A T-Cell Epitope-Based Multi-Epitope Vaccine Designed Using Human HLA Specific T Cell Epitopes Induces a Near-Sterile Immunity against Experimental Visceral Leishmaniasis in Hamsters
Abstract
:1. Introduction
2. Material and Methods
2.1. Epitope Identification and Multiepitope Candidate Designing
2.2. Molecular Cloning and Recombinant Protein Production
2.3. Protective Efficacy Study in Hamster Model of Experimental Visceral Leishmaniasis
2.4. Parasitological Parameters
2.5. Physical Parameters
2.6. Spleen Culture Assay
2.7. Immunological Parameters
Macrophage Function Assays
- Parasite clearance: To check the ability of macrophages to clear the intracellular parasites, the adherent macrophages (50,000 cells/well) were layered with live metacyclic carboxyfluorescein succinimidyl ester (CFSE) (Sigma, St. Louis, MO, USA) stained promastigotes in a 1:10 ratio and incubated at 34 °C for 10 h. The wells were washed to remove any uninternalized promastigotes. The cells were de-adhered using Trypsin EDTA solution, at specific time intervals of 12 h, 24 h, and 48 h, washed twice in cold sheath fluid, and the acquisition was done on a flow cytometer (FACS Calibur, BD Biosciences, Franklin Lakes, NJ, USA) for CFSE signal. A quantitative assessment of internalized promastigotes was made in terms of mean fluorescence intensity (MFI). A decrease in MFI indicated parasite clearance. The data analysis was conducted using BD CellQuest™ Pro (BD Bioscience, Franklin Lakes, USA) by gating granulocytes and monocytes based on forward scatter (FSC) and side scatter (SSC) pattern. The baseline fluorescence was set based on uninfected-healthy cells.
- Oxidative burst: The capability of macrophages from the immunized hamsters for the production of reactive oxygen species (ROS) would indicate the restoration of normal function in terms of generation of oxidative burst. To assess this, 50,000 peritoneal adherent cells were cultured in a 24-well culture plate in the presence of RPMI-1640 medium supplemented with 10% FBS. At the beginning of the culture, the cells were stimulated with bacterial lipopolysaccharide (LPS, 5 µg/mL). At 12 and 24 h, the cells were stained with 2′,7′-dichlorofluorescein diacetate (DCFDA) (Sigma, St. Louis, CA, USA) for 35 min, and the acquisition was done on a flow cytometer (BD FACS Calibur, BD Biosciences, Franklin Lakes, USA) for change in MFI due to ROS mediated conversion of DCFDA to 2′,7′-dichlorofluorescein (DCF). Post-acquisition analysis was done by BD CellQuest™ Pro and the baseline was set by unstimulated-stained cells. ROS production levels were calculated in terms of ROS production index (RPI) as the ratio of the MFI test group to the MFI healthy group. The baseline fluorescence was set based on unstained-unstimulated healthy cells.
2.8. Post-Immunization Immune-Profiling
2.9. Polyfunctional T Cell Activation
2.10. Statistical Analysis
3. Results
3.1. Multiepitope Vaccine Designing
3.2. Multi-Epitope Construct Proteins Induced Significant Protection in the Hamster Model of Experimental Visceral Leishmaniasis
3.3. Parasitological Parameters and Parasite Load
3.4. Splenic Culture, Parasite Growth
3.5. The Immunization with Multiepitope Antigens Induced Normalization of Macrophage Functions for Effective Clearance of Intracellular Parasites
3.6. Parasite Clearance Assay
3.7. Immunization with Multiepitope Protein (64 kDa) Induces a Strong Th1 Polarized Response in the Spleen of Immunized Animals
3.8. The Multiepitope Proteins Induced Activation of Human Polyfunctional T-Cells Ex-Vivo
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zutshi, S.; Kumar, S.; Chauhan, P.; Bansode, Y.; Nair, A.; Roy, S.; Sarkar, A.; Saha, B. Anti-Leishmanial Vaccines: Assumptions, Approaches, and Annulments. Vaccines 2019, 7, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO|Weekly Epidemiological Record. 22 September 2017, Volume 92, pp. 557–572. Available online: http://www.who.int/wer/2017/wer9238/en/ (accessed on 19 November 2020).
- Bi, K.; Chen, Y.; Zhao, S.; Kuang, Y.; Wu, C.-H.J. Current Visceral Leishmaniasis Research: A Research Review to Inspire Future Study. BioMed Res. Int. 2018, 2018, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dayakar, A.; Chandrasekaran, S.; Kuchipudi, S.V.; Kalangi, S.K. Cytokines: Key Determinants of Resistance or Disease Progression in Visceral Leishmaniasis: Opportunities for Novel Diagnostics and Immunotherapy. Front. Immunol. 2019, 10, 670. [Google Scholar] [CrossRef] [Green Version]
- Medina-Colorado, A.A.; Osorio, E.Y.; Saldarriaga, O.A.; Travi, B.L.; Kong, F.; Spratt, H.; Soong, L.; Melby, P.C. Splenic CD4+ T Cells in Progressive Visceral Leishmaniasis Show a Mixed Effector-Regulatory Phenotype and Impair Macrophage Effector Function through Inhibitory Receptor Expression. PLoS ONE 2017, 12, e0169496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, V.; Cordeiro-Da-Silva, A.; LaForge, M.; Silvestre, R.; Estaquier, J. Regulation of immunity during visceral Leishmania infection. Parasites Vectors 2016, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, S.; Shankar, P.; Mishra, J.; Singh, S. Possibilities and challenges for developing a successful vaccine for leishmaniasis. Parasites Vectors 2016, 9, 277. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.-R.; Byeon, Y.; Kim, D.; Park, S.-G. Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development. Exp. Mol. Med. 2020, 52, 750–761. [Google Scholar] [CrossRef] [PubMed]
- Buckle, A.M.; Borg, N.A. Integrating Experiment and Theory to Understand TCR-pMHC Dynamics. Front. Immunol. 2018, 9, 2898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Flies, D.B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 2013, 13, 227–242. [Google Scholar] [CrossRef]
- Zoete, V.; Irving, M.; Ferber, M.; Cuendet, M.; Michielin, O. Structure-Based, Rational Design of T Cell Receptors. Front. Immunol. 2013, 4, 268. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, S.M.; Nunes-Alves, C.; Booty, M.G.; Way, S.S.; Behar, S.M. A Higher Activation Threshold of Memory CD8+ T Cells Has a Fitness Cost That Is Modified by TCR Affinity during Tuberculosis. PLOS Pathog. 2016, 12, e1005380. [Google Scholar] [CrossRef] [Green Version]
- Rohrs, J.A.; Wang, P.; Finley, S.D. Understanding the Dynamics of T-Cell Activation in Health and Disease Through the Lens of Computational Modeling. JCO Clin. Cancer Inform. 2019, 3, 1–8. [Google Scholar] [CrossRef]
- Courtney, A.; Lo, W.-L.; Weiss, A. TCR Signaling: Mechanisms of Initiation and Propagation. Trends Biochem. Sci. 2017, 43, 108–123. [Google Scholar] [CrossRef]
- Coombs, D.; Goldstein, B. T cell activation: Kinetic proofreading, serial engagement and cell adhesion. J. Comput. Appl. Math. 2005, 184, 121–139. [Google Scholar] [CrossRef] [Green Version]
- José, E.S.; Borroto, A.; Niedergang, F.; Alcover, A.; Alarcón, B. Triggering the TCR Complex Causes the Downregulation of Nonengaged Receptors by a Signal Transduction-Dependent Mechanism. Immunity 2000, 12, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Sousa, J.; Carneiro, J. A mathematical analysis of TCR serial triggering and down-regulation. Eur. J. Immunol. 2000, 30, 3219–3227. [Google Scholar] [CrossRef]
- Tian, Y.; Antunes, R.D.S.; Sidney, J.; Arlehamn, C.S.L.; Grifoni, A.; Dhanda, S.; Paul, S.; Peters, B.; Weiskopf, D.; Sette, A. A Review on T Cell Epitopes Identified Using Prediction and Cell-Mediated Immune Models for Mycobacterium tuberculosis and Bordetella pertussis. Front. Immunol. 2018, 9, 2778. [Google Scholar] [CrossRef] [PubMed]
- Pentier, J.M.; Sewell, A.K.; Miles, J.J. Advances in T-Cell Epitope Engineering. Front. Immunol. 2013, 4, 133. [Google Scholar] [CrossRef] [Green Version]
- Altfeld, M.; Trocha, A.; Eldridge, R.L.; Rosenberg, E.S.; Phillips, M.N.; Addo, M.M.; Sekaly, R.P.; Kalams, S.A.; Burchett, S.A.; McIntosh, K.; et al. Identification of Dominant Optimal HLA-B60- and HLA-B61-Restricted Cytotoxic T-Lymphocyte (CTL) Epitopes: Rapid Characterization of CTL Responses by Enzyme-Linked Immunospot Assay. J. Virol. 2000, 74, 8541–8549. [Google Scholar] [CrossRef] [Green Version]
- Nelson, D.; Bundell, C.; Robinson, B. In Vivo Cross-Presentation of a Soluble Protein Antigen: Kinetics, Distribution, and Generation of Effector CTL Recognizing Dominant and Subdominant Epitopes. J. Immunol. 2000, 165, 6123–6132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, V.; Southwood, S.; Sidney, J.; Sakaguchi, K.; Kawakami, Y.; Appella, E.; Sette, A.; Celis, E. Identification of subdominant CTL epitopes of the GP100 melanoma-associated tumor antigen by primary in vitro immunization with peptide-pulsed dendritic cells. J. Immunol. 1997, 158. [Google Scholar]
- Daniels, M.A.; Teixeiro, E. TCR Signaling in T Cell Memory. Front. Immunol. 2015, 6, 617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olasz, K.; Boldizsar, F.; Kis-Toth, K.; Tarjanyi, O.; Hegyi, A.; Van Eden, W.; Rauch, T.A.; Mikecz, K.; Glant, T.T. T cell receptor (TCR) signal strength controls arthritis severity in proteoglycan-specific TCR transgenic mice. Clin. Exp. Immunol. 2012, 167, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Ahlers, J.D.; Belyakov, I.M.; Thomas, E.K.; Berzofsky, J.A. High-affinity T helper epitope induces complementary helper and APC polarization, increased CTL, and protection against viral infection. J. Clin. Investig. 2001, 108, 1677–1685. [Google Scholar] [CrossRef]
- Singh, R.; Gupta, P.; Sharma, P.K.; Ades, E.W.; Hollingshead, S.K.; Singh, S.; Lillard, J.W. Prediction and characterization of helper T-cell epitopes from pneumococcal surface adhesin A. Immunology 2014, 141, 514–530. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.; Constant, S.; Jorritsma, P.; Bottomly, K. Strength of TCR signal determines the costimulatory requirements for Th1 and Th2 CD4+ T cell differentiation. J. Immunol. 1997, 159. [Google Scholar]
- Bhattacharyya, N.; Feng, C.G. Regulation of T Helper Cell Fate by TCR Signal Strength. Front. Immunol. 2020, 11, 624. [Google Scholar] [CrossRef]
- Panhuys, N.E. TCR Signal Strength Alters T–DC Activation and Interaction Times and Directs the Outcome of Differentiation. Front. Immunol. 2016, 7, 6. [Google Scholar] [CrossRef]
- Ejoshi, S.; Erawat, K.; Yadav, N.K.; Ekumar, V.; Siddiqi, M.I.; Edube, A. Visceral Leishmaniasis: Advancements in Vaccine Development via Classical and Molecular Approaches. Front. Immunol. 2014, 5, 380. [Google Scholar] [CrossRef] [Green Version]
- Arora, S.K.; Aryandra, A. Epitope Based Vaccine Designing—A mini review. J. Vaccines Immunol. 2020, 6, 038–041. [Google Scholar] [CrossRef]
- Zhang, J.; He, J.; Liao, X.; Xiao, Y.; Liang, C.; Zhou, Q.; Chen, H.; Zheng, Z.; Qin, H.; Chen, D.; et al. Development of dominant epitope-based vaccines encoding Gp63, Kmp-11 and Amastin against visceral leishmaniasis. Immunobiology 2021, 226, 152085. [Google Scholar] [CrossRef] [PubMed]
- Agallou, M.; Margaroni, M.; Kotsakis, S.D.; Karagouni, E. A Canine-Directed Chimeric Multi-Epitope Vaccine Induced Protective Immune Responses in BALB/c Mice Infected with Leishmania infantum. Vaccines 2020, 8, 350. [Google Scholar] [CrossRef]
- Rabienia, M.; Roudbari, Z.; Ghanbariasad, A.; Abdollahi, A.; Mohammadi, E.; Mortazavidehkordi, N.; Farjadfar, A. Exploring membrane proteins of Leishmania major to design a new multi-epitope vaccine using immunoinformatics approach. Eur. J. Pharm. Sci. 2020, 152, 105423. [Google Scholar] [CrossRef] [PubMed]
- Atapour, A.; Ghalamfarsa, F.; Naderi, S.; Hatam, G. Designing of a Novel Fusion Protein Vaccine Candidate Against Human Visceral Leishmaniasis (VL) Using Immunoinformatics and Structural Approaches. Int. J. Pept. Res. Ther. 2021, 1–14. [Google Scholar] [CrossRef]
- Majidiani, H.; Dalimi, A.; Ghaffarifar, F.; Pirestani, M. Multi-epitope vaccine expressed in Leishmania tarentolae confers protective immunity to Toxoplasma gondii in BALB/c mice. Microb. Pathog. 2021, 155, 104925. [Google Scholar] [CrossRef]
- Yadav, S.; Prakash, J.; Singh, O.P.; Gedda, M.R.; Chauhan, S.B.; Sundar, S.; Dubey, V.K. IFN-γ+ CD4+T cell-driven prophylactic potential of recombinant LDBPK_252400 hypothetical protein of Leishmania donovani against visceral leishmaniasis. Cell. Immunol. 2020, 361, 104272. [Google Scholar] [CrossRef]
- Ostolin, T.L.V.D.P.; Gusmão, M.R.; Mathias, F.A.S.; Cardoso, J.M.D.O.; Roatt, B.M.; Aguiar-Soares, R.D.D.O.; Ruiz, J.C.; Resende, D.D.M.; de Brito, R.C.F.; Reis, A.B. A chimeric vaccine combined with adjuvant system induces immunogenicity and protection against visceral leishmaniasis in BALB/c mice. Vaccine 2021, 39, 2755–2763. [Google Scholar] [CrossRef]
- Shermeh, A.S.; Zahedifard, F.; Habibzadeh, S.; Taheri, T.; Rafati, S.; Seyed, N. Evaluation of protection induced by in vitro maturated BMDCs presenting CD8+ T cell stimulating peptides after a heterologous vaccination regimen in BALB/c model against Leishmania major. Exp. Parasitol. 2021, 223, 108082. [Google Scholar] [CrossRef]
- Foroutan, M.; Ghaffarifar, F.; Sharifi, Z.; Dalimi, A. Vaccination with a novel multi-epitope ROP8 DNA vaccine against acute Toxoplasma gondii infection induces strong B and T cell responses in mice. Comp. Immunol. Microbiol. Infect. Dis. 2020, 69, 101413. [Google Scholar] [CrossRef]
- Lu, C.; Meng, S.; Jin, Y.; Zhang, W.; Li, Z.; Wang, F.; Wang-Johanning, F.; Wei, Y.; Liu, H.; Tu, H.; et al. A novel multi-epitope vaccine from MMSA-1 and DKK1 for multiple myeloma immunotherapy. Br. J. Haematol. 2017, 178, 413–426. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, U.K.; Rahman, M.M. Overlapping CD8 + and CD4 + T-cell epitopes identification for the progression of epitope-based peptide vaccine from nucleocapsid and glycoprotein of emerging Rift Valley fever virus using immunoinformatics approach. Infect. Genet. Evol. 2017, 56, 75–91. [Google Scholar] [CrossRef] [PubMed]
- Saadi, M.; Karkhah, A.; Nouri, H.R. Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches. Infect. Genet. Evol. 2017, 51, 227–234. [Google Scholar] [CrossRef]
- Pandey, R.K.; Ojha, R.; Mishra, A.; Prajapati, V.K. Designing B- and T-cell multi-epitope based subunit vaccine using immunoinformatics approach to control Zika virus infection. J. Cell. Biochem. 2018, 119, 7631–7642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arora, S.K.; Pal, N.S.; Mujtaba, S. Leishmania donovani: Identification of novel vaccine candidates using human reactive sera and cell lines. Exp. Parasitol. 2005, 109, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, S.; Vasishta, R.; Arora, S.K. Vaccination with a novel recombinant Leishmania antigen plus MPL provides partial protection against L. donovani challenge in experimental model of visceral leishmaniasis. Exp. Parasitol. 2009, 121, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Masih, S.; Arora, S.K.; Vasishta, R.K. Efficacy of Leishmania donovani ribosomal P1 gene as DNA vaccine in experimental visceral leishmaniasis. Exp. Parasitol. 2011, 129, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Dhanda, S.K.; Vir, P.; Raghava, G.P.S. Designing of interferon-gamma inducing MHC class-II binders. Biol. Direct 2013, 8, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saini, S.; Rai, A.K. Hamster, a close model for visceral leishmaniasis: Opportunities and challenges. Parasite Immunol. 2020, 42, e12768. [Google Scholar] [CrossRef]
- Andreatta, M.; Nielsen, M. Gapped sequence alignment using artificial neural networks: Application to the MHC class I system. Bioinformatics 2015, 32, 511–517. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.; Lundegaard, C.; Worning, P.; Lauemøller, S.L.; Lamberth, K.; Buus, S.; Brunak, S.; Lund, O. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 2003, 12, 1007–1017. [Google Scholar] [CrossRef]
- Reynisson, B.; Barra, C.; Kaabinejadian, S.; Hildebrand, W.H.; Peters, B.; Nielsen, M. Improved Prediction of MHC II Antigen Presentation through Integration and Motif Deconvolution of Mass Spectrometry MHC Eluted Ligand Data. J. Proteome Res. 2020, 19, 2304–2315. [Google Scholar] [CrossRef]
- Singh, H.; Raghava, G.P.S. ProPred: Prediction of HLA-DR binding sites. Bioinformatics 2001, 17, 1236–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, H.; Raghava, G. ProPred1: Prediction of promiscuous MHC Class-I binding sites. Bioinformatics 2003, 19, 1009–1014. [Google Scholar] [CrossRef]
- Nielsen, M.; Lundegaard, C.; Lund, O.; Keşmir, C. The role of the proteasome in generating cytotoxic T-cell epitopes: Insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 2005, 57, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Keşmir, C.; Nussbaum, A.K.; Schild, H.; Detours, V.; Brunak, S. Prediction of proteasome cleavage motifs by neural networks. Protein Eng. Des. Sel. 2002, 15, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Mutiso, J.M.; Macharia, J.C.; Gicheru, M.M. A review of adjuvants for Leishmania vaccine candidates. J. Biomed. Res. 2010, 24, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Shibaki, A.; Katz, S.I. Induction of skewed Th1/Th2 T-cell differentiation via subcutaneous immunization with Freund’s adjuvant. Exp. Dermatol. 2002, 11, 126–134. [Google Scholar] [CrossRef]
- Kaech, S.M.; Wherry, E.J.; Ahmed, R. Effector and memory T-cell differentiation: Implications for vaccine development. Nat. Rev. Immunol. 2002, 2, 251–262. [Google Scholar] [CrossRef]
- Huang, Y.; Lei, Y.; Zhang, H.; Zhang, M.; Dayton, A. Interleukin-12 treatment down-regulates STAT4 and induces apoptosis with increasing ROS production in human natural killer cells. J. Leukoc. Biol. 2011, 90, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Raja, M.R.C.; Srinivasan, S.; Subramaniam, S.; Rajendran, N.; Sivasubramanian, A.; Mahapatra, S.K. Acetyl shikonin induces IL-12, nitric oxide and ROS to kill intracellular parasite Leishmania donovani in infected hosts. RSC Adv. 2016, 6, 61777–61783. [Google Scholar] [CrossRef]
- Xu, A.; Zhang, X.; Chibbar, R.; Freywald, A.; Tikoo, S.; Zheng, C.; Xiang, J. Transgene IL-21-Engineered T Cell-Based Vaccine Potently Converts CTL Exhaustion via the Activation of the mTORC1 Pathway in Chronic Infection. World J. Vaccines 2019, 9, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Parmigiani, A.; Pallin, M.F.; Schmidtmayerova, H.; Lichtenheld, M.G.; Pahwa, S. Interleukin-21 and cellular activation concurrently induce potent cytotoxic function and promote antiviral activity in human CD8 T cells. Hum. Immunol. 2011, 72, 115–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonard, W.J.; Wan, E. IL-21 Signaling in Immunity. F1000Research 2016, 5, 224. [Google Scholar] [CrossRef]
- Kasaian, M.T.; Whitters, M.J.; Carter, L.L.; Lowe, L.D.; Jussif, J.M.; Deng, B.; Johnson, K.A.; Witek, J.S.; Senices, M.; Konz, R.F.; et al. IL-21 Limits NK Cell Responses and Promotes Antigen-Specific T Cell Activation: A Mediator of the Transition from Innate to Adaptive Immunity. Immunity 2002, 16, 559–569. [Google Scholar] [CrossRef] [Green Version]
- Shibuya, K.; Robinson, D.; Zonin, F.; Hartley, S.B.; Macatonia, S.E.; Somoza, C.; Hunter, C.A.; Murphy, K.M.; O’Garra, A. IL-1α and TNF-α Are Required for IL-12-Induced Development of Th1 Cells Producing High Levels of IFN-γ in BALB/c But Not C57BL/6 Mice. J. Immunol. 1998, 160, 1708–1716. [Google Scholar] [PubMed]
- Hernandez-Pando, R.; Rook, G. The role of TNF-alpha in T-cell-mediated inflammation depends on the Th1/Th2 cytokine balance. Immunology 1994, 82, 591–595. [Google Scholar]
- De Brito, R.C.F.; Cardoso, J.M.D.O.; Reis, L.E.S.; Vieira, J.F.; Mathias, F.A.S.; Roatt, B.; Aguiar-Soares, R.D.D.O.; Ruiz, J.C.; Resende, D.; Reis, A.B. Peptide Vaccines for Leishmaniasis. Front. Immunol. 2018, 9, 1043. [Google Scholar] [CrossRef] [Green Version]
- Xiong, X.; Qi, Y.; Jiao, J.; Gong, W.; Duan, C.; Wen, B. Exploratory Study on Th1 Epitope-Induced Protective Immunity against Coxiella burnetii Infection. PLoS ONE 2014, 9, e87206. [Google Scholar] [CrossRef]
- Chaturvedi, P.; Yu, Q.; Southwood, S.; Sette, A.; Singh, B. Peptide analogs with different affinities for MHC alter the cytokine profile of T helper cells. Int. Immunol. 1996, 8, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Boyton, R.J.; Altmann, D.M. Is selection for TCR affinity a factor in cytokine polarization? Trends Immunol. 2002, 23, 526–529. [Google Scholar] [CrossRef]
- Lo-Man, R.; Langeveld, J.P.M.; Dériaud, E.; Jehanno, M.; Rojas, M.; Clément, J.-M.; Meloen, R.H.; Hofnung, M.; Leclerc, C. Extending the CD4 + T-Cell Epitope Specificity of the Th1 Immune Response to an Antigen Using a Salmonella enterica Serovar Typhimurium Delivery Vehicle. Infect. Immun. 2000, 68, 3079–3089. [Google Scholar] [CrossRef] [Green Version]
- Moro-García, M.A.; Mayo, J.C.; Sainz, R.M.; Alonso-Arias, R. Influence of Inflammation in the Process of T Lymphocyte Differentiation: Proliferative, Metabolic, and Oxidative Changes. Front. Immunol. 2018, 9, 339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, N.S.; Harty, J.T. The Role of Inflammation in the Generation and Maintenance of Memory T Cells. Cells 2010, 684, 42–56. [Google Scholar] [CrossRef]
- Altered peptide ligands can control CD4 T lymphocyte differentiation in vivo. J. Exp. Med. 1995, 181, 1569–1574. [CrossRef] [PubMed] [Green Version]
- Tamura, T.; Ariga, H.; Kinashi, T.; Uehara, S.; Kikuchi, T.; Nakada, M.; Tokunaga, T.; Xu, W.; Kariyone, A.; Saito, T.; et al. The role of antigenic peptide in CD4+ T helper phenotype development in a T cell receptor transgenic model. Int. Immunol. 2004, 16, 1691–1699. [Google Scholar] [CrossRef] [PubMed]
- Acuto, O.; Michel, F.M. CD28-mediated co-stimulation: A quantitative support for TCR signalling. Nat. Rev. Immunol. 2003, 3, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Smith-Garvin, J.E.; Koretzky, G.A.; Jordan, M.S. T Cell Activation. Annu. Rev. Immunol. 2009, 27, 591–619. [Google Scholar] [CrossRef]
- Coombs, D.; Dushek, O.; Van Der Merwe, P.A. A Review of Mathematical Models for T Cell Receptor Triggering and Antigen Discrimination. Math. Models Immune Cell Biol. 2011, 25–45. [Google Scholar] [CrossRef]
- Zhu, Y.; Yao, S.; Chen, L. Cell Surface Signaling Molecules in the Control of Immune Responses: A Tide Model. Immunity 2011, 34, 466–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adhikari, U.K.; Tayebi, M.; Rahman, M.M. Immunoinformatics Approach for Epitope-Based Peptide Vaccine Design and Active Site Prediction against Polyprotein of Emerging Oropouche Virus. J. Immunol. Res. 2018, 2018, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kar, T.; Narsaria, U.; Basak, S.; Deb, D.; Castiglione, F.; Mueller, D.M.; Srivastava, A.P. A candidate multi-epitope vaccine against SARS-CoV. Sci. Rep. 2020, 10, 1–24. [Google Scholar] [CrossRef]
- Bordbar, A.; Bagheri, K.P.; Ebrahimi, S.; Parvizi, P. Bioinformatics analyses of immunogenic T-cell epitopes of LeIF and PpSP15 proteins from Leishmania major and sand fly saliva used as model antigens for the design of a multi-epitope vaccine to control leishmaniasis. Infect. Genet. Evol. 2020, 80, 104189. [Google Scholar] [CrossRef] [PubMed]
- Dikhit, M.R.; Kumar, A.; Das, S.; Dehury, B.; Rout, A.K.; Jamal, F.; Sahoo, G.C.; Topno, R.K.; Pandey, K.; Das, V.N.R.; et al. Identification of Potential MHC Class-II-Restricted Epitopes Derived from Leishmania donovani Antigens by Reverse Vaccinology and Evaluation of Their CD4+ T-Cell Responsiveness against Visceral Leishmaniasis. Front. Immunol. 2017, 8, 1763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vakili, B.; Nezafat, N.; Zare, B.; Erfani, N.; Akbari, M.; Ghasemi, Y.; Rahbar, M.R.; Hatam, G.R. A new multi-epitope peptide vaccine induces immune responses and protection against Leishmania infantum in BALB/c mice. Med. Microbiol. Immunol. 2019, 209, 69–79. [Google Scholar] [CrossRef]
- Khatoon, N.; Pandey, R.K.; Prajapati, V.K. Exploring Leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.K.; Lichtman, A.H.; Pillai, S. Cellular and Molecular Immunology E-Book; Elsevier Health Sciences: New York, NY, USA, 2017. [Google Scholar]
- Zhang, J.; He, J.; Li, J.; Zhou, Q.; Chen, H.; Zheng, Z.; Chen, Q.; Chen, D.; Chen, J. The immunogenicity and protective immunity of multi-epitopes DNA prime-protein boost vaccines encoding Amastin-Kmp-11, Kmp11-Gp63 and Amastin-Gp63 against visceral leishmaniasis. PLoS ONE 2020, 15, e0230381. [Google Scholar] [CrossRef] [PubMed]
- Ratna, A.; Arora, S.K. Leishmania recombinant antigen modulates macrophage effector function facilitating early clearance of intracellular parasites. Trans. R. Soc. Trop. Med. Hyg. 2016, 110, 610–619. [Google Scholar] [CrossRef]
- de Vrij, N.; Meysman, P.; Gielis, S.; Adriaensen, W.; Laukens, K.; Cuypers, B. HLA-DRB1 Alleles Associated with Lower Leishmaniasis Susceptibility Share Common Amino Acid Polymorphisms and Epitope Binding Repertoires. Vaccines 2021, 9, 270. [Google Scholar] [CrossRef] [PubMed]
- Mitran, C.J.; Yanow, S.K. The Case for Exploiting Cross-Species Epitopes in Malaria Vaccine Design. Front. Immunol. 2020, 11, 335. [Google Scholar] [CrossRef] [Green Version]
- Bolander, M.E.; Robey, P.G.; Fisher, L.W.; Conn, K.M.; Prabhakar, B.S.; Termine, J.D. Monoclonal antibodies against osteonectin show conservation of epitopes across species. Calcif. Tissue Int. 1989, 45, 74–80. [Google Scholar] [CrossRef]
- Westernberg, L.; Schulten, V.; Greenbaum, J.A.; Natali, S.; Tripple, V.; McKinney, D.M.; Frazier, A.; Hofer, H.; Wallner, M.; Sallusto, F.; et al. T-cell epitope conservation across allergen species is a major determinant of immunogenicity. J. Allergy Clin. Immunol. 2016, 138, 571–578.e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piel, L.M.W.; Durfee, C.J.; White, S.N. Proteome-wide analysis of Coxiella burnetii for conserved T-cell epitopes with presentation across multiple host species. BMC Bioinform. 2021, 22, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Thakur, S.; Joshi, J.; Kaur, S. Leishmaniasis diagnosis: An update on the use of parasitological, immunological and molecular methods. J. Parasit. Dis. 2020, 44, 253–272. [Google Scholar] [CrossRef] [PubMed]
- Sundar, S.; Rai, M. Laboratory Diagnosis of Visceral Leishmaniasis. Clin. Vaccine Immunol. 2002, 9, 951–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomiotto-Pellissier, F.; Bortoleti, B.; Assolini, J.P.; Gonçalves, M.D.; Carloto, A.C.M.; Miranda-Sapla, M.M.; Conchon-Costa, I.; Bordignon, J.; Pavanelli, W.R. Macrophage Polarization in Leishmaniasis: Broadening Horizons. Front. Immunol. 2018, 9, 2529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F.; Wu, W.; Millman, A.; Craft, J.F.; Chen, E.; Patel, N.; Boucher, J.L.; Jr, J.F.U.; Kim, C.C.; Gause, W.C. Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion. Nat. Immunol. 2014, 15, 938–946. [Google Scholar] [CrossRef] [Green Version]
- Natoli, G.; Ostuni, R. Adaptation and memory in immune responses. Nat. Immunol. 2019, 20, 783–792. [Google Scholar] [CrossRef]
- Tercan, H.; Riksen, N.P.; Joosten, L.A.; Netea, M.G.; Bekkering, S. Trained Immunity. Arter. Thromb. Vasc. Biol. 2020. [Google Scholar] [CrossRef]
- Mortha, A.; Burrows, K. Cytokine Networks between Innate Lymphoid Cells and Myeloid Cells. Front. Immunol. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Zamboni, D.S.; Sacks, D.L. Inflammasomes and Leishmania: In good times or bad, in sickness or in health. Curr. Opin. Microbiol. 2019, 52, 70–76. [Google Scholar] [CrossRef]
- De Ribeiro, H.A.L.; Maioli, T.; De Freitas, L.M.; Tieri, P.; Castiglione, F. A mathematical model of murine macrophage infected with Leishmania sp. IEEE 2018, 1425–1430. [Google Scholar] [CrossRef]
- Ball, W.B.; Mukherjee, M.; Srivastav, S.; Das, P.K. Leishmania donovani activates uncoupling protein 2 transcription to suppress mitochondrial oxidative burst through differential modulation of SREBP2, Sp1 and USF1 transcription factors. Int. J. Biochem. Cell Biol. 2014, 48, 66–76. [Google Scholar] [CrossRef]
- Kyriazis, I.D.; Koutsoni, O.S.; Aligiannis, N.; Karampetsou, K.; Skaltsounis, A.-L.; Dotsika, E. The leishmanicidal activity of oleuropein is selectively regulated through inflammation- and oxidative stress-related genes. Parasites Vectors 2016, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Chauhan, S.B.; Kumar, R.; Singh, S.S.; Ng, S.; Amante, F.; Rivera, F.D.L.; Singh, O.P.; Rai, M.; Nylen, S.; et al. A molecular signature for CD8+T cells from visceral leishmaniasis patients. Parasite Immunol. 2019, 41, e12669. [Google Scholar] [CrossRef]
- Solaymani-Mohammadi, S.; Eckmann, L.; Singer, S.M. Interleukin (IL)-21 in Inflammation and Immunity During Parasitic Diseases. Front. Cell. Infect. Microbiol. 2019, 9, 401. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Bhattacharya, P.; Dagur, P.K.; Karmakar, S.; Ismail, N.; Joshi, A.B.; Akue, A.D.; Kukuruga, M.; McCoy, J.P.; Dey, R.; et al. Live Attenuated Leishmania donovani Centrin Gene–Deleted Parasites Induce IL-23–Dependent IL-17–Protective Immune Response against Visceral Leishmaniasis in a Murine Model. J. Immunol. 2017, 200, 163–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zohar, Y.; Wildbaum, G.; Novak, R.; Salzman, A.L.; Thelen, M.; Alon, R.; Barsheshet, Y.; Karp, C.L.; Karin, N. CXCL11-dependent induction of FOXP3-negative regulatory T cells suppresses autoimmune encephalomyelitis. J. Clin. Investig. 2014, 124, 2009–2022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foley, J.F. Polyfunctional T Cells. Sci. Signal. 2012, 5, ec42. [Google Scholar] [CrossRef]
- Lewinsohn, D.A.; Lewinsohn, D.M.; Scriba, T. Polyfunctional CD4+ T Cells As Targets for Tuberculosis Vaccination. Front. Immunol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Burel, J.G.; Apte, S.; Groves, P.L.; McCarthy, J.; Doolan, D.L. Polyfunctional and IFN-γ monofunctional human CD4+ T cell populations are molecularly distinct. JCI Insight 2017, 2, e87499. [Google Scholar] [CrossRef] [Green Version]
- Macedo, A.B.B.; Sánchez-Arcila, J.C.; Schubach, A.O.; Mendonça, S.C.F.; Marins-Dos-Santos, A.; Madeira, M.D.F.; Gagini, T.; Pimentel, M.I.F.; De Luca, P.M. Multifunctional CD4+T cells in patients with American cutaneous leishmaniasis. Clin. Exp. Immunol. 2012, 167, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Bagheri, N.; Bradshaw, E.M.; Hafler, D.A.; Lauffenburger, D.A.; Love, J.C. Polyfunctional responses by human T cells result from sequential release of cytokines. Proc. Natl. Acad. Sci. USA 2011, 109, 1607–1612. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, H.B.; Fonseca, R.; Alvarez, J.M.; Lima, M.R.D. IFN-γPriming Effects on the Maintenance of Effector Memory CD4+T Cells and on Phagocyte Function: Evidences from Infectious Diseases. J. Immunol. Res. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Stäger, S.; Rafati, S. CD8+ T Cells in Leishmania Infections: Friends or Foes? Front. Immunol. 2012, 3, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
64 kDa | B4/1 (AY 161269) | F2/1 (AY 180912) | A2/1 (AY 377788) |
1317 epitopes | aa 1–83 | aa 8–65 | aa 12–103 |
aa 77–206 | aa 125–223 | ||
aa 242–310 | |||
aa 364–403 | |||
36 kDa | B4/1 (AY 161269) | F2/1 (AY 180912) | A2/1 (AY 377788) |
63 epitopes | aa 23–52 | aa 41–58 | aa 14–28 |
aa 69–89 | aa 186–196 | aa 46–70 | |
aa 99–109 | aa 81–94 | ||
aa 98-119 | |||
aa 139–178 | |||
aa 185–225 | |||
aa 242–283 | |||
aa 372–384 | |||
29 kDa: Core multiepitope sequence and flanking regions included in 29 kDa construct as indicated in brackets | |||
24 epitopes | B4/1 (AY 161269) | F2/1 (AY 180912) | A2/1 (AY 377788) |
aa 36–66 (30–69) | aa 1–9 (1–12) | aa 15–27 (1–31) | |
aa 41–53 (38–56) | aa 63–106 (60–109) | ||
aa 166–176 (166–179) | |||
aa 239–271 (236–277) | |||
aa 288–295 (281–305) | |||
aa 392–399 (389–403) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arya, A.; Arora, S.K. A T-Cell Epitope-Based Multi-Epitope Vaccine Designed Using Human HLA Specific T Cell Epitopes Induces a Near-Sterile Immunity against Experimental Visceral Leishmaniasis in Hamsters. Vaccines 2021, 9, 1058. https://doi.org/10.3390/vaccines9101058
Arya A, Arora SK. A T-Cell Epitope-Based Multi-Epitope Vaccine Designed Using Human HLA Specific T Cell Epitopes Induces a Near-Sterile Immunity against Experimental Visceral Leishmaniasis in Hamsters. Vaccines. 2021; 9(10):1058. https://doi.org/10.3390/vaccines9101058
Chicago/Turabian StyleArya, Aryandra, and Sunil K. Arora. 2021. "A T-Cell Epitope-Based Multi-Epitope Vaccine Designed Using Human HLA Specific T Cell Epitopes Induces a Near-Sterile Immunity against Experimental Visceral Leishmaniasis in Hamsters" Vaccines 9, no. 10: 1058. https://doi.org/10.3390/vaccines9101058
APA StyleArya, A., & Arora, S. K. (2021). A T-Cell Epitope-Based Multi-Epitope Vaccine Designed Using Human HLA Specific T Cell Epitopes Induces a Near-Sterile Immunity against Experimental Visceral Leishmaniasis in Hamsters. Vaccines, 9(10), 1058. https://doi.org/10.3390/vaccines9101058