allergy and Infectious Diseases (NIAID). Randomized Phase I Study of the Infectivity, Safety, and Immunogenicity of a Single Dose of the Recombinant Live-Attenuated Respiratory Syncytial Virus (RSV) Vaccines RSV ΔNS2/Δ1313/I1314L or RSV 276 or Placebo, Delivered as Nose Drops to RSV-Seronegative Infants and Children 6 to 24 Months of Age; Clinical Trial Registration NCT03422237; clinicaltrials.gov: Bethesda, MD, USA, 2020.
- National Institute of Allergy and Infectious Diseases (NIAID). Randomized Phase I Study of the Infectivity, Safety, and Immunogenicity of a Single Dose of the Recombinant Live-Attenuated Respiratory Syncytial Virus (RSV) Vaccines RSV ΔNS2/Δ1313/I1314L or RSV 276 or Placebo, Delivered as Nose Drops to RSV-Seronegative Infants 6 to 24 Months of Age; Clinical Trial Registration NCT03227029; clinicaltrials.gov: Bethesda, MD, USA, 2020.
- Céspedes, P.F.; Rey-Jurado, E.; Espinoza, J.A.; Rivera, C.A.; Canedo-Marroquín, G.; Bueno, S.M.; Kalergis, A.M. A single, low dose of a CGMP recombinant BCG vaccine elicits protective T cell immunity against the human respiratory syncytial virus infection and prevents lung pathology in mice. Vaccine 2017, 35, 757–766. [Google Scholar] [CrossRef] [PubMed]
- A Study to Assess Safety, Tolerability and Immunogenicity of the Live Attenuated hRSV Vaccine rBCG-N-hRSV—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03213405 (accessed on 3 October 2020).
- National Institute of Allergy and Infectious Diseases (NIAID). Phase I Placebo-Controlled Study of the Infectivity, Safety and Immunogenicity of a Single Dose of a Recombinant Live-Attenuated Respiratory Syncytial Virus Vaccine, RSV 6120/∆NS1, Lot RSV#018A, or RSV 6120/F1/G2/∆NS1, Lot RSV#016A, Delivered as Nose Drops to RSV-Seropositive Children 12 to 59 Months of Age and RSV-Seronegative Infants and Children 6 to 24 Months of Age; Clinical Trial Registration NCT03596801; clinicaltrials.gov: Bethesda, MD, USA, 2020.
- National Institute of Allergy and Infectious Diseases (NIAID). A Phase I Study of the Safety and Immunogenicity of a Single Dose of the Live Recombinant RSV D46cpΔM2-2 Vero Grown Virus Vaccine (Lot RSV #008A), Delivered as Nose Drops to RSV-Seropositive Children 12 to 59 Months of Age and RSV-Seronegative Infants and Children 6 to 24 Months of Age; Clinical Trial Registration NCT02601612; clinicaltrials.gov: Bethesda, MD, USA, 2020.
- Soto, J.A.; Gálvez, N.M.S.; Pacheco, G.A.; Bueno, S.M.; Kalergis, A.M. Antibody development for preventing the human respiratory syncytial virus pathology. Mol. Med. 2020, 26, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Q.; McLellan, J.S.; Kallewaard, N.L.; Ulbrandt, N.D.; Palaszynski, S.; Zhang, J.; Moldt, B.; Khan, A.; Svabek, C.; McAuliffe, J.M.; et al. A highly potent extended half-life antibody as a potential RSV vaccine surrogate for all infants. Sci. Transl. Med. 2017, 9, eaaj1928. [Google Scholar] [CrossRef]
- Abarca, K.; Jung, E.; Fernández, P.; Zhao, L.; Harris, B.; Connor, E.M.; Losonsky, G.A. Safety, tolerability, pharmacokinetics, and immunogenicity of motavizumab, a humanized, enhanced-potency monoclonal antibody for the prevention of respiratory syncytial virus infection in at-risk children. Pediatr. Infect. Dis. J. 2009, 28, 267–272. [Google Scholar] [CrossRef]
- The Motavizumab Study Group; Fernández, P.; Trenholme, A.; Abarca, K.; Griffin, M.P.; Hultquist, M.; Harris, B.; Losonsky, G.A. A phase 2, randomized, double-blind safety and pharmacokinetic assessment of Respiratory Syncytial Virus (RSV) prophylaxis with motavizumab and palivizumab administered in the same season. BMC Pediatr. 2010, 10, 38. [Google Scholar] [CrossRef] [Green Version]
- Feltes, T.F.; Sondheimer, H.M.; Tulloh, R.M.R.; Harris, B.S.; Jensen, K.M.; Losonsky, G.A.; Griffin, M.P. A randomized controlled trial of motavizumab versus palivizumab for the prophylaxis of serious respiratory syncytial virus disease in children with hemodynamically significant congenital heart disease. Pediatr. Res. 2011, 70, 186–191. [Google Scholar] [CrossRef]
- Carbonell-Estrany, X.; Simoes, E.A.F.; Dagan, R.; Hall, C.B.; Harris, B.; Hultquist, M.; Connor, E.M.; Losonsky, G.A.; Motavizumab Study Group. Motavizumab for prophylaxis of respiratory syncytial virus in high-risk children: A noninferiority trial. PEDIATRICS 2010, 125, e35–e51. [Google Scholar] [CrossRef] [Green Version]
- Lagos, R.; DeVincenzo, J.P.; Muñoz, A.; Hultquist, M.; Suzich, J.; Connor, E.M.; Losonsky, G.A. Safety and antiviral activity of Motavizumab, a Respiratory Syncytial Virus (RSV)–specific humanized monoclonal antibody, when administered to RSV-infected children. Pediatr. Infect. Dis. J. 2009, 28, 835–837. [Google Scholar] [CrossRef] [PubMed]
- Ramilo, O.; Lagos, R.; Sáez-Llorens, X.; Suzich, J.; Wang, C.K.; Jensen, K.M.; Harris, B.S.; Losonsky, G.A.; Griffin, M.P. Motavizumab treatment of infants hospitalized with respiratory syncytial virus infection does not decrease viral load or severity of illness. Pediatr. Infect. Dis. J. 2014, 33, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Regeneron Pharmaceuticals. A Phase 3, Randomized, Double-Blind, Placebo-Controlled Study Evaluating the Efficacy and Safety of a Human Monoclonal Antibody, REGN2222, for the Prevention of Medically Attended RSV Infection in Preterm Infants; Clinical Trial Registration NCT02325791; clinicaltrials.gov: Bethesda, MD, USA, 2018.
- Inc, R.P. Regeneron to Discontinue Development of Suptavumab for Respiratory Syncytial Virus. Available online: https://www.prnewswire.com/news-releases/regeneron-to-discontinue-development-of-suptavumab-for-respiratory-syncytial-virus-300503716.html (accessed on 3 October 2020).
- Griffin, M.P.; Khan, A.A.; Esser, M.T.; Jensen, K.; Takas, T.; Kankam, M.K.; Villafana, T.; Dubovsky, F. Safety, tolerability, and pharmacokinetics of MEDI8897, the respiratory syncytial virus prefusion F-targeting monoclonal antibody with an extended half-life, in healthy adults. Antimicrob. Agents Chemother. 2017, 61, e01714-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domachowske, J.B.; Khan, A.A.; Esser, M.T.; Jensen, K.; Takas, T.; Villafana, T.; Dubovsky, F.; Griffin, M.P. Safety, tolerability and pharmacokinetics of medi8897, an extended half-life single-dose respiratory syncytial virus prefusion f-targeting monoclonal antibody administered as a single dose to healthy preterm infants. Pediatr. Infect. Dis. J. 2018, 37, 886–892. [Google Scholar] [CrossRef] [PubMed]
- MedImmune LLC. A Phase 3 Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Safety and Efficacy of MEDI8897, a Monoclonal Antibody with an Extended Half-Life Against Respiratory Syncytial Virus, in Healthy Late Preterm and Term Infants (MELODY); Clinical Trial Registration NCT03979313; clinicaltrials.gov: Bethesda, MD, USA, 2020.
- MedImmune LLC. A Phase 2/3 Randomized, Double-Blind, Palivizumab-Controlled Study to Evaluate the Safety of MEDI8897, a Monoclonal Antibody With an Extended Half-Life Against Respiratory Syncytial Virus, in High-Risk Children (MEDLEY); Clinical Trial Registration NCT03959488; clinicaltrials.gov: Bethesda, MD, USA, 2020.
- Safety and Tolerability Study of RSV Prophylactic Drug for Immunocompromised Children—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04484935 (accessed on 3 October 2020).
- Aliprantis, A.; Wolford, D.; Caro, L.; Maas, B.; Ma, H.; Vora, K.; Geng, D.; Railkar, R.; Lee, A.; Sterling, L.; et al. A randomized, double-blind, placebo-controlled trial to assess the safety and tolerability of a Respiratory Syncytial Virus (RSV) neutralizing monoclonal antibody (MK-1654) in healthy subjects. Open Forum Infect. Dis. 2018, 5 (Suppl. 1), S572. [Google Scholar] [CrossRef]
- Maas, B.; Aliprantis, A.; Wolford, D.; Fayad, G.; Vora, K.; Geng, D.; Ma, H.; Caro, L. 1384. RSV Monoclonal Antibody (MK-1654) Phase 1 Pharmacokinetics (PK) in Healthy Adults and Population PK Modeling to Support Pediatric Development. Open Forum Infect. Dis. 2018, 5 (Suppl. 1), S424–S425. [Google Scholar] [CrossRef] [Green Version]
- Merck Sharp & Dohme Corp. A Phase 2a Double-Blind, Randomized, Placebo-Controlled Study to Evaluate the Efficacy and Safety of MK-1654 in Healthy Participants Inoculated With Experimental Respiratory Syncytial Virus; Clinical Trial Registration NCT04086472; clinicaltrials.gov: Bethesda, MD, USA, 2020.
- Merck Sharp & Dohme Corp. A Double-Blind, Randomized, Placebo-Controlled, Single Ascending Dose Study to Evaluate the Safety, Tolerability, and Pharmacokinetics of MK-1654 in Pre-Term and Full-Term Infants; Clinical Trial Registration NCT03524118; clinicaltrials.gov: Bethesda, MD, USA, 2020.
Target Population | Vaccine Name | Sponsor | Vaccine Type | Clinical Trial Phase |
---|---|---|---|---|
Pregnant women | ResVax | Novavax | Particle-based | III |
RSV F DS-Cav1 VRC-RSVRGP084-00-VP | NIAID | Subunit | I | |
RSV vaccine | Pfizer | Subunit | II | |
GSK3888550A | GlaxoSmithKline | Subunit | II | |
Children | RSV F nanoparticle | Novavax | Particle-based | I |
SynGEM | Mucosis | Particle-based | II | |
Ad26.RSV.preF | Janssen | Vector-based | I/IIa | |
ChAd155-RSV | GlaxoSmithKline | Vector-based | II | |
MEDI-534 | MedImmune (AstraZeneca) | Vector-based | I | |
SeVRSV | NIAID | Vector-based | I | |
RSV MEDI ΔM2-2 | NIAID | Live-attenuated | I/II | |
RSV LID ΔM2-2 | NIAID | Live-attenuated | I | |
RSV cps2 | NIAID | Live-attenuated | I | |
RSV LID cp ΔM2-2 | NIAID | Live-attenuated | I | |
RSV LID ΔM2-2 1030s | NIAID | Live-attenuated | I | |
RSV D46/NS2/N/ΔM2-2-HindIII | NIAID | Live-attenuated | I | |
RSV ΔNS2 Δ1313 I1314L | NIAID | Live-attenuated | I | |
RSV 6120/ΔNS1; RSV 6120/F1/G2/ΔNS1 | NIAID | Live-attenuated | I | |
RSV ΔNS2/Δ1313/I1314L; RSV 6120/ΔNS2/1030s; RSV 276 | NIAID | Live-attenuated | I/II | |
RSV 6120/∆NS2/1030s | NIAID | Live-attenuated | I | |
RSV ΔNS2/Δ1313/I1314L; RSV 276 | NIAID | Live-attenuated | I | |
RSV D46 cpΔM2-2 | NIAID | Live-attenuated | I | |
MEDI-559 | MedImmune (AstraZeneca) | Live-attenuated | I/II | |
MV-012-968 | Meissa Vaccines | Live-attenuated | I | |
rBCG-N-hRSV | Pontificia Universidad Catolica de Chile | Chimeric | I | |
MEDI-8897 (nirsevimab) | MedImmune (AstraZeneca) | mAb | III | |
MK-1654 | Merck Sharp and Dohme Corporation | mAb | IIa | |
Elderly | RSV F nanoparticle | Novavax | Particle-based | III |
SynGEM | Mucosis | Particle-based | II | |
MVA-BN RSV | Bavarian Nordic | Vector-based | II | |
VXA-RSVf oral | Vaxart | Vector-based | I | |
Ad26.RSV.preF | Janssen | Vector-based | II | |
PanAd3-RSV and MVA-RSV | ReiThera | Vector-based | I | |
DPX-RSV | Dalhousie University | Subunit | I | |
RSV vaccine | Pfizer | Subunit | II | |
GSK3844766A | GlaxoSmithKline | Subunit | I |
Vaccine Name, Sponsor | Antigen or Target Site | Phase, Ref. | Study Population | Route | Study ID | Enrolment Time and Cohort | Summary of Published Results |
---|---|---|---|---|---|---|---|
ResVax, Novavax | Recombinant F protein exhibiting post-F morphology, with or without an aluminium phosphate adjuvant | I [40] | Women of childbearing age | IM | NCT01290419 | December 2010–December 2011 (n = 150) |
|
II [27] | Women of childbearing age | IM | NCT01704365 | October 2012–May 2013 (n = 330) |
| ||
II [28] | Women of childbearing age | IM | NCT01960686 | October 2013–April 2014 (n = 720) |
| ||
Recombinant F protein exhibiting post-F morphology, with an aluminium phosphate adjuvant | II [31] | Third-trimester pregnant women | IM | NCT02247726 | September 2014–July 2016 (n = 50) |
| |
III [32] | Pregnant women (28–36 weeks of GA) | IM | NCT02624947 | December 2015–June 2020 (n = 4636) | Vaccine efficacy:
| ||
RSV F nanoparticle, Novavax | Recombinant F protein exhibiting post-F morphology +/− an aluminium phosphate adjuvant | I [29] | Elderly | IM | NCT01709019 | October 2012–March 2014 (n = 220) |
|
Recombinant F protein exhibiting post-F morphology without an adjuvant | II [41] | Elderly | IM | NCT02266628 | October 2014–March 2016 (n = 1599) |
| |
II [42] | Elderly | IM | NCT02593071 | October 2015–November 2016 (n = 1330) |
| ||
III [34] | Elderly | IM | NCT02608502 | November 2015–December 2016 (n = 11850) | One dose of vaccine (135 µg RSV F protein) efficacy:
| ||
Recombinant F protein exhibiting post-F morphology, adjuvant: aluminium phosphate/Matrix M | II [35] | Elderly | IM | NCT03026348 | January 2017–July 2018 (n = 1329) |
| |
Recombinant F protein exhibiting post-F morphology, with or without an aluminium phosphate adjuvant | I [30] | Children (2–6 years old) | IM | NCT02296463 | November 2014–April 2016 (n = 32) |
| |
SynGEM, Mucosis | Prefusion F | I [37] | Healthy adults | IN | NCT02958540 | Unknown (n = 48) |
|
Vaccine Name, Sponsor | Antigen or Target Site | Phase, Ref. | Study Population | Route | Study ID | Enrolment Time and Cohort | Summary of Published Results |
---|---|---|---|---|---|---|---|
MVA-BN RSV, BavarianNordic | F, G (A and B subtypes), N, M2 | I [45] | Healthy adults and older adults (50–65 years) | IM | NCT02419391 | August 2015–May 2016 (n = 63) |
|
II [46] | Older adults (≥55 years) | IM | NCT02873286 | September 2016–August 2018 (n = 420) |
| ||
PanAd3-RSV and MVA-RSV, ReiThera | F, N and M2 | I [48,49] | Healthy adults and older adults (60–75 years) | IM (PadAd3 and MVA); IN (PanAd3) | NCT01805921 | March 2013–August 2015 (n = 72: 42 healthy adults + 30 older adults) |
|
VXA-RSVf, Vaxart | F, dsDNA activating TLR3 receptor | I [51] | Healthy adults | ORAL | NCT02830932 | June 2016–September 2017 (n = 66) |
|
Ad26.RSV.Pre-F, Janssen | Prefusion F | I [67] | Healthy elderly (≥60 years) | IM | NCT02926430 | November 2016–January 2019 (n = 73) |
|
II [53] | Healthy elderly (≥60 years) | IM | NCT03339713 | December 2017–July 2018 (n = 180) |
| ||
II [54] | Healthy elderly (≥65 years) | IM | NCT03982199 | August 2019–In progress (estimated n = 6672) |
| ||
I/IIa [56] | Adults and RSV-seropositive children (12–24 months) | IM | NCT03303625 | November 2017–April 2020 (n = 48) |
| ||
I/IIa [57] | RSV-seronegative children (12–24 months) | IM | NCT03606512 | January 2019–In progress (estimated n = 38) |
| ||
I [68] | Healthy adults, older adults | IM | NCT03795441 | January 2019–July 2019 (n = 24) |
| ||
II [69] | Healthy adults | IM | NCT03334695 | October 2016–November 2018 (n = 64) |
| ||
Ad26.RSV.Pre-F +/− prefusion F, Jannsen | Purified Prefusion F | II [55] | Healthy elderly (≥60 years) | IM | NCT03502707 | July 2018–In progress (estimated n = 669) |
|
ChAd155-RSV, GlaxoSmithKline | F, N, M2-1 | I [58] | RSV-seropositive adults | IM | NCT02491463 | July 2015–February 2017 (n = 73) |
|
II [59] | RSV-seropositive infants (12–23 months) | IM | NCT02927873 | January 2017–In progress (estimated n = 82) |
| ||
I [60] | Likely RSV-seronegative infants (6–7 months) | IM | NCT03636906 | April 2019–In progress (estimated n = 201) |
| ||
MEDI-534, MedImmune | Wild type F | I [62] | RSV/PIV3-seropositive children (1–9 years) | IN | NCT00345670 | June 2006–May 2007 (n = 120) |
|
I [63] | RSV/PIV3-seronegative children (6–24 months) and infants (2 months) | IN | NCT00686075 | June 2008–August 2012 (n = 1338) |
| ||
SeVRSV, NIAID | Wild type F | I [66] | Healthy adults | IN | NCT03473002 | May 2018–February 2019 (n = 21) |
|
Vaccine Name, Sponsor | Antigen or Target Site | Phase, Ref. | Study Population | Route | Study ID | Enrolment Time and Cohort | Summary of Published Results |
---|---|---|---|---|---|---|---|
RSV F DS-Cav1, NIAID | Prefusion stabilised trimeric F protein with or without alum adjuvant | I [75,76] | Healthy adults (18–50 years) | IM | NCT03049488 | February 2017–January 2020 (n = 100) | Interim analysis after the first dose (50 or 150 mg, ± aluminium hydroxide—alum, n = 10 subjects per group):
|
DPX-RSV, Dalhousie University And ImmunoVaccine Technologies | Ectodomain of the small hydrophobic glycoprotein (SHe), presented with a novel lipid-based formulation (DepoVax) | I [81,88] | Healthy adults (50–64 years) | IM | NCT02472548 | May 2015–March 2017 (n = 40) | Two dose levels (10 or 25 μg) of SHe compared with the placebo, booster dose on day 56:
|
RSV vaccine, Pfizer | Prefusion F protein | II [79] | Adults | IM | NCT04071158 | October 2019–December 2019 (n = 713) |
|
II [80] | Pregnant women | IM | NCT04032093 | August 2019 –In progress (estimated n = 650) |
| ||
II [78] | Healthy elderly | IM | NCT03572062 | June 2018–In progress (estimated n = 317) |
| ||
II [77] | Adults | IM | NCT03529773 | April 2018–In progress (estimated n = 1235) |
| ||
BARS13, (Advanced Vaccine Laborat) | G protein | II [83] | Healthy adults | IM | ACTRN12618000948291 | October 2018–October 2019 (n = 60) |
|
GSK3888550A, GlaxoSmithKline | F protein | II [84] | Women of childbearing age | IM | NCT03674177 | October 2018–September 2019 (n = 502) |
|
II [85] | Women of childbearing age | IM | NCT04138056 | September 2019–August 2020 (n = 509) |
| ||
II [86] | Pregnant women | IM | NCT04126213 | November 2019–In progress (estimated n = 410) |
| ||
GSK3844766A, GlaxoSmithKline | F Protein | I [89] | Elderly | IM | NCT03814590 | January 2019–In progress (estimated n = 1055) |
|
I [90] | Elderly | IM | NCT04090658 | September 2019–In progress (estimated n = 40) |
|
Vaccine Name, Sponsor | Antigen or Target Site | Phase, Ref. | Study Population | Route | Study ID | Enrolment Time and Cohort | Summary of Published Results |
---|---|---|---|---|---|---|---|
RSV MEDI ΔM2-2, NIAID MedImmune (AstraZeneca) | RSV MEDI ΔM2-2 | I [96] | Children and Adults | IN | NCT01459198 | August 2011–August 2015 (n = 60) |
|
RSV cps2, NIAID MedImmune (AstraZeneca) | RSV cps2 | I [102] | RSV-seronegative children (6–24 months) | IN | NCT01968083 NCT01852266 | Oct 2013–April 2015 (n = 51 + 50) |
|
RSV LID ΔM2-2, NIAID Sanofi Pasteur | RSV LID ΔM2-2 | I [95] | Children (6–24 months) | IN | NCT02040831 NCT02237209 | January 2014–December 2016 (n = 3 + 29) |
|
RSV LID ΔM2-2 1030s, NIAID Sanofi Pasteur | RSV LID ΔM2-2 1030s | I [98] | Children (6–24 months) | IN | NCT02794870 NCT02952339 | July 2015–July 2017 (n = 33 + 33) |
|
RSV LID cp ΔM2-2, NIAID | RSV LID cp ΔM2-2 | I [97] | Children (6–24 months) | IN | NCT02890381 NCT02948127 | October 2015–April 2018 (n = 13 + 8) |
|
RSV D46/NS2/N/ΔM2-2-HindIII, NIAID | RSV D46/NS2/N/ΔM2-2-HindIII | I [99] | RSV-seronegative children (6–24 months) | IN | NCT03102034 NCT03099291 | April 2017–May 2018 (n = 6 + 32) |
|
RSV ΔNS2 Δ1313 I1314L, NIAID | RSV ΔNS2 Δ1313 I1314L | I [107] | Children
(12–59 months);
(4–24 months) | IN | NCT01893554 | June 2013–October 2018 (n = 105) |
|
RSV 6120/ΔNS1; RSV 6120/F1/G2/ΔNS1, NIAID | RSV 6120/ΔNS1; RSV 6120/F1/G2/ΔNS1 | I [114] | Children
(12–59 months);
(6–24 months) | IN | NCT03596801 | June 2018–In progress (estimated n = 75) |
|
RSV ΔNS2/Δ1313/I1314L; RSV 6120/ΔNS2/1030s; RSV 276, NIAID | RSV ΔNS2/Δ1313/I1314L; RSV 6120/ΔNS2/1030s; RSV 276 | I/II [108] | RSV-seronegative children (6–24 months) | IN | NCT03916185 | May 2019–In progress (estimated n = 160) |
|
RSV 6120/∆NS2/1030s, NIAID | RSV 6120/∆NS2/1030s | I [109] | Children
(12–59 months);
(6–24 months) | IN | NCT03387137 | October 2017–In progress (estimated n = 45) |
|
RSV ΔNS2/Δ1313/I1314L; RSV 276, NIAID | RSV ΔNS2/Δ1313/I1314L; RSV 276 | I [110] | RSV-seronegative children (6–24 months) | IN | NCT03422237 | October 2017–September 2020 (n = 80) |
|
RSV ΔNS2 Δ1313 I1314L, NIAID | RSV ΔNS2 Δ1313 I1314L | I [111] | Children (6–24 months) | IN | NCT03227029 | Aug 2017–September 2020 (n = 80) |
|
RSV D46 cpΔM2-2, NIAID | RSV D46 cpΔM2-2 | I [115] | Children (6–60 months) | IN | NCT02601612 | October 2015–September 2019 (n = 45) |
|
MV-012-968, Meissa Vaccines | MV-012-968 | I [100] | Adult | IN | NCT04227210 | January 2020–August 2020 (n = 20) |
|
MEDI-559, MedImmune (AstraZeneca) | MEDI-559 | I/II [101] | RSV-seronegative children (6–24 months) | IN | NCT00767416 | October 2008–December 2011 (n = 116) | |
rBCG-N-hRSV, Pontificia Universidad Catolica de Chile | rBCG-N-hRSV | I [112] | Adults | IN | NCT03213405 | June 2017–May 2018 (n = 24) |
|
Vaccine Name, Sponsor | Antigen or Target Site | Phase, Ref. | Study Population | Route | Study ID | Enrolment Time and Cohort | Summary of Published Results |
---|---|---|---|---|---|---|---|
Nirsevimab, (MEDI-8897), MedImmune (AstraZeneca) | Antibody targeting site Ø of the F protein of RSV (extended half-life obtained with YTE mutation in Fc) | I [126] | Healthy adults | IV or IM | NCT02114268 | April 2014–June 2015 (n = 136) | Single dose of MEDI-8897 (n = 102) in 1 of 5 cohorts (300, 1000, 3000 mg iv or 100, 300 mg im) vs. placebo (n = 34), f.up for 360 days
|
Ib/IIa [127] | Healthy preterm infants | IM | NCT02290340 | January 2015–September 2016 (n = 151) | Published results on 89 healthy preterm infants, single dose of MEDI-8897 (n = 71) in 1 of 3 cohorts (10, 25, 50 mg im) vs. placebo (n = 18), follow-up for 360 days,
| ||
IIb [19] | Healthy preterm infants | IM | NCT02878330 | November 2016–November 2017 (n = 1453) | Single dose of 50 mg im MEDI-8897 (n = 969) vs. placebo (n = 484), follow-up for 360 days
| ||
III [128] | Healthy late preterm and term infants (born at or after 35 weeks GA, aged <1 year) | NA (IM?) | NCT03979313 | July 2019–In progress (estimated n = 3000) |
| ||
II/III [129] | High-risk children (preterm infants born ≤35 weeks GA without CLD/CHD, infants with CLD of prematurity, hemodynamically significant CHD) | NA (IM?) | NCT03959488 | July 2019–In progress (estimated n = 1500) |
| ||
II [130] | Immunocompromised Japanese children aged < 2 years | IM | NCT04484935 | Not recruiting yet |
| ||
MK-1654, Merck Sharp and Dohme Corp. | Antibody targeting site IV of the F protein of RSV with an extended half-life | IIa [133] | Healthy adults | IV | NCT04086472 | October 2019–In progress (n = 80) |
|
I/II [134] | Healthy pre-term (born at 29–35 weeks GA) and full-term (born at >35 weeks GA) infants | IM | NCT03524118 | September 2018–In progress (estimated n = 180) |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biagi, C.; Dondi, A.; Scarpini, S.; Rocca, A.; Vandini, S.; Poletti, G.; Lanari, M. Current State and Challenges in Developing Respiratory Syncytial Virus Vaccines. Vaccines 2020, 8, 672. https://doi.org/10.3390/vaccines8040672
Biagi C, Dondi A, Scarpini S, Rocca A, Vandini S, Poletti G, Lanari M. Current State and Challenges in Developing Respiratory Syncytial Virus Vaccines. Vaccines. 2020; 8(4):672. https://doi.org/10.3390/vaccines8040672
Chicago/Turabian StyleBiagi, Carlotta, Arianna Dondi, Sara Scarpini, Alessandro Rocca, Silvia Vandini, Giulia Poletti, and Marcello Lanari. 2020. "Current State and Challenges in Developing Respiratory Syncytial Virus Vaccines" Vaccines 8, no. 4: 672. https://doi.org/10.3390/vaccines8040672
APA StyleBiagi, C., Dondi, A., Scarpini, S., Rocca, A., Vandini, S., Poletti, G., & Lanari, M. (2020). Current State and Challenges in Developing Respiratory Syncytial Virus Vaccines. Vaccines, 8(4), 672. https://doi.org/10.3390/vaccines8040672