Influenza Vaccination and Myo-Pericarditis in Patients Receiving Immune Checkpoint Inhibitors: Investigating the Likelihood of Interaction through the Vaccine Adverse Event Reporting System and VigiBase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Conception and Design
2.2. Data Source
2.3. Data Extraction and Analysis
- (1)
- Reports for individuals receiving any type of vaccine against the influenza virus categorized as suspect AEFI submitted to VAERS (from July 1990 to September 2020) and VigiBase® (from inception to October 2020) were selected.
- (2)
- Cases of myocarditis or pericarditis were extracted through specific PTs and lowest level terms, in line with previous studies on the influenza vaccination [4] and the potential immune-related basis of cardiotoxicity documented for ICIs by recent pharmacovigilance analyses [9,10]: myocarditis, pericarditis, immune-mediated myocarditis, and myopericarditis.
- (3)
- Reports recording AEs of interest were finally assessed for co-reported drugs/vaccines of interest.
2.4. Causality Assessment and Evaluation of Drug–Vaccine Interaction
3. Results
3.1. Demographic and Clinical Data
3.2. Co-Reported Medications and Detection of Cases with ICI Administration
3.3. Causality Assessment and Evaluation of Drug–Vaccine Interaction
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bitterman, R.; Eliakim-Raz, N.; Vinograd, I.; Zalmanovici Trestioreanu, A.; Leibovici, L.; Paul, M. Influenza vaccines in immunosuppressed adults with cancer. Cochrane Database Syst. Rev. 2018, 1, CD008983. [Google Scholar] [CrossRef] [PubMed]
- Pellegrino, P.; Perrotta, C.; Clementi, E.; Radice, S. Vaccine-Drug Interactions: Cytokines, Cytochromes, and Molecular Mechanisms. Drug Saf. 2015, 38, 781–787. [Google Scholar] [CrossRef] [PubMed]
- Carnovale, C.; Raschi, E.; Leonardi, L.; Moretti, U.; De Ponti, F.; Gentili, M.; Pozzi, M.; Clementi, E.; Poluzzi, E.; Radice, S. No signal of interactions between influenza vaccines and drugs used for chronic diseases: A case-by-case analysis of the vaccine adverse event reporting system and vigibase. Expert Rev. Vaccines 2018, 17, 363–381. [Google Scholar] [CrossRef] [PubMed]
- Mei, R.; Raschi, E.; Forcesi, E.; Diemberger, I.; De Ponti, F.; Poluzzi, E. Myocarditis and pericarditis after immunization: Gaining insights through the Vaccine Adverse Event Reporting System. Int. J. Cardiol. 2018, 273, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Mei, R.; Raschi, E.; Poluzzi, E.; Diemberger, I.; De Ponti, F. Recurrence of pericarditis after influenza vaccination: A case report and review of the literature. BMC Pharmacol. Toxicol. 2018, 19, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adler, Y.; Charron, P.; Imazio, M.; Badano, L.; Barón-Esquivias, G.; Bogaert, J.; Brucato, A.; Gueret, P.; Klingel, K.; Lionis, C.; et al. 2015 ESC Guidelines for the diagnosis and management of pericardial diseases: The Task Force for the Diagnosis and Management of Pericardial Diseases of the European Society of Cardiology (ESC)Endorsed by: The European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2015, 7, 2921–2964. [Google Scholar]
- Caforio, A.L.; Pankuweit, S.; Arbustini, E.; Basso, C.; Gimeno-Blanes, J.; Felix, S.B.; Fu, M.; Heliö, T.; Heymans, S.; Jahns, R.; et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: A position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2013, 34, 2636–2648. [Google Scholar] [CrossRef]
- Butany, J.; Ahn, E.; Luk, A. Drug-related cardiac pathology. J. Clin. Pathol. 2009, 62, 1074–1084. [Google Scholar] [CrossRef] [Green Version]
- Salem, J.-E.; Manouchehri, A.; Moey, M.; Lebrun-Vignes, B.; Bastarache, L.; Pariente, A.; Gobert, A.; Spano, J.-P.; Balko, J.M.; Bonaca, M.P.; et al. Cardiovascular toxicities associated with immune checkpoint inhibitors: An observational, retrospective, pharmacovigilance study. Lancet Oncol. 2018, 19, 1579–1589. [Google Scholar] [CrossRef]
- Moslehi, J.J.; Salem, J.E.; Sosman, J.A.; Lebrun-Vignes, B.; Johnson, D.B. Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. Lancet 2018, 10, 933. [Google Scholar] [CrossRef] [Green Version]
- Raschi, E.; Diemberger, I.; Poluzzi, E.; De Ponti, F. Reporting of immune checkpoint inhibitor-associated myocarditis. Lancet 2018, 392, 383. [Google Scholar] [CrossRef]
- Martins, F.; Sofiya, L.; Sykiotis, G.P.; Lamine, F.; Maillard, M.; Fraga, M.; Shabafrouz, K.; Ribi, C.; Cairoli, A.; Guex-Crosier, Y.; et al. Adverse effects of immune-checkpoint inhibitors: Epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 2019, 16, 563–580. [Google Scholar] [CrossRef] [PubMed]
- Postow, M.A.; Hellmann, M.D. Adverse Events Associated with Immune Checkpoint Blockade. N. Engl. J. Med. 2018, 22, 1165. [Google Scholar]
- Bersanelli, M.; Buti, S.; De Giorgi, U.; Di Maio, M.; Giannarelli, D.; Pignata, S.; Banna, G.L. State of the art about influenza vaccination for advanced cancer patients receiving immune checkpoint inhibitors: When common sense is not enough. Crit. Rev. Oncol. Hematol. 2019, 139, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Awadalla, M.; Golden, D.L.A.; Mahmood, S.S.; Alvi, R.M.; Mercaldo, N.D.; Hassan, M.Z.O.; Banerji, D.; Rokicki, A.; Mulligan, C.; Murphy, S.P.T.; et al. Influenza vaccination and myocarditis among patients receiving immune checkpoint inhibitors. J. Immunother. Cancer 2019, 22, 53. [Google Scholar] [CrossRef] [PubMed]
- Raschi, E.; Gatti, M.; Gelsomino, F.; Ardizzoni, A.; Poluzzi, E.; De Ponti, F. Lessons to be Learnt from Real-World Studies on Immune-Related Adverse Events with Checkpoint Inhibitors: A Clinical Perspective from Pharmacovigilance. Target Oncol. 2020, 15, 449–466. [Google Scholar] [CrossRef] [PubMed]
- Antonazzo, I.C.; Poluzzi, E.; Forcesi, E.; Salvo, F.; Pariente, A.; Marchesini, G.; De Ponti, F.; Raschi, E. Myopathy with DPP-4 inhibitors and statins in the real world: Investigating the likelihood of drug-drug interactions through the FDA adverse event reporting system. Acta Diabetol. 2020, 57, 71–80. [Google Scholar] [CrossRef]
- Shimabukuro, T.T.; Nguyen, M.; Martin, D.; DeStefano, F. Safety monitoring in the Vaccine Adverse Event Reporting System (VAERS). Vaccine 2015, 33, 4398–4405. [Google Scholar] [CrossRef] [Green Version]
- Gatti, M.; Ippoliti, I.; Poluzzi, E.; Antonazzo, I.C.; Moro, P.A.; Moretti, U.; Menniti-Ippolito, F.; Mazzanti, G.; De Ponti, F.; Raschi, E. Assessment of adverse reactions to α-lipoic acid containing dietary supplements through spontaneous reporting systems. Clin. Nutr. 2020. [Google Scholar] [CrossRef]
- Causality Assessment of an Adverse Event Following Immunization (AEFI). User Manual for the Revised WHO Classification. Available online: https://www.who.int/vaccine_safety/publications/CausalityAssessmentAEFI_EN.pdf?ua=1 (accessed on 4 November 2020).
- Singleton, J.A.; Lloyd, J.C.; Mootrey, G.T.; Salive, M.E.; Chen, R.T. An overview of the vaccine adverse event reporting system (VAERS) as a surveillance system. VAERS Working Group. Vaccine 1999, 17, 2908–2917. [Google Scholar] [CrossRef]
- Edwards, J.R.; Aronson, J.K. Adverse drug reactions: Definitions, diagnosis, and management. Lancet 2000, 356, 1255e9. [Google Scholar] [CrossRef]
- Horn, J.R.; Hansten, P.D.; Chan, L.N. Proposal for a new tool to evaluate drug interaction cases. Ann. Pharmacother. 2007, 41, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Läubli, H.; Balmelli, C.; Kaufmann, L.; Stanczak, M.; Syedbasha, M.; Vogt, D.; Hertig, A.; Müller, B.; Gautschi, O.; Stenner-Liewen, F.; et al. Influenza vaccination of cancer patients during PD-1 blockade induces serological protection but may raise the risk for immune-related adverse events. J. Immunother. Cancer 2018, 6, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, C. To do or not to do: A concise update of current clinical controversies in immune checkpoint blockade. J. Oncol. Pharm. Pr. 2019, 25, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Chong, C.R.; Park, V.J.; Cohen, B.; Postow, M.A.; Wolchok, J.D.; Kamboj, M. Safety of Inactivated Influenza Vaccine in Cancer Patients Receiving Immune Checkpoint Inhibitors. Clin. Infect. Dis. 2020, 70, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Failing, J.J.; Ho, T.P.; Yadav, S.; Majithia, N.; Riaz, I.B.; Shin, J.Y.; Schenk, E.L.; Xie, H. Safety of Influenza Vaccine in Patients with Cancer Receiving Pembrolizumab. JCO Oncol. Pract. 2020, 16, e573–e580. [Google Scholar] [CrossRef]
- Wijn, D.H.; Groeneveld, G.H.; Vollaard, A.M.; Muller, M.; Wallinga, J.; Gelderblom, H.; Smit, E.F. Influenza vaccination in patients with lung cancer receiving anti-programmed death receptor 1 immunotherapy does not induce immune-related adverse events. Eur. J. Cancer 2018, 104, 182–187. [Google Scholar] [CrossRef]
- Gwynn, M.E.; DeRemer, D.L.; Saunders, K.M.; Parikh, J.; Bollag, R.J.; Clemmons, A.B. Immune-mediated adverse events following influenza vaccine in cancer patients receiving immune checkpoint inhibitors. J. Oncol. Pharm. Pract. 2020, 26, 647–654. [Google Scholar] [CrossRef]
- Blank, P.R.; Schwenkglenks, M.; Szucs, T.D. Influenza vaccination coverage rates in five European countries during season 2006/07 and trends over six consecutive seasons. BMC Public Health. 2008, 8, 272. [Google Scholar] [CrossRef] [Green Version]
- Müller, D.; Szucs, T.D. Influenza vaccination coverage rates in 5 European countries: A population-based cross-sectional analysis of the seasons 02/03, 03/04 and 04/05. Infection 2007, 35, 308–319. [Google Scholar] [CrossRef] [Green Version]
- Martín Arias, L.H.; Sanz, R.; Sáinz, M.; Treceño, C.; Carvajal, A. Guillain-Barre syndrome and influenza vaccines: A meta-analysis. Vaccine 2015, 17, 3773–3778. [Google Scholar] [CrossRef]
- Supakornnumporn, S.; Katirji, B. Guillain-Barre Syndrome Triggered by Immune Checkpoint Inhibitors: A Case Report and Literature Review. J. Clin. Neuromuscul. Dis. 2017, 19, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Yuen, C.; Kamson, D.; Soliven, B.; Kramer, C.; Goldenberg, F.; Rezania, K. Severe Relapse of Vaccine-Induced Guillain-Barre Syndrome After Treatment with Nivolumab. J. Clin. Neuromuscul. Dis. 2019, 20, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Emens, L.A.; Ascierto, P.A.; Darcy, P.K.; Demaria, S.; Eggermont, A.M.M.; Redmond, W.L.; Seliger, B.; Marincola, F.M. Cancer immunotherapy: Opportunities and challenges in the rapidly evolving clinical landscape. Eur. J. Cancer 2017, 81, 116–129. [Google Scholar] [CrossRef] [PubMed]
- Cooksley, C.D.; Avritscher, E.B.; Bekele, B.N.; Rolston, K.V.; Geraci, J.M.; Elting, L.S. Epidemiology and outcomes of serious influenza-related infections in the cancer population. Cancer 2005, 104, 618–628. [Google Scholar] [CrossRef]
- Udell, J.A.; Zawi, R.; Bhatt, D.L.; Keshtkar-Jahromi, M.; Gaughran, F.; Phrommintikul, A.; Ciszewski, A.; Vakili, H.; Hoffman, E.B.; Farkouh, M.E.; et al. Association between influenza vaccination and cardiovascular outcomes in high-risk patients: A meta-analysis. JAMA 2013, 310, 1711–1720. [Google Scholar] [CrossRef]
- Mamas, M.A.; Fraser, D.; Neyses, L. Cardiovascular manifestations associated with influenza virus infection. Int. J. Cardiol. 2008, 130, 304–309. [Google Scholar] [CrossRef]
- Poeppl, W.; Lagler, H.; Raderer, M.; Sperr, W.R.; Zielinski, C.; Herkner, H.; Burgmann, H. Influenza vaccination perception and coverage among patients with malignant disease. Vaccine 2015, 30, 1682–1687. [Google Scholar] [CrossRef]
- Bersanelli, M.; Buti, S.; Banna, G.L.; De Giorgi, U.; Cortellini, A.; Rebuzzi, S.E.; Tiseo, M.; Fornarini, G.; Mazzoni, F.; Panni, S.; et al. Impact of influenza syndrome and flu vaccine on survival of cancer patients during immunotherapy in the INVIDIa study. Immunotherapy 2020, 12, 151–159. [Google Scholar] [CrossRef]
- Capone, A. Simultaneous circulation of COVID-19 and flu in Italy: Potential combined effects on the risk of death? Int. J. Infect. Dis. 2020, 99, 393–396. [Google Scholar] [CrossRef]
- Bersanelli, M.; Zielli, T.; Perrone, F.; Casartelli, C.; Pratticò, F.; Rapacchi, E.; Camisa, R.; Tognetto, M.; Clemente, A.; Giannarelli, D.; et al. Clinical impact of COVID-19 in a single-center cohort of a prospective study in cancer patients receiving immunotherapy. Immunotherapy 2020, 12, 1139–1148. [Google Scholar] [CrossRef] [PubMed]
- Del Riccio, M.; Lorini, C.; Bonaccorsi, G.; Paget, J.; Caini, S. The Association between Influenza Vaccination and the Risk of SARS-CoV-2 Infection, Severe Illness, and Death: A Systematic Review of the Literature. Int. J. Environ. Res. Public Health 2020, 17, 7870. [Google Scholar] [CrossRef] [PubMed]
Demographic Features | VAERS | VigiBase |
---|---|---|
Overall number of cases | 191 | 399 |
Proportion of cases (based on overall number of reports with the flu vaccine) | 0.03% (712,776) | 0.16% (246,864) |
Age (mean) | 44.5 ± 22.9 | 46.7 ± 22.3 |
Sex | ||
Female | 62 (32.5%) | 131 (32.8%) |
Male | 124 (64.9%) | 263 (65.9%) |
Not specified | 5 (2.6%) | 5 (1.3%) |
Reporter country | ||
US | 109 (57.1%) | 183 (45.9%) |
Non-US | 60 (31.4%) | - |
Europe | - | 180 (45.1%) |
Asia | - | 10 (2.5%) |
Oceania | - | 19 (4.8%) |
America (except US) | - | 7 (1.7%) |
Not specified | 22 (11.5%) | - |
Reported symptoms (preferred terms) * | ||
Myocarditis | 81 (42.4%) | 193 (48.4%) |
Pericarditis | 117 (61.3%) | 225 (56.4%) |
Myopericarditis | 7 (3.7%) | 29 (7.3%) |
Immune-mediated myocarditis | 0 (0.0%) | 0 (0.0%) |
Co-medications | ||
Overall number of cases | 49 (25.7%) | 57 (14.3%) |
≥5 concomitant drugs | 14 (7.3%) | 13 (3.3%) |
1–4 concomitant drugs | 35 (18.4%) | 44 (11.0%) |
No concomitant drugs | 142 (74.3%) | 342 (85.7%) |
Co-medications potentially implicated in the occurrence of myocarditis/pericarditis ** | ||
Number of cases | 21 (11.0%) § | 24 (6.0%) # |
Immune checkpoint inhibitors (ICIs) | None | 2 |
Hydrochlorothiazide | 6 | 5 |
Indomethacin | 2 | 2 |
Glipizide | 2 | - |
Clonazepam | 2 | - |
Alprazolam | 2 | - |
Furosemide | 1 | 1 |
Bendroflumethiazide | 1 | 2 |
Mesalazine | 1 | 2 |
Colchicine | 1 | 1 |
Doxycycline | 1 | 2 |
Cotrimoxazole | 1 | 1 |
Lorazepam | 1 | - |
Amoxicillin | 1 | 1 |
Isosorbide dinitrate | 1 | 2 |
Tetracycline | - | 2 |
Spironolactone | - | 1 |
Cefuroxime | - | 1 |
Heparin | - | 1 |
Bromazepam | - | 1 |
Comorbidities potentially implicated in occurrence of myocarditis/pericarditis ** | ||
Number of cases | 6 (3.1%) | 2 (0.5%) |
Ulcerative colitis | 2 | 2 |
Systemic lupus erythematosus | 2 | - |
Juvenile rheumatoid arthritis | 1 | - |
Insulin-dependent diabetes mellitus | 1 | - |
Onset (days; median) | 7 (1.5–13) | 5 (1–12) |
≤3 days | 65 (34.0%) | 119 (29.8%) |
4–7 days | 19 (10.0%) | 50 (12.5%) |
8–14 days | 35 (18.4%) | 61 (15.3%) |
≥15 days | 36 (18.8%) | 56 (14.0%) |
Not specified | 36 (18.8%) | 113 (28.4%) |
Seriousness | ||
Serious | 141 (73.8%) | 303 (76.0%) |
Non-serious | 50 (26.2%) | 48 (12.0%) |
Not specified | - | 48 (12.0%) |
Seriousness criteria * | ||
Congenital anomaly | 0 (0.0%) | 0 (0.0%) |
Death | 16 (8.4%) | 28 (7.0%) |
Hospitalization | 125 (65.5%) | 222 (55.6%) |
Life-threatening | 30 (15.7%) | 46 (11.5%) |
Permanent disability | 12 (6.3%) | 12 (3.0%) |
Other outcomes | 30 (15.7%) | 60 (15.0%) |
Median time of hospitalization (days) | 3 (2–4) | NA |
Recovering | ||
Recovered | 60 (31.4%) | 164 (41.1%) |
Not recovered | 64 (33.5%) | 61 (15.3%) |
Not specified | 67 (35.1%) | 174 (43.6%) |
Concomitant other vaccines | ||
Overall number of cases | 59 (30.9%) | 87 (21.8%) |
Mean number of vaccines per patient | 3.1 ± 1.4 | 2.5 ± 1.7 |
Case ID | Drugs/Role | Dose | Year | Age/Sex | Reporter Country | Reporter Qualification | Reactions | Seriousness | Outcome | Concomitant Medications | Comorbidities | Management | Causality Assessment | Adapted DIPS Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
#1 | Nivolumab (suspect) Influenza vaccine(suspect) | 3 mg/kg every 2 weeks IV- | 2018 | 70/F | Japan | Physician | Myocarditis | Serious (life-threatening; prolonged hospitalization; other outcomes) | Recovered | Ursodeoxycholic acid 200 mg/day Bezafibrate 200 mg/day Calcitriol 0.5 mcg/day | NSCLC Liver disorder Hyperlipidemia Osteoporosis | Nivolumab withdrawn | Unclassifiable (data on latency and time window of increased risk are lacking) Synergistic effect between influenza vaccine and ICIs cannot be excluded | 1 Doubtful |
#2 | Pembrolizumab (suspect) Influenza vaccine (suspect) | NA IV 0.5 mL IM | 2018 | 67/M | US | Pharmacist | Myocarditis, stress, cardiomyopathy, weight decreased, headache, cardiac failure, congestive, cerebral infarction, confusional state, and dyspnoea | Serious (life-threatening; prolonged hospitalization) | NA | NA | Lung neoplasm malignant | NA | Unclassifiable (data on latency and time window of increased risk are lacking) Synergistic effect between influenza vaccine and ICIs cannot be excluded | 1 Doubtful |
#3 | Ipilimumab (suspect) Nivolumab (suspect) Influenza vaccine (concomitant) | 80 mg every 3 weeks IV 240 mg every 3 weeks IV- | 2019 | 77/M | Canada | Physician | Myocarditis, pulmonary hypertension, dyspnoea chest discomfort asthenia, troponin increased c-reactive protein, increased diastolic dysfunction, oedema, peripheral urticaria, and pruritus | Serious (prolonged hospitalization; other outcomes) | NA | NA | Metastatic renal cell carcinoma | Ipilimumab and nivolumab withdrawn | Unclassifiable (data on latency and time window of increased risk are lacking) Synergistic effect between influenza vaccine and ICIs cannot be excluded | 2 Possible |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gatti, M.; Raschi, E.; Moretti, U.; Ardizzoni, A.; Poluzzi, E.; Diemberger, I. Influenza Vaccination and Myo-Pericarditis in Patients Receiving Immune Checkpoint Inhibitors: Investigating the Likelihood of Interaction through the Vaccine Adverse Event Reporting System and VigiBase. Vaccines 2021, 9, 19. https://doi.org/10.3390/vaccines9010019
Gatti M, Raschi E, Moretti U, Ardizzoni A, Poluzzi E, Diemberger I. Influenza Vaccination and Myo-Pericarditis in Patients Receiving Immune Checkpoint Inhibitors: Investigating the Likelihood of Interaction through the Vaccine Adverse Event Reporting System and VigiBase. Vaccines. 2021; 9(1):19. https://doi.org/10.3390/vaccines9010019
Chicago/Turabian StyleGatti, Milo, Emanuel Raschi, Ugo Moretti, Andrea Ardizzoni, Elisabetta Poluzzi, and Igor Diemberger. 2021. "Influenza Vaccination and Myo-Pericarditis in Patients Receiving Immune Checkpoint Inhibitors: Investigating the Likelihood of Interaction through the Vaccine Adverse Event Reporting System and VigiBase" Vaccines 9, no. 1: 19. https://doi.org/10.3390/vaccines9010019
APA StyleGatti, M., Raschi, E., Moretti, U., Ardizzoni, A., Poluzzi, E., & Diemberger, I. (2021). Influenza Vaccination and Myo-Pericarditis in Patients Receiving Immune Checkpoint Inhibitors: Investigating the Likelihood of Interaction through the Vaccine Adverse Event Reporting System and VigiBase. Vaccines, 9(1), 19. https://doi.org/10.3390/vaccines9010019