Antibody Persistence 6 Months Post-Vaccination with BNT162b2 among Health Care Workers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sette, A.; Crotty, S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 2021, 184, 861–880. [Google Scholar] [CrossRef]
- Dan, J.M.; Mateus, J.; Kato, Y.; Hastie, K.M.; Yu, E.D.; Faliti, C.E.; Grifoni, A.; Ramirez, S.I.; Haupt, S.; Frazier, A.; et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 2021, 371. [Google Scholar] [CrossRef] [PubMed]
- Pellini, R.; Venuti, A.; Pimpinelli, F.; Abril, E.; Blandino, G.; Campo, F.; Conti, L.; De Virgilio, A.; De Marco, F.; Di Domenico, E.G.; et al. Early Onset of SARS-Cov-2 Antibodies after First Dose of BNT162b2: Correlation with Age, Gender and BMI. Vaccines 2021, 9, 685. [Google Scholar] [CrossRef] [PubMed]
- Pellini, R.; Venuti, A.; Pimpinelli, F.; Abril, E.; Blandino, G.; Campo, F.; Conti, L.; De Virgilio, A.; De Marco, F.; Di Domenico, E.G.; et al. Initial observations on age, gender, BMI and hypertension in antibody responses to SARS-CoV-2 BNT162b2 vaccine. EClinicalMedicine 2021, 36, 100928. [Google Scholar] [CrossRef] [PubMed]
- Weir, C.B.; Jan, A. BMI Classification Percentile and Cut Off Points. [Updated 2020 Jul 10]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK541070 (accessed on 4 May 2021).
- Ralli, M.; Candelori, F.; Cambria, F.; Greco, A.; Angeletti, D.; Lambiase, A.; Campo, F.; Minni, A.; Polimeni, A.; de Vincentiis, M. Impact of COVID-19 pandemic on otolaryngology, ophthalmology and dental clinical activity and future perspectives. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 9705–9711. [Google Scholar] [PubMed]
- Amodio, E.; Capra, G.; Casuccio, A.; Grazia, S.; Genovese, D.; Pizzo, S.; Calamusa, G.; Ferraro, D.; Giammanco, G.M.; Vitale, F.; et al. Antibodies Responses to SARS-CoV-2 in a Large Cohort of Vaccinated Subjects and Seropositive Patients. Vaccines 2021, 9, 714. [Google Scholar] [CrossRef]
- Salvagno, G.L.; Henry, B.M.; Pighi, L.; De Nitto, S.; Gianfilippi, G.L.; Lippi, G. Three-month analysis of total humoral response to Pfizer BNT162b2 mRNA COVID-19 vaccination in healthcare workers. J. Infect. 2021, 83, e4–e5. [Google Scholar] [CrossRef]
- Favresse, J.; Bayart, J.L.; Mullier, F.; Elsen, M.; Eucher, C.; Van Eeckhoudt, S.; Roy, T.; Wieers, G.; Laurent, C.; Dogne, J.M.; et al. Antibody titres decline 3-month post-vaccination with BNT162b2. Emerg. Microbes Infect. 2021, 10, 1495–1498. [Google Scholar] [CrossRef]
- Doria-Rose, N.; Suthar, M.S.; Makowski, M.; O’Connell, S.; McDermott, A.B.; Flach, B.; Ledgerwood, J.E.; Mascola, J.R.; Graham, B.S.; Lin, B.C.; et al. Antibody Persistence through 6 Months after the Second Dose of mRNA-1273 Vaccine for COVID-19. N. Engl. J. Med. 2021, 384, 2259–2261. [Google Scholar] [CrossRef]
- Poland, G.A.; Ovsyannikova, I.G.; Kennedy, R.B. Personalized vaccinology: A review. Vaccine 2018, 36, 5350–5357. [Google Scholar] [CrossRef]
- Frasca, D.; Diaz, A.; Romero, M.; Blomberg, B.B. The generation of memory B cells is maintained, but the antibody response is not, in the elderly after repeated influenza immunizations. Vaccine 2016, 34, 2834–2840. [Google Scholar] [CrossRef] [Green Version]
- Frasca, D.; Diaz, A.; Romero, M.; Landin, A.M.; Phillips, M.; Lechner, S.C.; Ryan, J.G.; Blomberg, B.B. Intrinsic defects in B cell response to seasonal influenza vaccination in elderly humans. Vaccine 2010, 28, 8077–8084. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; O’Neill, P.; Naradikian, M.S.; Scholz, J.L.; Cancro, M.P. A B-cell subset uniquely responsive to innate stimuli accumulates in aged mice. Blood 2011, 118, 1294–1304. [Google Scholar] [CrossRef] [Green Version]
- Rubtsov, A.V.; Rubtsova, K.; Fischer, A.; Meehan, R.T.; Gillis, J.Z.; Kappler, J.W.; Marrack, P. Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c(+) B-cell population is important for the development of autoimmunity. Blood 2011, 118, 1305–1315. [Google Scholar] [CrossRef] [Green Version]
- Nipper, A.J.; Smithey, M.J.; Shah, R.C.; Canaday, D.H.; Landay, A.L. Diminished antibody response to influenza vaccination is characterized by expansion of an age-associated B-cell population with low PAX5. Clin. Immunol. 2018, 193, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Bignucolo, A.; Scarabel, L.; Mezzalira, S.; Polesel, J.; Cecchin, E.; Toffoli, G. Sex Disparities in Efficacy in COVID-19 Vaccines: A Systematic Review and Meta-Analysis. Vaccines 2021, 9, 825. [Google Scholar] [CrossRef] [PubMed]
- Peckham, H.; de Gruijter, N.M.; Raine, C.; Radziszewska, A.; Ciurtin, C.; Wedderburn, L.R.; Rosser, E.C.; Webb, K.; Deakin, C.T. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat. Commun. 2020, 11, 6317. [Google Scholar] [CrossRef] [PubMed]
- Voigt, E.A.; Ovsyannikova, I.G.; Kennedy, R.B.; Grill, D.E.; Goergen, K.M.; Schaid, D.J.; Poland, G.A. Sex Differences in Older Adults’ Immune Responses to Seasonal Influenza Vaccination. Front. Immunol. 2019, 10, 180. [Google Scholar] [CrossRef] [Green Version]
- Engler, R.J.; Nelson, M.R.; Klote, M.M.; Van Raden, M.J.; Huang, C.Y.; Cox, N.J.; Klimov, A.; Keitel, W.A.; Nichol, K.L.; Carr, W.W.; et al. Walter Reed Health Care System Influenza Vaccine, C. Half- vs full-dose trivalent inactivated influenza vaccine (2004–2005): Age, dose, and sex effects on immune responses. Arch. Intern. Med. 2008, 168, 2405–2414. [Google Scholar] [CrossRef]
- Furman, D.; Hejblum, B.P.; Simon, N.; Jojic, V.; Dekker, C.L.; Thiebaut, R.; Tibshirani, R.J.; Davis, M.M. Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. Proc. Natl. Acad. Sci. USA 2014, 111, 869–874. [Google Scholar] [CrossRef] [Green Version]
- Verschoor, C.P.; Singh, P.; Russell, M.L.; Bowdish, D.M.; Brewer, A.; Cyr, L.; Ward, B.J.; Loeb, M. Microneutralization assay titres correlate with protection against seasonal influenza H1N1 and H3N2 in children. PLoS ONE 2015, 10, e0131531. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, P.S.; Hurwitz, J.L.; Simoes, E.A.F.; Piedra, P.A. Establishing Correlates of Protection for Vaccine Development: Considerations for the Respiratory Syncytial Virus Vaccine Field. Viral Immunol. 2018, 31, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Bonelli, F.; Sarasini, A.; Zierold, C.; Calleri, M.; Bonetti, A.; Vismara, C.; Blocki, F.A.; Pallavicini, L.; Chinali, A.; Campisi, D.; et al. Clinical and Analytical Performance of an Automated Serological Test That Identifies S1/S2-Neutralizing IgG in COVID-19 Patients Semiquantitatively. J. Clin. Microbiol. 2020, 58, e01224-20. [Google Scholar] [CrossRef] [PubMed]
- Di Noia, V.; Pimpinelli, F.; Renna, D.; Barberi, V.; Maccallini, M.T.; Gariazzo, L. Immunogenicity and Safety of COVID-19 Vaccine BNT162b2 for Patients with Solid Cancer: A Large Cohort Prospective study from a Single Institution. Available online: https://clincancerres.aacrjournals.org/content/early/2021/09/23/1078-0432.CCR-21-2439 (accessed on 28 September 2021).
Characteristic | ||||||
---|---|---|---|---|---|---|
Sampling | T0 | T1 | T2 | T3 | T4 | T5 |
Total Patients | 274 | 271 | 270 | 251 | 250 | 232 |
Age | ||||||
Median (rage) | 46.1 (23–69) | 46.1 (23–69) | 46.1 (23–69) | 45.8 (23–69) | 45.8 (23–69) | 45.4 (23–69) |
Gender | ||||||
Female | 174 | 173 | 170 | 169 | 164 | 156 |
Male | 100 | 98 | 100 | 82 | 86 | 76 |
Bmi | ||||||
Under-Weight | 20 | 20 | 20 | 19 | 19 | 18 |
Normal-Weight | 162 | 161 | 160 | 150 | 154 | 141 |
Pre-Obesity | 66 | 64 | 64 | 58 | 54 | 52 |
Obesity | 26 | 26 | 26 | 24 | 23 | 21 |
Hypertension | ||||||
NO | 243 | 240 | 239 | 222 | 223 | 202 |
YES | 31 | 31 | 31 | 29 | 27 | 30 |
Hypothyroidism | ||||||
NO | 256 | 253 | 252 | 233 | 232 | 214 |
YES | 18 | 18 | 18 | 18 | 18 | 18 |
Diabetes | ||||||
NO | 270 | 267 | 266 | 249 | 248 | 230 |
YES | 4 | 4 | 4 | 2 | 2 | 2 |
Previous COVID-19 | ||||||
NO | 259 | 256 | 255 | 239 | 236 | 218 |
YES | 15 | 15 | 15 | 12 | 14 | 14 |
Characteristic | N. HCW T0 (Day 0) | GMC (95% CI) | N. HCW T1 (Day 21) | GMC (95% CI) | N. HCW T2 (Day 28) | GMC (95% CI) | N. HCW T3 (Day 49) | GMC (95% CI) | N. HCW T4 (Day 84) | GMC (95% CI) | N. HCW T5 (Day 168) | GMC (95% CI) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sampling | T0 | T1 | T2 | T3 | T4 | T5 | ||||||
All subjects | 274 | 4.32 (4.14–4.54) | 271 | 56.69 (50.90–63.15 | 270 | 299.89 (263.53–339.52) | 251 | 271.09 (254.71–289.26) | 250 | 175.37 (165.51–186.06) | 232 | 134.64 (123.25–146.54) |
COVID-19 no | 259 | 4.11 (4.02–4.22) | 257 | 52.51 (47.90–57.67) | 256 | 290.77 (254.38–329.52) | 240 | 266.25 (250.33–283.53) | 237 | 171.47 (162.38–181.34) | 219 | 130.81 (120.45–143.14) |
COVID-19 yes | 15 | 10.29 (5.93–17.87) | 15 | 209.13 (83.15–566.19) | 15 | 506.88 (271.74–957.86) | 12 | 388.13 (263.10–600.62) | 14 | 256.17 (166.94–422.14) | 14 | 211.14 (134.33–335.90) |
Univariate | Multivariate | ||||
---|---|---|---|---|---|
Beta (95% CI) | p Value | Beta (95% CI) | p Value | ||
T0 | Age (in years) | −0.004 (−0.008; 0.001) | 0.054 | −0.003 (−0.007; 0.001) | 0.092 |
Bmi (kg/cm2) | 0.005 (−0.005; 0.016) | 0.299 | 0.003 (−0.006; 0.013) | 0.495 | |
Gender (male vs. female) | 0.093 (0.000; 0.186) | 0.050 | 0.069 (−0.014; 0.149) | 0.104 | |
Hypertension (yes vs. no) | −0.042 (−0.180; 0.096) | 0.552 | 0.037 (−0.086; 0.160) | 0.555 | |
Hypothyroidism (yes vs. no) | −0.018 (−0.199; 0.164) | 0.850 | 0.068 (−0.083; 0.219) | 0.379 | |
Previous COVID-19 (yes vs. no) | 0.917 (0.752; 1.083) | 0.0001 | 0.968 (0.799; 1.137) | 0.0001 | |
T1 | Age (in years) | −0.023 (−0.032; −0.014) | 0.0001 | −0.016 (−0.026; −0.007) | 0.001 |
Bmi (kg/cm2) | −0.037 (−0.062; −0.013) | 0.003 | −0.023 (−0.046; 0.001) | 0.062 | |
Gender (male vs. female) | −0.220 (−0.444; 0.005) | 0.055 | −0.120 (−0.329; 0.090) | 0.263 | |
Hypertension (no vs. yes) | −0.454 (−0.781; −0.127) | 0.006 | −0.065 (−0.379; 0.249) | 0.685 | |
Hypothyroidism (yes vs. no) | 0.116 (−0.319; 0.551) | 0.603 | 0.157 (−0.229; 0.542) | 0.426 | |
Previous COVID-19 (yes vs. no) | 1.382 (0.937; 1.826) | 0.0001 | 1.551 (1.120; 1.983) | 0.0001 | |
T2 | Age (in years) | −0.030 (−0.040; −0.019) | 0.0001 | −0.023 (−0.035; −0.011) | 0.0001 |
Bmi (kg/cm2) | −0.051 (−0.080; −0.022) | 0.001 | −0.017 (−0.048; 0.013) | 0.257 | |
Gender (male vs. female) | −0.534 (−0.795; −0.272) | 0.0001 | −0.422 (−0.686; −0.157) | 0.002 | |
Hypertension (yes vs. no) | −0.605 (−1.005; −0.205) | 0.003 | −0.123 (−0.533; 0.286) | 0.554 | |
Hypothyroidism (yes vs. no) | 0.163 (−0.356; 0.683) | 0.538 | 0.063 (−0.425; 0.552) | 0.799 | |
Previous COVID-19 (yes vs. no) | 0.556 (−0.007; 1.118) | 0.053 | 0.565 (0.018; 1.112) | 0.043 | |
T3 | Age (in years) | −0.009 (−0.014; −0.003) | 0.002 | −0.009 (−0.015; −0.003) | 0.003 |
Bmi (kg/cm2) | −0.004 (−0.019; 0.011) | 0.610 | 0.006 (−0.010; 0.021) | 0.480 | |
Gender (male vs. female) | −0.148 (−0.282; −0.014) | 0.030 | −0.140 (−0.278; −0.003) | 0.046 | |
Hypertension (yes vs. no) | −0.065 (−0.263; 0.133) | 0.521 | 0.087 (−0.118; 0.293) | 0.404 | |
Hypothyroidism (yes vs. no) | 0.208 (−0.036; 0.452) | 0.095 | 0.216 (−0.022; 0.454) | 0.075 | |
Previous COVID-19 (yes vs. no) | 0.377 (0.084; 0.670) | 0.012 | 0.470 (0.171; 0.768) | 0.002 | |
T4 | Age (in years) | −0.006 (−0.010; −0.001) | 0.015 | −0.005 (−0.010; 0.001) | 0.101 |
Bmi (kg/cm2) | −0.013 (−0.026; 0.001) | 0.064 | −0.009 (−0.024; 0.005) | 0.206 | |
Gender (male vs. female) | −0.082 (−0.204; 0.039) | 0.186 | −0.050 (−0.176; 0.076) | 0.435 | |
Hypertension (yes vs. no) | −0.083 (−0.270; 0.103) | 0.381 | 0.042 (−0.153; 0.237) | 0.674 | |
Hypothyroidism (yes vs. no) | 0.036 (−0.188; 0.260) | 0.754 | 0.048 (−0.172; 0.267) | 0.670 | |
Previous COVID-19 (yes vs. no) | 0.401 (0.154; 0.649) | 0.001 | 0.474 (0.221; 0.728) | 0.0001 | |
T5 | Age (in years) | −0.007 (−0.014; 0.001) | 0.084 | −0.004 (−0.013; 0.004) | 0.309 |
Bmi (kg/cm2) | −0.016 (−0.036; 0.004) | 0.116 | −0.010 (−0.032; 0.011) | 0.355 | |
Gender (male vs. female) | −0.204 (−0.388; −0.020) | 0.031 | −0.185 (−0.378; 0.008) | 0.061 | |
Hypertension (yes vs. no) | −0.118 (−0.374; 0.138) | 0.367 | 0.061 (−0.218; 0.340) | 0.668 | |
Hypothyroidism (yes vs. no) | 0.189 (−0.136; 0.515) | 0.255 | 0.177 (−0.145; 0.499) | 0.281 | |
Previous COVID-19 (yes vs. no) | 0.479 (0.117; 0.840) | 0.009 | 0.605 (0.230; 0.980) | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campo, F.; Venuti, A.; Pimpinelli, F.; Abril, E.; Blandino, G.; Conti, L.; De Virgilio, A.; De Marco, F.; Di Noia, V.; Di Domenico, E.G.; et al. Antibody Persistence 6 Months Post-Vaccination with BNT162b2 among Health Care Workers. Vaccines 2021, 9, 1125. https://doi.org/10.3390/vaccines9101125
Campo F, Venuti A, Pimpinelli F, Abril E, Blandino G, Conti L, De Virgilio A, De Marco F, Di Noia V, Di Domenico EG, et al. Antibody Persistence 6 Months Post-Vaccination with BNT162b2 among Health Care Workers. Vaccines. 2021; 9(10):1125. https://doi.org/10.3390/vaccines9101125
Chicago/Turabian StyleCampo, Flaminia, Aldo Venuti, Fulvia Pimpinelli, Elva Abril, Giovanni Blandino, Laura Conti, Armando De Virgilio, Federico De Marco, Vincenzo Di Noia, Enea Gino Di Domenico, and et al. 2021. "Antibody Persistence 6 Months Post-Vaccination with BNT162b2 among Health Care Workers" Vaccines 9, no. 10: 1125. https://doi.org/10.3390/vaccines9101125
APA StyleCampo, F., Venuti, A., Pimpinelli, F., Abril, E., Blandino, G., Conti, L., De Virgilio, A., De Marco, F., Di Noia, V., Di Domenico, E. G., Di Martino, S., Ensoli, F., Giannarelli, D., Mandoj, C., Mazzola, F., Moretto, S., Petruzzi, G., Petrone, F., Pichi, B., ... Pellini, R. (2021). Antibody Persistence 6 Months Post-Vaccination with BNT162b2 among Health Care Workers. Vaccines, 9(10), 1125. https://doi.org/10.3390/vaccines9101125