Id3 and Bcl6 Promote the Development of Long-Term Immune Memory Induced by Tuberculosis Subunit Vaccine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Subunit Vaccine and Single Antigen Preparation
2.3. Construction of Recombinant Adeno-Associated Virus Expressing IL-7
2.4. Construction of the Recombinant Lentivirus Encoding Transcriptional Factors
2.5. Vaccination
2.6. Cell Sorting and qPCR
- (1)
- gapdh forward, 5′−AGTGGCAAAGTGGAGATT-3′; reverse, 5′-GTGGAGTCATACTGGAACA-3′;
- (2)
- Bcl6 forward, 5′−CGTGAGGTCGTGGAGAACAATA-3′; reverse, 5′-GATAAGAGGCTGGTGGTGTTGA-3′;
- (3)
- Bach2 forward, 5′−ACTGGTGTGCGAGAAGGAAAA-3′; reverse, 5′-GTATGAGGACAGGGCAGTAGC-3′;
- (4)
- Blimp1 forward, 5′−GACAGAGGCCGAGTTTGAAGA-3′; reverse, 5′-GCGTGTTCCCTTCGGTATGTA-3′;
- (5)
- Id3 forward, 5′−CTCTTAGCCTCTTGGACGACAT-3′; reverse, 5′-CTGAAGGTCGAGGATGTAGTCT-3′;
- (6)
- IL-7 forward, 5′−CCACCCATGGCAAATTCCATGGCA-3′; reverse, 5′-TCTAGACGGCAGGTCAGGTCCAC-3′.
2.7. Splenocyte Proliferation Assay
2.8. Intracellular Cytokine Staining
2.9. Detection of Ag85B-Specific Antibodies in Mouse Sera by ELISA
2.10. Statistical Analysis
3. Results
3.1. IL-7 Enhanced the Immune Responses Induced by Long-Term Memory T Cells
3.2. IL-7 Regulated the Expression of Transcription Factors Related to the Differentiation of Memory T Cells
3.3. Id3 and Bcl6 Enhanced the Proliferation of Memory T Cells
3.4. Bcl6 Increased IFN-γ Production in CD8+ T Cells, and Id3 Improved IFN-γ Production in CD4+ T Cells
3.5. Id3 and Bcl6 Enhanced the Production of Ag85B-Specific Antibodies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TB | Tuberculosis |
M. tuberculosis | Mycobacterium tuberculosis |
BCG | Mycobacterium bovis Bacillus Calmette–Guerin |
Teff | effector T cells |
TCM | central memory T cells |
TEM | effector memory T cells |
JAK-STAT pathway | Janus kinase signal transducer and activator of transcription pathway |
Tfh | follicular helper T cell |
GCs | germinal centers |
DDA | dioctadecylammonium bromide |
Poly (I:C)PBS | polyinosinic-polycytidylic acidphosphate buffered solution |
TMB | 3,3′,5,5′-tetramethylbenzidine |
EdU | 5-Ethynyl-2′-deoxyuridine |
IL | interleukin |
LT70 | ESAT6-Ag85B-MPT64<190-198>-Mtb8.4-Rv2626c |
MH | Mtb10.4-HspX |
H56 | Ag85B-ESAT-6-Rv2660c |
HyVac4 | Ag85B-TB10.4 |
HEK | human embryonic kidney |
PBS | phosphate-buffered saline |
rLV | recombined lentivirus |
rAAV | recombined adeno-associated virus |
s.c. | subcutaneously |
E2A | E-protein family transcription factor |
References
- Trunz, B.B.; Fine, P.; Dye, C. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: A meta-analysis and assessment of cost-effectiveness. Lancet 2006, 367, 1173–1180. [Google Scholar] [CrossRef]
- Orme, I.M. The Achilles heel of BCG. Tuberculosis 2010, 90, 329–332. [Google Scholar] [CrossRef]
- Bai, C.; He, J.; Niu, H.; Hu, L.; Luo, Y.; Liu, X.; Zhu, B. Prolonged intervals during Mycobacterium tuberculosis subunit vaccine boosting contributes to eliciting immunity mediated by central memory-like T cells. Tuberculosis 2018, 110, 104–111. [Google Scholar] [CrossRef]
- Santoro, F.; Pettini, E.; Kazmin, D.; Ciabattini, A.; Fiorino, F.; Gilfillan, G.D.; Medaglini, D. Transcriptomics of the Vaccine Immune Response: Priming with Adjuvant Modulates Recall Innate Responses after Boosting. Front. Immunol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Billeskov, R.; Elvang, T.T.; Andersen, P.L.; Dietrich, J. The HyVac4 subunit vaccine efficiently boosts BCG-primed anti-mycobacterial protective immunity. PLoS ONE 2012, 7, e39909. [Google Scholar] [CrossRef] [Green Version]
- Lindenstrøm, T.; Agger, E.M.; Korsholm, K.S.; Darrah, P.A.; Aagaard, C.; Seder, R.A.; Andersen, P. Tuberculosis Subunit Vaccination Provides Long-Term Protective Immunity Characterized by Multifunctional CD4 Memory T Cells. J. Immunol. 2009, 182, 8047–8055. [Google Scholar] [CrossRef] [PubMed]
- Restifo, N.P.; Gattinoni, L. Lineage relationship of effector and memory T cells. Curr. Opin. Immunol. 2013, 25, 556–563. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zander, R.; Khatun, A.; Schauder, D.M.; Cui, W. Transcriptional and Epigenetic Regulation of Effector and Memory CD8 T Cell Differentiation. Front. Immunol. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Sallusto, F.; Lenig, D.; Forster, R.; Lipp, M.; Lanzavecchia, A. Pillars article: Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999, 401, 708–712. [Google Scholar] [CrossRef] [PubMed]
- Diao, H.; Pipkin, M. Stability and flexibility in chromatin structure and transcription underlies memory CD8 T-cell differentiation. F1000Research 2019, 8, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, A.; Masson, F.; Liao, Y.; Preston, S.; Guan, T.; Gloury, R.; Kallies, A. A molecular threshold for effector CD8(+) T cell differentiation controlled by transcription factors Blimp-1 and T-bet. Nat. Immunol. 2016, 17, 422–432. [Google Scholar] [CrossRef]
- Knop, L.; Deiser, K.; Bank, U.; Witte, A.; Mohr, J.; Philipsen, L.; Schüler, T. IL-7 derived from lymph node fibroblastic reticular cells is dispensable for naive T cell homeostasis but crucial for central memory T cell survival. Eur. J. Immunol. 2020, 50, 846–857. [Google Scholar] [CrossRef] [Green Version]
- Clark, M.R.; Mandal, M.; Ochiai, K.; Singh, H. Orchestrating B cell lymphopoiesis through interplay of IL-7 receptor and pre-B cell receptor signalling. Nat. Rev. Immunol. 2014, 14, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Kondrack, R.M.; Harbertson, J.; Tan, J.T.; Mcbreen, M.E.; Surh, C.D.; Bradley, L.M. Interleukin 7 Regulates the Survival and Generation of Memory CD4 Cells. J. Exp. Med. 2003, 198, 1797–1806. [Google Scholar] [CrossRef] [PubMed]
- Colombetti, S.; Lévy, F.; Chapatte, L. IL-7 adjuvant treatment enhances long-term tumor-antigen-specific CD8+ T-cell responses after immunization with recombinant lentivector. Blood 2009, 113, 6629–6637. [Google Scholar] [CrossRef]
- Seo, Y.B.; Im, S.J.; Namkoong, H.; Kim, S.W.; Choi, Y.W.; Kang, M.C.; Sung, Y.C. Crucial roles of interleukin-7 in the development of T follicular helper cells and in the induction of humoral immunity. J. Virol. 2014, 88, 8998–9009. [Google Scholar] [CrossRef] [Green Version]
- Melchionda, F.; Fry, T.J.; Milliron, M.J.; McKirdy, M.A.; Tagaya, Y.; Mackall, C.L. Adjuvant IL-7 or IL-15 overcomes immunodominance and improves survival of the CD8+ memory cell pool. J. Clin. Investig. 2005, 115, 1177–1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, T.C.; Shaffer, A.L.; Haddad, J.; Choi, Y.S.; Staudt, L.M.; Calame, K. Repression of BCL-6 is required for the formation of human memory B cells in vitro. J. Exp. Med. 2007, 204, 819–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ichii, H.; Sakamoto, A.; Kuroda, Y.; Tokuhisa, T. Bcl6 acts as an amplifier for the generation and proliferative capacity of central memory CD8+ T cells. J. Immunol. 2004, 173, 883–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geng, J.; Wei, H.; Shi, B.; Wang, Y.H.; Greer, B.D.; Pittman, M.; Hu, H. Bach2 Negatively Regulates T Follicular Helper Cell Differentiation and Is Critical for CD4(+) T Cell Memory. J. Immunol. 2019, 202, 2991–2998. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Chen, J. A genome-wide regulatory network identifies key transcription factors for memory CD8+ T-cell development. Nat. Commun. 2013, 4. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.Y.; Best, J.A.; Knell, J.; Yang, E.; Sheridan, A.D.; Jesionek, A.K.; Goldrath, A.W. The transcriptional regulators Id2 and Id3 control the formation of distinct memory CD8+ T cell subsets. Nat. Immunol. 2011, 12, 1221–1229. [Google Scholar] [CrossRef] [PubMed]
- Kallies, A.; Xin, A.; Belz, G.T.; Nutt, S.L. Blimp-1 transcription factor is required for the differentiation of effector CD8(+) T cells and memory responses. Immunity 2009, 31, 283–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutishauser, R.L.; Martins, G.A.; Kalachikov, S.; Chandele, A.; Parish, I.A.; Meffre, E.; Kaech, S.M. Transcriptional repressor Blimp-1 promotes CD8(+) T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunity 2009, 31, 296–308. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Miyazaki, M.; Chandra, V.; Fisch, K.M.; Chang, A.N.; Murre, C. Id3 Orchestrates Germinal Center B Cell Development. Mol. Cell Biol. 2016, 36, 2543–2552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linterman, M.A.; Beaton, L.; Yu, D.; Ramiscal, R.R.; Srivastava, M.; Hogan, J.J.; Vinuesa, C.G. IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. J. Exp. Med. 2010, 207, 353–363. [Google Scholar] [CrossRef] [Green Version]
- Niu, H.; Hu, L.; Li, Q.; Da, Z.; Wang, B.; Tang, K.; Zhu, B. Construction and evaluation of a multistage Mycobacterium tuberculosis subunit vaccine candidate Mtb10.4–HspX. Vaccine 2011, 29, 9451–9458. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Peng, J.; Hu, L.; Luo, Y.; Niu, H.; Bai, C.; Zhu, B. A multistage mycobacterium tuberculosis subunit vaccine LT70 including latency antigen Rv2626c induces long-term protection against tuberculosis. Hum. Vaccin. Immunother. 2016, 12, 1670–1677. [Google Scholar] [CrossRef] [Green Version]
- Xin, Q.; Niu, H.; Li, Z.; Zhang, G.; Hu, L.; Wang, B.; Zhu, B. Subunit vaccine consisting of multi-stage antigens has high protective efficacy against Mycobacterium tuberculosis infection in mice. PLoS ONE 2013, 8, e72745. [Google Scholar] [CrossRef]
- Yu, Y.; Arora, A.; Min, W.; Roifman, C.M.; Grunebaum, E. EdU incorporation is an alternative non-radioactive assay to [3H] thymidine uptake for in vitro measurement of mice T-cell proliferations. J. Immunol. Methods 2009, 350, 29–35. [Google Scholar] [CrossRef]
- Mueller, S.N.; Gebhardt, T.; Carbone, F.R.; Heath, W.R. Memory T Cell Subsets, Migration Patterns, and Tissue Residence. Annu. Rev. Immunol. 2013, 31, 137–161. [Google Scholar] [CrossRef] [PubMed]
- Sallusto, F.; Geginat, J.; Lanzavecchia, A. Central Memory and Effector Memory T Cell Subsets: Function, Generation, and Maintenance. Annu. Rev. Immunol. 2004, 22, 745–763. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, Y.; Luo, G.; Li, Y. The roles of stem cell memory T cells in hematological malignancies. J. Hematol. Oncol. 2015, 8, 113. [Google Scholar] [CrossRef] [Green Version]
- Wherry, E.J.; Teichgräber, V.; Becker, T.C.; Masopust, D.; Kaech, S.M.; Antia, R.; Ahmed, R. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 2003, 4, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Masopust, D.; Vezys, V.; Marzo, A.L.; Lefrançois, L. Preferential Localization of Effector Memory Cells in Nonlymphoid Tissue. Science 2001, 291, 2413–2417. [Google Scholar] [CrossRef] [Green Version]
- Dintwe, O.B.; Day, C.L.; Smit, E.; Nemes, E.; Gray, C.; Tameris, M.; Scriba, T.J. Heterologous vaccination against human tuberculosis modulates antigen-specific CD4+ T-cell function. Eur. J. Immunol. 2013, 43, 2409–2420. [Google Scholar] [CrossRef]
- Lenz, D.C.; Kurz, S.K.; Lemmens, E.; Schoenberger, S.P.; Sprent, J.; Oldstone, M.B.; Homann, D. IL-7 regulates basal homeostatic proliferation of antiviral CD4+T cell memory. Proc. Natl. Acad. Sci. USA 2004, 101, 9357–9362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanjappa, S.G.; Walent, J.H.; Morre, M.; Suresh, M. Effects of IL-7 on memory CD8 T cell homeostasis are influenced by the timing of therapy in mice. J. Clin. Investig. 2008, 118, 1027–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, Y.; Pos, Z.; Rao, M.; Klebanoff, C.A.; Yu, Z.; Sukumar, M.; Gattinoni, L. Repression of the DNA-binding inhibitor Id3 by Blimp-1 limits the formation of memory CD8+ T cells. Nat. Immunol. 2011, 12, 1230–1237. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Guo, Y.; Tang, S.; Zhou, L.; Huang, C.; Cao, Y.; Zhou, X. Cutting Edge: Transcription Factor BCL6 Is Required for the Generation, but Not Maintenance, of Memory CD8(+) T Cells in Acute Viral Infection. Front. Immunol. 2019, 203, 323–327. [Google Scholar] [CrossRef]
- Kaji, T.; Hijikata, A.; Ishige, A.; Kitami, T.; Watanabe, T.; Ohara, O.; Takemori, T. CD4 memory T cells develop and acquire functional competence by sequential cognate interactions and stepwise gene regulation. Int. Immunol. 2016, 28, 267–282. [Google Scholar] [CrossRef] [Green Version]
- Sidwell, T.; Kallies, A. Bach2 is required for B cell and T cell memory differentiation. Nat. Immunol. 2016, 17, 744–745. [Google Scholar] [CrossRef] [PubMed]
- Mcheyzer-Williams, M.; Okitsu, S.; Wang, N.; McHeyzer-Williams, L. Molecular programming of B cell memory. Nat. Rev. Immunol. 2011, 12, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Kometani, K.; Nakagawa, R.; Shinnakasu, R.; Kaji, T.; Rybouchkin, A.; Moriyama, S.; Kurosaki, T. Repression of the Transcription Factor Bach2 Contributes to Predisposition of IgG1 Memory B Cells toward Plasma Cell Differentiation. Immunity 2013, 39, 136–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, S.; Bhattacharya, D.; Kar, S.; Ranganathan, A.; Kaer, V.L.; Das, G. Curcumin Nanoparticles Enhance Mycobacterium bovis BCG Vaccine Efficacy by Modulating Host Immune Responses. Infect. Immun. 2019, 87, e00291-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Groups | Antibody Titers | |||
---|---|---|---|---|
IgG | IgG1 | IgG2c | IgG2c/IgG1 | |
Vaccine | 3.31 ± 0.59 | 2.37 ± 0.12 | 2.19 ± 0.48 | 0.92 ± 0.20 |
Vaccine + rAAV-EGFP | 3.27 ± 0.15 | 2.33 ± 0.36 | 2.48 ± 0.92 | 1.06 ± 0.07 |
Vaccine + rAAV-IL-7 | 3.58 ± 0.03 *,# | 3.37 ± 0.16 | 2.84 ± 0.10 | 0.84 ± 0.03 |
Vaccine + rLV-EGFP | 3.31 ± 0.53 | 2.70 ± 0.13 | 2.40 ± 0.24 | 0.89 ± 0.09 |
Vaccine + rLV-Id3 | 3.62 ± 0.11 *,$ | 3.01 ± 0.13 * | 3.10 ± 0.00 *$ | 1.02 ± 0.00 |
Vaccine + rLV-Bcl6 | 3.43 ± 0.13 | 3.23 ± 0.15 *,$ | 2.98 ± 0.12 * | 0.92 ± 0.04 |
Vaccine + rLV-Bach2 | 3.47 ± 0.05 | 2.11 ± 0.18 $ | 2.93 ± 0.07 * | 1.38 ± 0.19 $ |
Vaccine + rLV-Blimp1 | 3.03 ± 0.02 | 2.95 ± 0.15 | 2.72 ± 0.20 | 0.92 ± 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Ma, Y.; Ma, L.; Tan, D.; Niu, H.; Bai, C.; Mi, Y.; Xie, T.; Lv, W.; Wang, J.; et al. Id3 and Bcl6 Promote the Development of Long-Term Immune Memory Induced by Tuberculosis Subunit Vaccine. Vaccines 2021, 9, 126. https://doi.org/10.3390/vaccines9020126
Han J, Ma Y, Ma L, Tan D, Niu H, Bai C, Mi Y, Xie T, Lv W, Wang J, et al. Id3 and Bcl6 Promote the Development of Long-Term Immune Memory Induced by Tuberculosis Subunit Vaccine. Vaccines. 2021; 9(2):126. https://doi.org/10.3390/vaccines9020126
Chicago/Turabian StyleHan, Jiangyuan, Yanlin Ma, Lan Ma, Daquan Tan, Hongxia Niu, Chunxiang Bai, Youjun Mi, Tao Xie, Wei Lv, Juan Wang, and et al. 2021. "Id3 and Bcl6 Promote the Development of Long-Term Immune Memory Induced by Tuberculosis Subunit Vaccine" Vaccines 9, no. 2: 126. https://doi.org/10.3390/vaccines9020126
APA StyleHan, J., Ma, Y., Ma, L., Tan, D., Niu, H., Bai, C., Mi, Y., Xie, T., Lv, W., Wang, J., & Zhu, B. (2021). Id3 and Bcl6 Promote the Development of Long-Term Immune Memory Induced by Tuberculosis Subunit Vaccine. Vaccines, 9(2), 126. https://doi.org/10.3390/vaccines9020126