Novel Antigenic Targets of HPV Therapeutic Vaccines
Abstract
:1. Introduction
2. Expression and Immunogenicity of HPV Antigens in Patients Suggest Multiple New Antigenic Targets for Therapeutic Vaccines
3. Challenges and Opportunities of HPV Therapeutic Vaccines
4. Clinical Attempts at Treating Early Cervical Dysplasia (CIN1–3) by Targeting E6 and/or E7
Vaccine | Antigen(s) | Delivery Method and Adjuvants | Co-Treatment | Patient Population | Clinical Phase | Conclusion(s) | Trial ID | References |
---|---|---|---|---|---|---|---|---|
VB10.16 | Full length HPV16 E6 and E7 coupled to MIP-1α | DNA Encoding HPV antigen linked to human chemokine MIP-1alpha-targets APCs directly | CIN2/3 | I/II | In total, 12 out of 14 patients showed a reduction in the lesion size 12 months after treatment initiation. Histopathological regression to low grade neoplasia (CIN1) or no disease was seen in 8 patients. Of the 6 patients that has not regressed to CIN1 or less at 12 months, 5 patients showed upregulation of PD-L1 in the lesions, and three of these patients had also persistent co-infection with other high-risk HPV strains. 16/17 patients had increased HPV16 T cell responses post vaccination. | NCT02529930 | [90,91] | |
GX-188E | HPV16 and 18 E6 and E7 | DNA Encoding HPV antigens and Fms-like tyrosine kinase-3 ligand | CIN3 | II | Histologic regression in 67% of patients. 73% of patients with regression showed HPV clearance. | NCT02139267 | [89] | |
VGX-3100 | HPV16 and 18 E6 and E7 | DNA | CIN2/3 (placebo controlled) | IIb | Histological regression in 49.5% of treated vs 30.6% of placebo after 36 weeks. 91% of the women who had experienced regression and avoided excision had no detectable HPV DNA or HSIL recurrence after 18 months. | NCT01304524/EudraCT 2012-001334-33 | [87,88] | |
TA-HPV + DNAE7 | HPV16 and 18 E6 and E7 | HPV16 E7 (DNAE7) at study weeks 0 and 4, followed by a recombinant vaccinia boost expressing HPV16 and HPV18 E6 and E7 (rVacE6E7; TA-HPV) at study week 8 | HPV16+ CIN2/3 | I | In total, 7/12 patients generated vaccine specific immune responses, and 5/12 patients showed complete histological regression-however no correlation between responses and regression reported. Increased CD8 T cell infiltration in lesion after vaccination. | NCT00788164 | [93] | |
ISA101 | synthetic long peptides covering the entire HPV16 E6 and E7 | Peptide Freunds incomplete adjuvant | +/- 5% imiquimod cream | High-grade vulvar or vaginal intraepithelial neoplastic lesions | I/II | Vaccine-induced clinical responses were observed in 53–60% of patients at 3 months and in 52–79% of patients, of whom 53–60% displayed a complete histologic response at 12 months after the last vaccination. Vaccine-induced T cell responses were significantly stronger in patients with complete responses. Importantly, viral clearance occurred in all but one of the patients with complete histologic clearance. | NL21215.000.08 | [82,83] |
GTL001 | HPV16 and 18 E7 | Proteins fused to inactive Bordetella pertussis adenylate cyclase as vaccine vector (direct targeting of CD11b+ cells) | 5% imiquimod cream | Women With Normal Cytology or ASCUS/LSIL. Aimed at clearance of HPV616/18 infections (placebo controlled) | II | No clinical difference observed between therapy and placebo group. | NCT02689726/EudraCT 2013-003358-25 | [84,85,86] |
TG4001 | full length HPV16 E6 and E7 | MVA Encoding HPV antigens and IL-2 | CIN2/3 (placebo controlled), 13 different hrHPV types | II | Histologic complete resolution of CIN2/3 in 18% of HPV16+ patients after 6 months (4% for placebo). Viral clearance in 43% (55/127) of CIN2/3 patients after 30 months (32%, 20/62 for placebo group). | NCT01022346/EudraCT 2008–006946-24 | [92] | |
VTP-200 | conserved elements of E1, E2, E4, E5, E6 and E7 proteins representing HPV genotypes 16, 18, 31, 52 and 58 | Encoded into ChAdOx1 and MVA | low grade cervical lesions (placebo controlled) | I/II | No results available yet. | NCT04607850 |
5. Pre-Clinical and Clinical Attempts at Treating HPV Infection and Early Cervical Dysplasia by Targeting Other Antigens Than E6/E7
6. Clinical Attempts at Treating HPV+ Cancers by Targeting E6 and/or E7
Vaccine | Antigen(s) | Delivery Method and Adjuvants | Co-Treatment | Patient Population | Clinical Phase | Conclusion(s) | Trial ID | References |
---|---|---|---|---|---|---|---|---|
VB10.16 | Full length HPV16 E6 and E7 coupled to MIP-1α | DNA Encoding HPV antigen linked to human chemokine MIP-1alpha-targets APCs directly | aPDL-1 | Advanced, non-resectable cervical cancer | I/II | Trial ongoing | NCT04405349 | [106] |
ISA101 | synthetic long peptides covering the entire HPV16 E6 and E7 | Peptide Freunds incomplete adjuvant | Carboplatin/paclitaxel | Advanced, recurrent, or metastatic cervical cancer | I/II | Tumor regression on 43% of patients. HPV T cell responses were mounted after vaccination, and higher responses correlated with longer survival | NCT02128126 and EudraCT 2013-1804-12 | [99] |
aPD1 | Incurable HPV16-positive cancer (mostly OPSCC) | II | Overall response rate was 33%, and overall survival was 17.5 months. Seems promising compared to aPD1 alone, but a randomized clinical trial to confirm the contribution of ISA101 is needed | NCT02426892 | [102] | |||
ADXS11-001 | HPV16 E7 | Listeria monocytogenes | Cisplatin | Advanced cervical cancer | II (phase III ongoing) | Median overall survival was about 8.5 months with or without cisplatin, with a 12-months overall survival of 30.9–38.9%. Median progression-free survival was 6 months, and the overall response rate was 14.7–17.1% | CTRI/2010/091/ 001232 (phase II trial) NCT02853604 (phase II trial) | [112,113] |
TG4001 | full length HPV16 E6 and E7 | MVA Encoding HPV antigens and IL-2 | aPDL-1 | Recurrent/metastatic HPV+ cancers (15 anal, 8 OPSCC, 6 cervical, 5 vulvar/vaginal) | Ib/II | In total, 23.5% shows clinical response (1/34 had complete clinical response, 7/34 had partial response), and >50% showed no disease progression at 12 weeks (compared to expected mean PFS of 8 weeks in this population with current treatment). Responders had more CD3 cell infiltration into tumor. PDL1 expression in tumor correlated with better clinical response | NCT03260023 | [110,111] |
GX-188E | HPV16 and 18 E6 and E7 | DNA Encoding HPV antigens and Fms-like tyrosine kinase-3 ligand | aPD1 | Recurrent or advanced, inoperable HPV16 or 18+ cervical cancer with progression after standard-of-care therapy | II | Clinical response in 42% of patients at 24 weeks (complete response in 4/36, partial response in 7/36) | NCT03444376 | [107] |
PDS0101 | HPV16 E6 and E7 peptides | Peptides in liposomal nanoparticle | Bintrafusp alfa (targets TGF-b and PDL-1) and NHS-IL12 | Advanced HPV− associated malignancies (failed standard of care: chemoradiotherapy and CPI) | II (ongoing) | CPI naïve patients: 83% showed >30% tumor reduction (5/6, compared to 12–24% for standard of care CPI) CPI failed patients: 42% showed clinical response (5/12, compared to 5–12% at current standard of care) | NCT04287868 | [104,105] |
aPDL-1 | Metastatic HNSCC | II (started mar 21) | Trial ongoing | NCT04260126 | ||||
Chemoradiotherapy | Cervical cancer | II (started oct 20) | Trial ongoing | NCT04580771 | ||||
HB-201/HB-202 | HPV16 E6/E7 fusion protein | Encoded into LCMV or PICV | HPV16+ head and neck squamous cell carcinoma (HNSCC) and other HPV16+ cancers | I/II | 8/18 patients had stable disease 2/18 had partial response | NCT04180215 | [114] | |
SQZ-PBMC-HPV-101 | HPV16 E6 and E7 antigens | Antigens are delivered ex vivo to cytosol of patient APCs (using cell squeeze technology) | aPD1, aPDL-1 or aCTLA-4 | Incurable HPV16+ cancers | I | 4/12 patients achieved stable disease | NCT04084951 | [108,109] |
7. Exhaustion and Implications on Selection of Antigens for Therapeutic Vaccination
8. Conclusive Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Chaturvedi, A.K.; Engels, E.A.; Pfeiffer, R.M.; Hernandez, B.Y.; Xiao, W.; Kim, E.; Jiang, B.; Goodman, M.T.; Sibug-Saber, M.; Cozen, W.; et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J. Clin. Oncol. 2011, 29, 4294–4301. [Google Scholar] [CrossRef]
- Gillison, M.L.; Koch, W.M.; Capone, R.B.; Spafford, M.; Westra, W.H.; Wu, L.; Zahurak, M.L.; Daniel, R.W.; Viglione, M.; Symer, D.E.; et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J. Natl. Cancer Inst. 2000, 92, 709–720. [Google Scholar] [CrossRef] [PubMed]
- De Martel, C.; Georges, D.; Bray, F.; Ferlay, J.; Clifford, G.M. Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis. Lancet Glob. Health 2020, 8, e180–e190. [Google Scholar] [CrossRef] [Green Version]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dillon, S.; Sasagawa, T.; Crawford, A.; Prestidge, J.; Inder, M.K.; Jerram, J.; Mercer, A.; Hibma, M. Resolution of cervical dysplasia is associated with T-cell proliferative responses to human papillomavirus type 16 E2. J. Gen. Virol. 2007, 88, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Bruni, L.; Saura-Lázaro, A.; Montoliu, A.; Brotons, M.; Alemany, L.; Diallo, M.S.; Afsar, O.Z.; LaMontagne, D.S.; Mosina, L.; Contreras, M.; et al. HPV vaccination introduction worldwide and WHO and UNICEF estimates of national HPV immunization coverage 2010–2019. Prev. Med. 2021, 144, 106399. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Accelerating the Elimination of Cervical Cancer as a Global Public Health Problem; WHO Press: Geneva, Switzerland, 2020. [Google Scholar]
- Kyndi, M.; Frederiksen, K.; Kjær, S.K.; Kjaer, S. Cervical cancer incidence in Denmark over six decades (1943–2002). Acta Obstet. Gynecol. Scand. 2006, 85, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Lynge, E.; Rygaard, C.; Baillet, M.V.-P.; Dugué, P.-A.; Sander, B.B.; Bonde, J.; Rebolj, M. Cervical cancer screening at crossroads. APMIS 2014, 122, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Aklimunnessa, K.; Mori, M.; Khan, M.M.H.; Sakauchi, F.; Kubo, T.; Fujino, Y.; Suzuki, S.; Tokudome, S.; Tamakoshi, A. Effectiveness of cervical cancer screening over cervical cancer mortality among japanese women. Jpn. J. Clin. Oncol. 2006, 36, 511–518. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Hernandez, E.; Gonzalez-Sanchez, J.L.; Andrade-Manzano, A.; Contreras, M.L.; Padilla, S.; Guzman, C.C.; Jimenez, R.; Reyes, L.; Morosoli, G.; Verde, M.L.; et al. Regression of papilloma high-grade lesions (CIN 2 and CIN 3) is stimulated by therapeutic vac-cination with MVA E2 recombinant vaccine. Cancer Gene Ther. 2006, 13, 592–597. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Freixinos, V.; Mackay, H.J. Breaking down the evidence for bevacizumab in advanced cervical cancer: Past, present and future. Gynecol. Oncol. Res. Pr. 2015, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Landoni, F.; Maneo, A.; Colombo, A.; Placa, F.; Milani, R.; Perego, P.; Favini, G.; Ferri, L.; Mangioni, C. Randomised study of radical surgery versus radiotherapy for stage Ib-IIa cervical cancer. Lancet 1997, 350, 535–540. [Google Scholar] [CrossRef]
- Zamani, M.; Grønhøj, C.; Jensen, D.H.; Carlander, A.F.; Agander, T.; Kiss, K.; Olsen, C.; Baandrup, L.; Nielsen, F.C.; Andersen, E.; et al. The current epidemic of HPV-associated oropharyngeal cancer: An 18-year Danish population-based study with 2,169 patients. Eur. J. Cancer 2020, 134, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Steinau, M.; Saraiya, M.; Goodman, M.T.; Peters, E.S.; Watson, M.; Cleveland, J.L.; Lynch, C.F.; Wilkinson, E.J.; Hernandez, B.Y.; Copeland, G.; et al. Human papillomavirus prevalence in oropharyngeal cancer before vaccine introduction, United States. Emerg. Infect. Dis. 2014, 20, 822–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreimer, A.R.; Shiels, M.S.; Fakhry, C.; Johansson, M.; Pawlita, M.; Brennan, P.; Hildesheim, A.; Waterboer, T. Screening for human papillomavirus-driven oropharyngeal cancer: Considerations for feasibility and strategies for research. Cancer 2018, 124, 1859–1866. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, G.; Clemens, G.; Troy, T.; Castillo, R.G.; Struijk, L.; Waterboer, T.; Bender, N.; Pierorazio, P.M.; Best, S.R.; Strickler, H.D.; et al. Evaluating the utility and prevalence of HPV biomarkers in oral rinses and serology for HPV-related oropharyngeal cancer. Cancer Prev. Res. 2019, 12, 689–700. [Google Scholar] [CrossRef] [Green Version]
- Chera, B.S.; Kumar, S.; Shen, C.; Amdur, R.; Dagan, R.; Green, R.; Goldman, E.; Weiss, J.; Grilley-Olson, J.; Patel, S.; et al. Plasma circulating tumor HPV DNA for the surveillance of cancer recurrence in HPV-associated oro-pharyngeal cancer. J. Clin. Oncol. 2020, 38, 1050–1058. [Google Scholar] [CrossRef] [PubMed]
- Ang, K.K.; Harris, J.; Wheeler, R.; Weber, R.; Rosenthal, D.I.; Nguyen-Tân, P.F.; Westra, W.H.; Chung, C.H.; Jordan, R.C.; Lu, C.; et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N. Engl. J. Med. 2010, 363, 24–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wuerdemann, N.; Gültekin, S.E.; Pütz, K.; Wittekindt, C.; Huebbers, C.U.; Sharma, S.J.; Eckel, H.; Schubotz, A.B.; Gattenlöhner, S.; Büttner, R.; et al. PD-L1 expression and a high tumor infiltrate of CD8+ lymphocytes predict outcome in patients with oropharyngeal squamous cells carcinoma. Int. J. Mol. Sci. 2020, 21, 5228. [Google Scholar] [CrossRef]
- Kjems, J.; Gothelf, A.B.; Håkansson, K.; Specht, L.; Kristensen, C.A.; Friborg, J. Elective nodal irradiation and patterns of failure in head and neck cancer after primary radiation therapy. Int. J. Radiat. Oncol. 2016, 94, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Bauml, J.; Seiwert, T.Y.; Pfister, D.G.; Worden, F.; Liu, S.V.; Gilbert, J.; Saba, N.F.; Weiss, J.; Wirth, L.; Sukari, A.; et al. Pembrolizumab for platinum- and cetuximab-refractory head and neck cancer: Results from a single-arm, phase II study. J. Clin. Oncol. 2017, 35, 1542–1549. [Google Scholar] [CrossRef]
- Ferris, R.L.; Blumenschein, G., Jr.; Fayette, J.; Guigay, J.; Colevas, A.D.; Licitra, L.; Harrington, K.; Kasper, S.; Vokes, E.E.; Even, C.; et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 2016, 375, 1856–1867. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, G.; Maroun, C.A.; Wu, I.X.Y.; Huang, D.; Seiwert, T.Y.; Liu, Y.; Mandal, R.; Zhang, X. Programmed death-1/programmed death-ligand 1-Axis blockade in recurrent or metastatic head and neck squamous cell carcinoma stratified by human papillomavirus status: A systematic review and meta-analysis. Front. Immunol. 2021, 12, 645170. [Google Scholar] [CrossRef] [PubMed]
- Waggoner, S.E. Cervical cancer. Lancet 2003, 361, 2217–2225. [Google Scholar] [CrossRef]
- Chung, H.; Ros, W.; Delord, J.-P.; Perets, R.; Italiano, A.; Shapira-Frommer, R.; Manzuk, L.; Piha-Paul, S.; Xu, L.; Zeigenfuss, S.; et al. Efficacy and safety of pembrolizumab in previously treated advanced cervical cancer: Results from the phase II KEYNOTE-158 study. J. Clin. Oncol. 2019, 37, 1470–1478. [Google Scholar] [CrossRef]
- Spanos, W.C.; Nowicki, P.; Lee, D.W.; Hoover, A.; Hostager, B.; Gupta, A.; Anderson, M.E.; Lee, J.H. Immune response during therapy with cisplatin or radiation for human papillomavirus–related head and neck cancer. Arch. Otolaryngol.-Head Neck Surg. 2009, 135, 1137–1146. [Google Scholar] [CrossRef] [Green Version]
- Cosper, P.F.; McNair, C.; González, I.; Wong, N.; Knudsen, K.E.; Chen, J.J.; Markovina, S.; Schwarz, J.K.; Grigsby, P.W.; Wang, X. Decreased local immune response and retained HPV gene expression during chemoradiotherapy are associated with treatment resistance and death from cervical cancer. Int. J. Cancer 2020, 146, 2047–2058. [Google Scholar] [CrossRef] [PubMed]
- Hancock, G.; Hellner, K.; Dorrell, L. Therapeutic HPV vaccines. Best Pr. Res. Clin. Obstet. Gynaecol. 2018, 47, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Pan, W.; Jin, L.; Huang, W.; Li, Y.; Wu, D.; Gao, C.; Ma, D.; Liao, S. Human papillomavirus vaccine against cervical cancer: Opportunity and challenge. Cancer Lett. 2020, 471, 88–102. [Google Scholar] [CrossRef] [PubMed]
- Schiller, J.T.; Müller, M. Next generation prophylactic human papillomavirus vaccines. Lancet Oncol. 2015, 16, e217–e225. [Google Scholar] [CrossRef]
- Narisawa-Saito, M.; Kiyono, T. Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: Roles of E6 and E7 proteins. Cancer Sci. 2007, 98, 1505–1511. [Google Scholar] [CrossRef]
- Khwaja, S.S.; Baker, C.; Haynes, W.; Spencer, C.R.; Gay, H.; Thorstad, W.; Adkins, D.R.; Nussenbaum, B.; Chernock, R.D.; Lewis, J.S.; et al. High E6 gene expression predicts for distant metastasis and poor survival in patients with HPV-positive oropharyngeal squamous cell carcinoma. Int. J. Radiat. Oncol. 2016, 95, 1132–1141. [Google Scholar] [CrossRef]
- Dong, G.; Broker, T.R.; Chow, L.T. Human papillomavirus type 11 E2 proteins repress the homologous E6 promoter by interfering with the binding of host transcription factors to adjacent elements. J. Virol. 1994, 68, 1115–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, C.C.; Phelps, W.C.; Lindgren, V.A.; Braun, M.J.; Gonda, M.A.; Howley, P.M. Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines. J. Virol. 1987, 61, 962–971. [Google Scholar] [CrossRef] [Green Version]
- Xue, Y.; Bellanger, S.; Zhang, W.; Lim, D.; Low, J.; Lunny, D.; Thierry, F. HPV16 E2 is an immediate early marker of viral infection, preceding E7 expression in precursor structures of cervical carcinoma. Cancer Res. 2010, 70, 5316–5325. [Google Scholar] [CrossRef] [Green Version]
- Waxman, A.G.; Chelmow, D.; Darragh, T.M.; Lawson, H.; Moscicki, A.-B. Revised terminology for cervical histopathology and its implications for management of high-grade squamous intraepithelial lesions of the cervix. Obstet. Gynecol. 2012, 120, 1465–1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arias-Pulido, H.; Peyton, C.L.; Joste, N.E.; Vargas, H.; Wheeler, C.M. Human papillomavirus type 16 integration in cervical carcinoma in situ and in invasive cervical cancer. J. Clin. Microbiol. 2006, 44, 1755–1762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nkili-Meyong, A.A.; Moussavou-Boundzanga, P.; Labouba, I.; Koumakpayi, I.H.; Jeannot, E.; Descorps-Declère, S.; Sastre-Garau, X.; Leroy, E.M.; Belembaogo, E.; Berthet, N. Genome-wide profiling of human papillomavirus DNA integration in liquid-based cytology speci-mens from a Gabonese female population using HPV capture technology. Sci. Rep. 2019, 9, 1504. [Google Scholar] [CrossRef]
- Balaji, H.; Demers, I.; Wuerdemann, N.; Schrijnder, J.; Kremer, B.; Klussmann, J.P.; Huebbers, C.U.; Speel, E.-J.M. Causes and consequences of HPV integration in head and neck squamous cell carcinomas: State of the art. Cancers 2021, 13, 4089. [Google Scholar] [CrossRef]
- Pett, M.; Coleman, N. Integration of high-risk human papillomavirus: A key event in cervical carcinogenesis? J. Pathol. 2007, 212, 356–367. [Google Scholar] [CrossRef]
- Morgan, I.M.; Dinardo, L.J.; Windle, B. Integration of human papillomavirus genomes in head and neck cancer: Is it time to consider a paradigm shift? Viruses 2017, 9, 208. [Google Scholar] [CrossRef]
- Vinokurova, S.; Wentzensen, N.; Kraus, I.; Klaes, R.; Driesch, C.; Melsheimer, P.; Kisseljov, F.; Dürst, M.; Schneider, A.; Doeberitz, M.V.K. Type-dependent integration frequency of human papillomavirus genomes in cervical lesions. Cancer Res. 2008, 68, 307–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anayannis, N.V.; Schlecht, N.F.; Ben-Dayan, M.; Smith, R.V.; Belbin, T.J.; Ow, T.J.; Blakaj, D.M.; Burk, R.D.; Leonard, S.M.; Woodman, C.B.; et al. Association of an intact E2 gene with higher HPV viral load, higher viral oncogene expression, and improved clinical outcome in HPV16 positive head and neck squamous cell carcinoma. PLoS ONE 2018, 13, e0191581. [Google Scholar] [CrossRef] [PubMed]
- Bergvall, M.; Melendy, T.; Archambault, J. The E1 proteins. Virology 2013, 445, 35–56. [Google Scholar] [CrossRef] [Green Version]
- Baedyananda, F.; Chaiwongkot, A.; Bhattarakosol, P. Elevated HPV16 E1 expression is associated with cervical cancer progression. Intervirology 2018, 60, 171–180. [Google Scholar] [CrossRef]
- Ewaisha, R.; Panicker, G.; Maranian, P.; Unger, E.R.; Anderson, K.S. Serum immune profiling for early detection of cervical disease. Theranostics 2017, 7, 3814–3823. [Google Scholar] [CrossRef] [Green Version]
- Malcles, M.-H.; Cueille, N.; Mechali, F.; Coux, O.; Bonne-Andrea, C. Regulation of bovine papillomavirus replicative helicase E1 by the ubiquitin-proteasome pathway. J. Virol. 2002, 76, 11350–11358. [Google Scholar] [CrossRef] [Green Version]
- Mechali, F.; Hsu, C.-Y.; Castro, A.; Lorca, T.; Bonne-Andrea, C. Bovine papillomavirus replicative helicase E1 is a target of the ubiquitin ligase APC. J. Virol. 2004, 78, 2642–2647. [Google Scholar] [CrossRef] [Green Version]
- Leachman, S.A.; Shylankevich, M.; Slade, M.D.; Levine, D.; Sundaram, R.K.; Xiao, W.; Bryan, M.; Zelterman, D.; Tiegelaar, R.E.; Brandsma, J.L. Ubiquitin-fused and/or multiple early genes from cottontail rabbit papillomavirus as DNA vaccines. J. Virol. 2002, 76, 7616–7624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, I.; Cicconi, P.; Capone, S.; Brown, A.; Esposito, M.L.; Mori, F.; Vassilev, V.; Siani, L.; Ghaffari, E.; Gardiner, C.; et al. GS-05-MHC-II invariant chain adjuvanted chimpanzee adenoviral and MVA hepatitis C vaccines elicit un-precedented levels of anti-viral T-cell immune responses in humans. J. Hepatology 2019, 70, e3–e4. [Google Scholar] [CrossRef]
- Ma, M.; Feng, Y.; Fan, P.; Yao, X.; Peng, Y.; Dong, T.; Wang, R. Human papilloma virus E1-specific T cell immune response is associated with the prognosis of cervical cancer patients with squamous cell carcinoma. Infect. Agents Cancer 2018, 13, 35. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, M.; Stites, D.P.; Patel, S.; Farhat, S.; Scott, M.; Hills, N.K.; Palefsky, J.M.; Moscicki, A. Persistence of human papillomavirus type 16 infection is associated with lack of cytotoxic t lymphocyte response to the E6 antigens. J. Infect. Dis. 2000, 182, 595–598. [Google Scholar] [CrossRef] [Green Version]
- Piersma, S.; Jordanova, E.S.; Van Poelgeest, M.I.; Kwappenberg, K.M.; Van Der Hulst, J.M.; Drijfhout, J.W.; Melief, C.J.; Kenter, G.; Fleuren, G.J.; Offringa, R.; et al. High number of intraepithelial CD8+ tumor-infiltrating lymphocytes is associated with the absence of lymph node metastases in patients with large early-stage cervical cancer. Cancer Res. 2007, 67, 354–361. [Google Scholar] [CrossRef] [Green Version]
- Masterson, L.; Lechner, M.; Loewenbein, S.; Mohammed, H.; Davies-Husband, C.; Fenton, T.; Sudhoff, H.; Jani, P.; Goon, P.; Sterling, J. CD8 + T cell response to human papillomavirus 16 E7 is able to predict survival outcome in oropharyngeal cancer. Eur. J. Cancer 2016, 67, 141–151. [Google Scholar] [CrossRef]
- Woo, Y.L.; Hende, M.V.D.; Sterling, J.C.; Coleman, N.; Crawford, R.A.F.; Kwappenberg, K.M.C.; Stanley, M.A.; Van Der Burg, S.H. A prospective study on the natural course of low-grade squamous intraepithelial lesions and the presence of HPV16 E2-, E6- and E7-specific T-cell responses. Int. J. Cancer 2009, 126, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Ewaisha, R.; Meshay, I.; Resnik, J.; Katchman, B.A.; Anderson, K.S. Inside front cover: Programmable protein arrays for immunoprofiling HPV-associated cancers. Proteomics 2016, 16, 1215–1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, K.S.; Dahlstrom, K.; Cheng, J.N.; Alam, R.; Li, G.; Wei, Q.; Gross, N.D.; Chowell, D.; Posner, M.; Sturgis, E.M. HPV16 antibodies as risk factors for oropharyngeal cancer and their association with tumor HPV and smoking status. Oral Oncol. 2015, 51, 662–667. [Google Scholar] [CrossRef] [Green Version]
- Dahlstrom, K.; Anderson, K.S.; Cheng, J.N.; Chowell, D.; Li, G.; Posner, M.R.; Sturgis, E.M. HPV serum antibodies as predictors of survival and disease progression in patients with HPV-positive squamous cell carcinoma of the oropharynx. Clin. Cancer Res. 2015, 21, 2861–2869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatt, K.H.; Neller, M.A.; Srihari, S.; Crooks, P.; Lekieffre, L.; Aftab, B.T.; Liu, H.; Smith, C.; Kenny, L.; Porceddu, S.; et al. Profiling HPV-16–specific T cell responses reveals broad antigen reactivities in oropharyngeal cancer patients. J. Exp. Med. 2020, 217, 504–507. [Google Scholar] [CrossRef]
- Yajid, A.I.; Zakariah, M.A.; Zin, A.A.M.; Othman, N.H. Potential role of E4 protein in human papillomavirus screening: A review. Asian Pac. J. Cancer Prev. 2017, 18, 315–319. [Google Scholar]
- Campo, M.; Graham, S.; Cortese, M.; Ashrafi, G.; Araibi, E.; Dornan, E.; Miners, K.; Nunes, C.; Man, S. HPV-16 E5 down-regulates expression of surface HLA class I and reduces recognition by CD8 T cells. Virology 2010, 407, 137–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hausen, H.Z. Papillomaviruses and cancer: From basic studies to clinical application. Nat. Rev. Cancer 2002, 2, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Lorenzon, L.; Mazzetta, F.; Venuti, A.; Frega, A.; Torrisi, M.R.; French, D. In vivo HPV 16 E5 mRNA: Expression pattern in patients with squamous intra-epithelial lesions of the cervix. J. Clin. Virol. 2011, 52, 79–83. [Google Scholar] [CrossRef]
- Um, S.H.; Mundi, N.; Yoo, J.; A Palma, D.; Fung, K.; MacNeil, D.; Wehrli, B.; Mymryk, J.S.; Barrett, J.W.; Nichols, A.C. Variable expression of the forgotten oncogene E5 in HPV-positive oropharyngeal cancer. J. Clin. Virol. 2014, 61, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Todd, R.W.; Roberts, S.; Mann, C.H.; Luesley, D.M.; Gallimore, P.H.; Steele, J.C. Human papillomavirus (HPV) type 16-specific CD8+ T cell responses in women with high grade vulvar intraepithelial neoplasia. Int. J. Cancer 2004, 108, 857–862. [Google Scholar] [CrossRef]
- Ramqvist, T.; Mints, M.; Tertipis, N.; Näsman, A.; Romanitan, M.; Dalianis, T. Studies on human papillomavirus (HPV) 16 E2, E5 and E7 mRNA in HPV-positive tonsillar and base of tongue cancer in relation to clinical outcome and immunological parameters. Oral Oncol. 2015, 51, 1126–1131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eberhardt, C.S.; Kissick, H.T.; Patel, M.R.; Cardenas, M.A.; Prokhnevska, N.; Obeng, R.C.; Nasti, T.H.; Griffith, C.C.; Im, S.J.; Wang, X.; et al. Functional HPV-specific PD-1+ stem-like CD8 T cells in head and neck cancer. Nat. Cell Biol. 2021, 597, 279–284. [Google Scholar] [CrossRef]
- Rijkaart, D.C.; Berkhof, J.; Rozendaal, L.; van Kemenade, F.J.; Bulkmans, N.W.; Heideman, D.A.; Kenter, G.; Cuzick, J.; Snijders, P.J.; Meijer, C.J. Human papillomavirus testing for the detection of high-grade cervical intraepithelial neoplasia and cancer: Final results of the POBASCAM randomised controlled trial. Lancet Oncol. 2012, 13, 78–88. [Google Scholar] [CrossRef]
- Nkwabong, E.; Badjan, I.L.B.; Sando, Z. Pap smear accuracy for the diagnosis of cervical precancerous lesions. Trop. Dr. 2018, 49, 34–39. [Google Scholar] [CrossRef]
- Perkins, R.B.; Guido, R.S.; Castle, P.E.; Chelmow, D.; Einstein, M.H.; Garcia, F.; Huh, W.K.; Kim, J.J.; Moscicki, A.-B.; Nayar, R.; et al. 2019 ASCCP Risk-based management consensus guidelines for abnormal cervical cancer screening tests and cancer precursors. J. Low. Genit. Tract Dis. 2020, 24, 102–131. [Google Scholar] [CrossRef] [Green Version]
- Fontham, E.T.H.; Wolf, A.M.D.; Church, T.R.; Etzioni, R.; Flowers, C.R.; Herzig, A.; Guerra, C.E.; Oeffinger, K.C.; Shih, Y.T.; Walter, L.C.; et al. Cervical cancer screening for individuals at average risk: 2020 guideline update from the American Cancer Society. CA A Cancer J. Clin. 2020, 70, 321–346. [Google Scholar] [CrossRef] [PubMed]
- Australian Government-National Cervical Screening Program. Available online: https://www.health.gov.au/initiatives-and-programs/national-cervical-screening-program/about-the-national-cervical-screening-program#the-new-cervical-screening-test-is-more-effective (accessed on 6 August 2021).
- Kreftregisteret. HPV I Primærscreening. Available online: https://www.kreftregisteret.no/screening/livmorhalsprogrammet/Helsepersonell/screeningstrategi-og-nasjonale-retningslinjer/HPV-i-primarscreening/ (accessed on 6 August 2021).
- New Zealand Government-Ministry of Health. Primary HPV Screening. 2017. Available online: https://www.nsu.govt.nz/health-professionals/national-cervical-screening-programme/hpv-primary-screening (accessed on 6 August 2021).
- UK Government. The UK National Screening Committee Recommendation on Cervical Cancer Screening in Women. 2019. Available online: https://view-health-screening-recommendations.service.gov.uk/cervical-cancer/ (accessed on 6 August 2021).
- Screening för Livmoderhalscancer Rekommendation Och Bedömningsunderlag. 2015. Available online: https://www.socialstyrelsen.se/globalassets/sharepoint-dokument/artikelkatalog/nationella-screeningprogram/2015-6-39.pdf (accessed on 6 August 2021).
- Statens Serum Institut-Screening for Livmoderhals-kræft-Anbefalinger. 2018. Available online: https://www.sst.dk/da/Udgivelser/2018/Screening-for-livmoderhalskraeft (accessed on 6 August 2021).
- Schmitt, M.; Pawlita, M. The HPV transcriptome in HPV16 positive cell lines. Mol. Cell. Probes 2011, 25, 108–113. [Google Scholar] [CrossRef]
- Dorta-Estremera, S.; Chin, R.; Sierra, G.; Nicholas, C.; Yanamandra, A.V.; Nookala, S.M.; Yang, G.; Singh, S.; Curran, M.; Sastry, K.J. Mucosal HPV E6/E7 peptide vaccination in combination with immune checkpoint modulation induces regression of HPV+ oral cancers. Cancer Res. 2018, 78, 5327–5339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Çuburu, N.; Schiller, J.T. Moving forward with human papillomavirus immunotherapies. Hum. Vaccines Immunother. 2016, 12, 2875–2880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Poelgeest, M.I.; Welters, M.J.; Vermeij, R.; Stynenbosch, L.F.; Loof, N.M.; Berends-van der Meer, D.M.; Löwik, M.J.; Hamming, I.L.; van Esch, E.M.; Hellebrekers, B.W.; et al. Vaccination against oncoproteins of HPV16 for noninvasive vulvar/vaginal lesions: Lesion clearance is related to the strength of the T-cell response. Clin. Cancer Res. 2016, 22, 2342–2350. [Google Scholar] [CrossRef] [Green Version]
- Kenter, G.G.; Welters, M.J.P.; Valentijn, A.R.P.M.; Lowik, M.J.G.; Der Meer, D.M.A.B.-V.; Vloon, A.P.G.; Essahsah, F.; Fathers, L.M.; Offringa, R.; Drijfhout, J.W.; et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N. Engl. J. Med. 2009, 361, 1838–1847. [Google Scholar] [CrossRef] [Green Version]
- Preville, X.; Ladant, D.; Timmerman, B.; Leclerc, C. Eradication of established tumors by vaccination with recombinant Bordetella pertussis adenylate cyclase carrying the human papillomavirus 16 E7 oncoprotein. Cancer Res. 2005, 65, 641–649. [Google Scholar]
- Van Damme, P.; Bouillette-Marussig, M.; Hens, A.; De Coster, I.; Depuydt, C.; Goubier, A.; Van Tendeloo, V.; Cools, N.; Goossens, H.; Hercend, T.; et al. GTL001, A Therapeutic vaccine for women infected with human papillomavirus 16 or 18 and normal cervical cytology: Results of a phase I clinical trial. Clin. Cancer Res. 2016, 22, 3238–3248. [Google Scholar] [CrossRef] [Green Version]
- Genticel. Press Release: Genticel Reports Final Results of GTL001 Phase 2 Trial in HPV16/18-Infected Women. 2016. Available online: https://www.genkyotex.com/images/PDF/GB/1_Press_Releases/2016/ACTUS-0-46696-161213_PR_final_ph2_results_GTL001_VDEF.pdf (accessed on 11 August 2021).
- Trimble, C.L.; Morrow, M.P.; Kraynyak, K.A.; Shen, X.; Dallas, M.; Yan, J.; Edwards, L.; Parker, R.L.; Denny, L.; Giffear, M.; et al. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: A randomised, double-blind, place-bo-controlled phase 2b trial. Lancet 2015, 386, 2078–2088. [Google Scholar] [CrossRef] [Green Version]
- Bhuyan, P.K.; Dallas, M.; Kraynyak, K.; Herring, T.; Morrow, M.; Boyer, J.; Duff, S.; Kim, J.; Weiner, D.B. Durability of response to VGX-3100 treatment of HPV16/18 positive cervical HSIL. Hum. Vaccines Immunother. 2021, 17, 1288–1293. [Google Scholar] [CrossRef]
- Choi, Y.J.; Hur, S.Y.; Kim, T.-J.; Hong, S.R.; Lee, J.K.; Cho, C.-H.; Park, K.S.; Woo, J.W.; Sung, Y.C.; Suh, Y.S.; et al. A Phase II, prospective, randomized, multicenter, open-label study of gx-188e, an hpv dna vaccine, in patients with cervical intraepithelial neoplasia 3. Clin. Cancer Res. 2019, 26, 1616–1623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillemanns, P.; Petry, K.U.; Woelber, L.; Böhmer, G.; Stubsrud, E.; Skjørestad, I.; Schjetne, K.; Fredriksen, A.; Axelsen, M. Abstract CT209: Safety, efficacy and immunogenicity of VB10.16, a therapeutic DNA vaccine targeting human papillomavirus (HPV) 16 E6 and E7 proteins for high grade cervical intraepithelial neoplasia (CIN 2/3): 6-month data from an exploratory open-label phase I/2a trial. In Proceedings of the Clinical Trials; American Association for Cancer Research (AACR), Atlanta, GA, USA, 29 March–3 April 2019. [Google Scholar]
- Vaccibody. Press Release: Positive 12-Month Results from Phase IIA Clinical Study in High Grade Cer-Vical Dysplasia Provides Proof-Of-Concept for Vaccibody’s Immunotherapy Platform and Lead Candidate VB1O.16. 2019. Available online: https://www.vaccibody.com/positive-12-month-results-from-phase-iia-clinical-study-in-high-grade-cervical-dysplasia-provides-proof-of-concept-for-vaccibodys-immunotherapy-platform-and-lead-candidate-vb1o-16/ (accessed on 11 August 2021).
- Harper, D.M.; Nieminen, P.; Donders, G.; Einstein, M.H.; Garcia, F.; Huh, W.K.; Stoler, M.H.; Glavini, K.; Attley, G.; Limacher, J.-M.; et al. The efficacy and safety of Tipapkinogen Sovacivec therapeutic HPV vaccine in cervical intraepithelial neoplasia grades 2 and 3: Randomized controlled phase II trial with 2.5 years of follow-up. Gynecol. Oncol. 2019, 153, 521–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maldonado, L.; Teague, J.E.; Morrow, M.P.; Jotova, I.; Wu, T.C.; Wang, C.; Desmarais, C.; Boyer, J.D.; Tycko, B.; Robins, H.S.; et al. Intramuscular therapeutic vaccination targeting HPV16 Induces T cell responses that localize in mucosal lesions. Sci. Transl. Med. 2014, 6, 221ra13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hancock, G.; Blight, J.; Lopez-Camacho, C.; Kopycinski, J.; Pocock, M.; Byrne, W.; Price, M.J.; Kemlo, P.; Evans, R.I.; Bloss, A.; et al. A multi-genotype therapeutic human papillomavirus vaccine elicits potent T cell responses to conserved regions of early proteins. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef]
- ClinicalTrialsRegister.eu. A Phase 1b/2 Randomised, Placebo-controlled, Dose-ranging Study to Evaluate Safety, Tolerability and Immunogenicity of a Chimpanzee Adenovirus (ChAdOx1)-vectored Multigenotype High Risk Human Papillomavirus (hrHPV) Vaccine and Modified Vaccinia Ankara (MV. EudraCT 2019-001890-98, HPV001). Available online: https://www.clinicaltrialsregister.eu/ctr-search/trial/2019-001890-98/GB (accessed on 31 October 2021).
- Ragonnaud, E.; Andersson, A.-M.C.; Mariya, S.; Pedersen, A.G.; Burk, R.D.; Folgori, A.; Colloca, S.; Cortese, R.; Nicosia, A.; Pamungkas, J.; et al. Therapeutic vaccine against primate papillomavirus infections of the cervix. J. Immunother. 2017, 40, 51–61. [Google Scholar] [CrossRef]
- Ragonnaud, E.; Pedersen, A.G.; Holst, P.J. Breadth of T cell responses after immunization with adenovirus vectors en-coding ancestral antigens or polyvalent papillomavirus antigens. scand. Scand. J. Immunol. 2017, 85, 182–190. [Google Scholar] [CrossRef]
- Rosales, R.; López-Contreras, M.; Rosales, C.; Magallanes-Molina, J.-R.; Gonzalez-Vergara, R.; Arroyo-Cazarez, J.M.; Ricardez-Arenas, A.; Del Follo-Valencia, A.; Padilla-Arriaga, S.; Guerrero, M.V.; et al. Regression of Human Papillomavirus Intraepithelial Lesions Is Induced by MVA E2 Therapeutic Vaccine. Hum. Gene Ther. 2014, 25, 1035–1049. [Google Scholar] [CrossRef]
- Melief, C.J.M.; Welters, M.J.P.; Vergote, I.; Kroep, J.R.; Kenter, G.G.; Ottevanger, P.B.; Tjalma, W.A.A.; Denys, H.; van Poelgeest, M.I.E.; Nijman, H.W.; et al. Strong vaccine responses during chemotherapy are associated with prolonged cancer survival. Sci. Transl. Med. 2020, 12. [Google Scholar] [CrossRef]
- Lorusso, D.; Petrelli, F.; Coinu, A.; Raspagliesi, F.; Barni, S. A systematic review comparing cisplatin and carboplatin plus paclitaxel-based chemotherapy for recurrent or metastatic cervical cancer. Gynecol. Oncol. 2014, 133, 117–123. [Google Scholar] [CrossRef]
- Hladíková, K.; Partlová, S.; Koucký, V.; Bouček, J.; Fonteneau, J.-F.; Zábrodský, M.; Tachezy, R.; Grega, M.; Špíšek, R.; Fialová, A. Dysfunction of HPV16-specific CD8+ T cells derived from oropharyngeal tumors is related to the expression of Tim-3 but not PD-1. Oral Oncol. 2018, 82, 75–82. [Google Scholar] [CrossRef]
- Massarelli, E.; William, W.; Johnson, F.; Kies, M.; Ferrarotto, R.; Guo, M.; Feng, L.; Lee, J.J.; Tran, H.; Kim, Y.U.; et al. Combining immune checkpoint blockade and tumor-specific vaccine for patients with incurable human papillomavirus 16–related cancer. JAMA Oncol. 2019, 5, 67–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehra, R.; Seiwert, T.Y.; Gupta, S.; Weiss, J.; Gluck, I.; Eder, J.P.; Burtness, B.; Tahara, M.; Keam, B.; Kang, H.; et al. Efficacy and safety of pembrolizumab in recurrent/metastatic head and neck squamous cell carcinoma: Pooled analyses after long-term follow-up in KEYNOTE-012. Br. J. Cancer 2018, 119, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Strauss, J.; Floudas, C.S.; Sater, H.A.; Manu, M.; Lamping, E.; Francis, D.C.; Cordes, L.M.; Marte, J.; Donahue, R.N.; Jochems, C.; et al. Phase II evaluation of the triple combination of PDS0101, M9241, and bintrafusp alfa in patients with HPV 16 positive malignancies. J. Clin. Oncol. 2021, 39, 2501. [Google Scholar] [CrossRef]
- PDS Biotechnology Corporation. PDS Biotech Announces Release of Interim Data for PDS0101 in NCI-Led Phase 2 Clinical Study in Oral Presentation at ASCO 2021 Annual Meeting. GLobe Newswire. 2021. Available online: https://www.globenewswire.com/en/news-release/2021/06/08/2243359/37149/en/PDS-Biotech-Announces-Release-of-Interim-Data-for-PDS0101-in-NCI-Led-Phase-2-Clinical-Study-in-Oral-Presentation-at-ASCO-2021-Annual-Meeting.html (accessed on 7 September 2021).
- Hillemanns, P.; Baurain, J.-F.; Blecharz, P.; Lindemann, K.; Nicolaisen, B.; Schetne, K.; Fredriksen, A.; Torhaug, S. 881TiP A multi-centre, open-label phase II trial of the combination of VB10.16 and atezolizumab in patients with advanced or recurrent, non-resectable HPV16 positive cervical cancer. Ann. Oncol. 2020, 31, S645–S646. [Google Scholar] [CrossRef]
- Youn, J.W.; Hur, S.-Y.; Woo, J.W.; Kim, Y.-M.; Lim, M.C.; Park, S.Y.; Seo, S.S.; No, J.H.; Kim, B.-G.; Lee, J.-K.; et al. Pembrolizumab plus GX-188E therapeutic DNA vaccine in patients with HPV-16-positive or HPV-18-positive advanced cervical cancer: Interim results of a single-arm, phase 2 trial. Lancet Oncol. 2020, 21, 1653–1660. [Google Scholar] [CrossRef]
- POSTER: SQZ-PBMC-HPV, an Innovative, Autologous Therapeutic HPV-16+ Cancer Vaccine Engineered by Microfluidic Cell Squeezing to Elicit Robust CD8+ T Cell Responses. IPVC. 2020. Available online: https://investors.sqzbiotech.com/files/doc_downloads/poster_publications/2020/11/IPVC-2020-Poster-O.-Rosen.pdf (accessed on 13 September 2021).
- Jimeno, A.; Baranda, J.C.; Mita, M.M.; Gordon, M.S.; Taylor, M.H.; Iams, W.T.; Janku, F.; Matulonis, U.A.; Bernstein, H.; Loughhead, S.; et al. Initial results of a first-in-human, dose escalation study of a cell-based vaccine in HLA A*02+ patients (pts) with recurrent, locally advanced or metastatic HPV16+ solid tumors: SQZ-PBMC-HPV-101. J. Clin. Oncol. 2021, 39, 2536. [Google Scholar] [CrossRef]
- Tourneau, C.L. ESMO Abstract: TG4001 Therapeutic Vaccination Plus Avelumab-Mediated PD-L1 Blockade Improves Tumour Microenvironment in HPV-positive malignancies. ESMO Immu-No-Oncology Virtual Congress 2020. Available online: https://www.esmo.org/oncology-news/tg4001-therapeutic-vaccination-plus-avelumab-mediated-pd-l1-blockade-improves-tumour-microenvironment-in-hpv-positive-malignancies (accessed on 7 September 2021).
- Transgene: Acceptance of Late Breaking Abstract at Upcoming SITC 2020 Conference, on the Detailed Results from Clinical Study of TG4001 in Combination with Avelumab in Advanced HPV-positive Cancers. Business wire 2020. Available online: https://www.businesswire.com/news/home/20201018005012/en/Transgene-Acceptance-of-Late-Breaking-Abstract-at-Upcoming-SITC-2020-Conference-on-The-Detailed-Results-From-Clinical-Study-of-TG4001-in-Combination-With-Avelumab-in-Advanced-HPV-positive-Cancers (accessed on 7 September 2021).
- Galicia-Carmona, T.; Arango-Bravo, E.; a Serrano-Olvera, J.; La Torre, C.F.-D.; Cruz-Esquivel, I.; Villalobos-Valencia, R.; Morán-Mendoza, A.; Castro-Eguiluz, D.; Cetina-Pérez, L. ADXS11-001 LM-LLO as specific immunotherapy in cervical cancer. Hum. Vaccines Immunother. 2021, 17, 2617–2625. [Google Scholar] [CrossRef]
- Basu, P.; Mehta, A.; Jain, M.; Gupta, S.; Nagarkar, R.V.; John, S.; Petit, R. A randomized phase 2 study of ADXS11-001 listeria monocytogenes–listeriolysin O immunotherapy with or without cisplatin in treatment of advanced cervical cancer. Int. J. Gynecol. Cancer 2018, 28, 764–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, A.L.; Posner, M.R.; Niu, J.; Fu, S.; Leidner, R.S.; Pearson, A.T.; Chung, K.Y.; Richardson, D.L.; Wang, D.; Pimentel, A.; et al. First report of the safety/tolerability and preliminary antitumor activity of HB-201 and HB-202, an arenavirus-based cancer immunotherapy, in patients with HPV16+ cancers. J. Clin. Oncol. 2021, 39, 2502. [Google Scholar] [CrossRef]
- Verma, V.; Shrimali, R.K.; Ahmad, S.; Dai, W.; Wang, H.; Lu, S.; Nandre, R.; Gaur, P.; Lopez, J.; Sade-Feldman, M.; et al. PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+CD38hi cells and anti-PD-1 resistance. Nat. Immunol. 2019, 20, 1231–1243. [Google Scholar] [CrossRef] [PubMed]
- Kotturi, M.F.; Peters, B.; Buendia-Laysa, F.; Sidney, J.; Oseroff, C.; Botten, J.; Grey, H.; Buchmeier, M.J.; Sette, A. The CD8 + T-cell response to lymphocytic choriomeningitis virus involves the L antigen: Uncovering new tricks for an old virus. J. Virol. 2007, 81, 4928–4940. [Google Scholar] [CrossRef] [Green Version]
- Holst, P.J.; Sørensen, M.R.; Jensen, C.M.M.; Orskov, C.; Thomsen, A.R.; Christensen, J. MHC class II-associated invariant chain linkage of antigen dramatically improves cell-mediated immunity induced by adenovirus vaccines. J. Immunol. 2008, 180, 3339–3346. [Google Scholar] [CrossRef]
- Stevanović, S.; Pasetto, A.; Helman, S.R.; Gartner, J.J.; Prickett, T.D.; Howie, B.; Robins, H.S.; Robbins, P.F.; Klebanoff, C.A.; Rosenberg, S.A.; et al. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science 2017, 356, 200–205. [Google Scholar] [CrossRef]
- Krishna, S.; Ulrich, P.; Wilson, E.; Parikh, F.; Narang, P.; Yang, S.; Read, A.K.; Kim-Schulze, S.; Park, J.G.; Posner, M.; et al. Human papilloma virus specific immunogenicity and dysfunction of CD8+ T cells in head and neck cancer. Cancer Res. 2018, 78, 6159–6170. [Google Scholar] [CrossRef] [Green Version]
- Swadling, L.; Halliday, J.; Kelly, C.; Brown, A.; Capone, S.; Ansari, M.A.; Bonsall, D.; Richardson, R.; Hartnell, F.; Collier, J.; et al. Highly-immunogenic virally-vectored T-cell vaccines cannot overcome subversion of the T-cell response by HCV during chronic infection. Vaccines 2016, 4, 27. [Google Scholar] [CrossRef] [Green Version]
- Michler, T.; Kosinska, A.D.; Festag, J.; Bunse, T.; Su, J.; Ringelhan, M.; Imhof, H.; Grimm, D.; Steiger, K.; Mogler, C.; et al. Knockdown of virus antigen expression increases therapeutic vaccine efficacy in high-titer hepatitis B virus carrier mice. Gastroenterology 2020, 158, 1762-1775.e9. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boilesen, D.R.; Nielsen, K.N.; Holst, P.J. Novel Antigenic Targets of HPV Therapeutic Vaccines. Vaccines 2021, 9, 1262. https://doi.org/10.3390/vaccines9111262
Boilesen DR, Nielsen KN, Holst PJ. Novel Antigenic Targets of HPV Therapeutic Vaccines. Vaccines. 2021; 9(11):1262. https://doi.org/10.3390/vaccines9111262
Chicago/Turabian StyleBoilesen, Ditte Rahbæk, Karen Nørgaard Nielsen, and Peter Johannes Holst. 2021. "Novel Antigenic Targets of HPV Therapeutic Vaccines" Vaccines 9, no. 11: 1262. https://doi.org/10.3390/vaccines9111262
APA StyleBoilesen, D. R., Nielsen, K. N., & Holst, P. J. (2021). Novel Antigenic Targets of HPV Therapeutic Vaccines. Vaccines, 9(11), 1262. https://doi.org/10.3390/vaccines9111262