Opportunities for Refinement of Non-Human Primate Vaccine Studies
Abstract
:1. Introduction
- explore opportunities for refinement of CEPI-funded NHP vaccine development studies, in order to optimize animal welfare and scientific outcomes;
- better align CEPI-funded studies with the NC3Rs NHP guidelines and deliver on public commitments to the 3Rs;
- share relevant data and experience from international laboratories;
- and provide a platform for follow-up work on important concepts such as refinement and standardization of humane endpoints.
2. Refinement Opportunities
2.1. Social Housing and Socialization
2.2. Enclosures and Enviromental Enrichment
2.3. Animal Training, Sedation, and Selection
- Training animals using positive reinforcement (e.g., food rewards) to station (approach a specific location) or target (touch a specific object) on command, including when in pairs/groups, so that there is reliable voluntary control of animal movement when housed in the containment environment and all individuals can be dosed without interference [63,64].
- Training to come forward and present themselves for intramuscular injection of a sedative, so that procedures such as X-ray, weighing and temperature measurement, which are vital to clinical assessment, can be conducted safely and with minimal stress caused to the animals. Marmosets have also been trained within 7–10 days to enter a removable capture box which can then be connected to a gaseous anesthesia unit in a biosafety cabinet for sedation without handling the animal [65].
- Training to sit on a scale or in a weighing bucket (for small monkeys, such as marmosets), so that staff members do not need to handle the animals for weighing once they are on-study (resulting in less stress for animals and staff) [66].
- Training to take liquid (e.g., fruit juice, milkshake) from a syringe, which can later be used to administer potentially bitter tasting therapy or medication as required, rather than requiring anesthesia to administer dose [64].
- Assisting adaptation to the “new” containment environment by transfer of familiar items (e.g., scent-marked nest box of marmosets).
- Interacting with the animals pre-study to familiarize them with the personnel involved, the appearance of staff in full PPE, and human behavior. This also enables staff to get to know individual animals and how each behaves, meaning they can then more easily identify changes from normal, facilitating humane endpoints based on changes in behavior.
- Integrating animal training into the experimental protocol.
2.4. Humane Endpoints
2.5. Supportive Care
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rivera-Hernandez, T.; Carnathan, D.G.; Moyle, P.M.; Toth, I.; West, N.P.; Young, P.R.; Silvestri, G.; Walker, M.J. The contribution of non-human primate models to the development of human vaccines. Discov. Med. 2014, 18, 313–322. [Google Scholar] [PubMed]
- Sibal, L.R.; Samson, K.J. Nonhuman primates: A critical role in current disease research. ILAR J. 2001, 42, 74–84. [Google Scholar] [CrossRef]
- Gardner, M.B.; Luciw, P.A. Macaque models of human infectious disease. ILAR J. 2008, 49, 220–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vermeire, T.; Epstein, M.; Badin, R.A.; Flecknell, P.A.; Hoet, P.; Hudson-Shore, M.; Jones, D.; Krätke, R.; Langermans, J.; Prescott, M.J.; et al. Final Opinion on the Need for Non-Human Primates in Biomedical Research, Production and Testing of Products and Devices (Update 2017); Scientific Committee on Health, Environmental and Emerging Risks (SCHEER), European Commission: Brussels, Belgium, 2017; pp. 1–93. Available online: https://ec.europa.eu/environment/chemicals/lab_animals/pdf/Scheer_may2017.pdf (accessed on 1 February 2021).
- Estes, J.D.; Wong, S.W.; Brenchley, J.M. Nonhuman primate models of human viral infections. Nat. Rev. Immunol. 2018, 18, 390–404. [Google Scholar] [CrossRef]
- Bernasconi, V.; Kristiansen, P.A.; Whelan, M.; Róman, R.G.; Bettis, A.; Yimer, S.A.; Gurry, C.; Andersen, S.R.; Yeskey, D.; Mandi, H.; et al. Developing vaccines against epidemic-prone emerging infectious diseases. Bundesgesundheitsblatt Gesundh. Gesundh. 2020, 63, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Fontela, C.; Dowling, W.E.; Funnell, S.G.P.; Gsell, P.-S.; Riveros-Balta, A.X.; Albrecht, R.A.; Andersen, H.; Baric, R.S.; Carroll, M.W.; Cavaleri, M.; et al. Animal models for COVID-19. Nature 2020, 586, 509–515. [Google Scholar] [CrossRef]
- Zhang, S. America is Running Low on a Critical Resource for COVID-19 Vaccines: The Country Is Facing a Monkey Shortage. The Atlantic. 31 August 2020. Available online: https://www.theatlantic.com/science/archive/2020/08/america-facing-monkey-shortage/615799/ (accessed on 1 February 2021).
- Food and Drug Administration. Animal rule Information. Available online: https://www.fda.gov/emergency-preparedness-and-response/mcm-regulatory-science/animal-rule-information (accessed on 1 February 2021).
- Poole, T. Happy animals make good science. Lab. Anim. 1997, 31, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Graham, M.L.; Rieke, E.F.; Mutch, L.A.; Zolondek, E.K.; Faig, A.W.; Dufour, T.A.; Munson, J.W.; Kittredge, J.A.; Schuurman, H.J. Successful implementation of cooperative handling eliminates the need for restraint in a complex non-human primate disease model. J. Med. Primatol. 2012, 41, 89–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, M.J.; Prescott, M.J. The multifactorial role of the 3Rs in shifting the harm–benefit analysis in animal models of disease. Eur. J. Pharmacol. 2015, 759, 19–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannibal, D.L.; Bliss-Moreau, E.; Vandeleest, J.; McCowan, B.; Capitanio, J. Laboratory rhesus macaque social housing and social changes: Implications for research. Am. J. Primatol. 2017, 79, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prescott, M.J.; Lidster, K. Improving quality of science through better animal welfare: The NC3Rs strategy. Lab. Anim. 2017, 46, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Russell, W.M.S.; Burch, R.L. The Principles of Humane Experimental Technique; Universities Federation for Animal Welfare: Wheathamptead, UK, 1959; Available online: https://caat.jhsph.edu/principles/the-principles-of-humane-experimental-technique (accessed on 1 February 2021).
- NC3Rs. Peer Review and Advice Service. Available online: www.nc3rs.org.uk/peer-review-and-advice-service (accessed on 1 February 2021).
- NC3Rs. Non-Human Primate Accommodation, Care and Use, 2nd ed.; NC3Rs: London, UK, 2017; pp. 1–54. Available online: https://www.nc3rs.org.uk/non-human-primate-accommodation-care-and-use (accessed on 1 February 2021).
- Tanner, R.; McShane, H. Replacing, reducing and refining the use of animals in tuberculosis vaccine research. ALTEX 2017, 34, 157–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanner, R.; Satti, I.; Harris, S.A.; O’Shea, M.K.; Cizmeci, D.; O’Connor, D.; Chomka, A.; Matsumiya, M.; Wittenberg, R.; Minassian, A.M.; et al. Tools for assessing the protective efficacy of TB vaccines in humans: In vitro mycobacterial growth inhibition predicts outcome of in vivo mycobacterial infection. Front. Immunol. 2020, 10, 2983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, K.L.; Andrews, L.; Bajramovic, J.J.; Baldrick, P.; Black, L.E.; Bowman, C.J.; Buckley, L.A.; Coney, L.A.; Couch, J.; Dempster, A.M.; et al. The design of chronic toxicology studies of monoclonal antibodies: Implications for the reduction in use of non-human primates. Regul. Toxicol. Pharm. 2012, 62, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Chapman, K.L.; Adjei, A.; Baldrick, P.; da Silva, A.; De Smet, K.; DiCicco, R.; Hong, S.S.; Jones, D.R.; Leach, M.W.; McBlane, J.; et al. Waiving in vivo studies for monoclonal antibody biosimilar development: National and global challenges. MAbs 2016, 8, 427–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Drug Administration. Guidance for Industry: S6 Addendum to Preclinical Safety Evaluation of Biotechnology-Derived Pharmaceuticals; FDA: Silver Spring, MD, USA, 2012; pp. 1–13. Available online: https://www.fda.gov/files/drugs/published/S6-%28R1%29-Addendum--Preclinical-Safety-Evaluation-of-Biotechnology---Derived-Pharmaceuticals.pdf (accessed on 1 February 2021).
- NC3Rs. Review of Animal Use Requirements in WHO Biologics Guidelines. Available online: https://nc3rs.org.uk/review-animal-use-requirements-who-biologics-guidelines (accessed on 1 January 2021).
- Shurtleff, A.C.; Prescott, M.J. Workshop Report: Refining CEPI-Funded NHP Vaccine Development Studies; NC3Rs: London, UK, 2019; pp. 1–36. [Google Scholar]
- Reinhardt, V. Social enrichment for laboratory primates: A critical review. Prim. News 1990, 29, 7–11. Available online: https://www.brown.edu/Research/Primate/lpn29-3.html (accessed on 1 February 2021).
- Di Vincenti, L.; Wyatt, J.D. Pair housing of macaques in research facilities: A science-based review of benefits and risks. J. Am. Assoc. Lab. Anim. Sci. 2011, 50, 856–863. [Google Scholar] [PubMed]
- Baker, K.C.; Bloomsmith, M.A.; Oettinger, B.; Neu, K.; Griffis, C.; Schoof, V.; Maloney, M. Benefits of pair housing are consistent across a diverse population of rhesus macaques. Appl. Anim. Behav. Sci. 2012, 137, 148–156. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. The Psychological Well-Being of Nonhuman Primates; National Academies Press: Washington, DC, USA, 1998. [Google Scholar] [CrossRef]
- Rennie, A.E.; Buchanan-Smith, H.M. Refinement of the use of non-human primates in scientific research. Part II: Housing, husbandry and acquisition. Anim. Welfare 2006, 15, 215–238. [Google Scholar]
- Rommeck, I.; Anderson, K.; Heagerty, A.; Cameron, A.; McCowan, B. Risk factors and remediation of self-injurious and self-abuse behavior in rhesus macaques. J. Appl. Anim. Welf. Sci. 2006, 9, 261–268. [Google Scholar] [CrossRef]
- European Union. Directive 2010/63/EU of the European parliament and of the council of 22 September 2010 on the protection of animals used for scientific purposes. Off. J. Eur. Union 2010, L276, 33–79. Available online: https://eur-lex.europa.eu/eli/dir/2010/63/oj (accessed on 1 February 2021).
- National Research Council. Guide for the Care and Use of Laboratory Animals, 8th ed.; National Academies Press: Washington, DC, USA, 2011. [Google Scholar] [CrossRef]
- Baker, K.C. Survey of 2014 behavioral management programs for laboratory primates in the United States. Am. J. Primatol. 2016, 78, 780–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, K.C.; Prescott, M.J. International Survey of Behavioural Management Practices for Laboratory Non-Human Primates. (Unpublished; Manuscript in Preparation).
- Nelson, M.; Nunez, A.; Ngugi, S.A.; Sinclair, A.; Atkins, T.P. Characterization of lesion formation in marmosets following inhalational challenge with different strains of Burkholderia pseudomallei. Int. J. Exp. Pathol. 2016, 96, 414–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, S.A.; White, A.; Stockdale, L.; Tanner, R.; Sibley, L.; Sarfas, C.; Meyer, J.; Peter, J.; O’Shea, M.K.; Manjaly Thomas, Z.R.; et al. Development of a non-human primate BCG infection model for the evaluation of candidate tuberculosis vaccines. Tuberculosis 2018, 108, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, S.A.; Smyth, D.; McIntyre, A.; Gleeson, F.; Dennis, M.J. Refinement and reduction through application of a quantitative score system for estimation of TB-induced disease burden using computed tomography. Lab. Anim. 2018, 52, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Baillet, N.; Reynard, S.; Perthame, E.; Hortion, J.; Journeaux, A.; Mateo, M.; Carnec, X.; Schaeffer, J.; Picard, C.; Barrot, L.; et al. Systemic viral spreading and defective host responses are associated with fatal Lassa fever in macaques. Commun. Biol. 2021, 4, 27. [Google Scholar] [CrossRef]
- Benton, C.G.; West, M.W.; Hall, S.M.; Marko, S.T.; Johnson, J.C. Effect of short-term pair housing of juvenile rhesus macaques (Macaca mulatta) on immunologic parameters. JAALAS 2013, 52, 240–246. [Google Scholar]
- Capitanio, J.P.; Randall, C.; Kyes, R.C.; Fairbanks, L.A. Considerations in the selection and conditioning of Old World monkeys for laboratory research: Animals from domestic sources. ILAR J. 2006, 47, 294–306. [Google Scholar] [CrossRef]
- Gilbert, M.H.; Baker, K.C. Social buffering in adult male rhesus macaques (Macaca mulatta): Effects of stressful events in single vs. pair housing. J. Med. Primatol. 2011, 40, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Novak, M.A.; Hamel, A.F.; Kelly, B.J.; Dettmer, A.M.; Meyer, J.S. Stress, the HPA axis, and nonhuman primate well-being: A review. Appl. Anim. Behav. Sci. 2013, 143, 135–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pahar, B.; Baker, K.C.; Jay, A.N.; Russell-Lodrigue, K.E.; Srivastav, S.K.; Aye, P.P.; Blanchard, J.L.; Bohm, R.P. Effects of social housing changes on immunity and vaccine-specific immune responses in adolescent male rhesus macaques. Front. Immunol. 2020, 11, 565746. [Google Scholar] [CrossRef]
- Lilly, A.A.; Mehlman, P.T.; Higley, J.D. Trait-like immunological and hematological measures in female rhesus across varied environmental conditions. Am. J. Primatol. 1999, 48, 197–223. [Google Scholar] [CrossRef]
- Capitanio, J.P.; Mendoza, S.P.; Lerche, N.W.; Mason, W.A. Social stress results in altered glucocorticoid regulation and shorter survival in simian acquired immune deficiency syndrome. Proc. Natl. Acad. Sci. USA 1998, 95, 4714–4719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jennings, M.; Prescott, M.J. (Eds.) Refinements in husbandry, care and common procedures for non-human primates: Ninth report of the BVAAWF/FRAME/RSPCA/UFAW joint working group on refinement. Lab. Anim. 2009, 43, 1–47. [Google Scholar] [CrossRef]
- Couch, J.; Taylor, H.; Chapman, K. Social housing for nonhuman primates: A global perspective. In Challenges in Nonhuman Primate Research in the 21st Century; Weinbauer, G.F., Vogel, F., Eds.; Waxmann: Münster, Germany, 2012; pp. 47–58. [Google Scholar]
- Coleman, K.; Novak, M.A. Environmental enrichment in the 21st Century. ILAR J. 2017, 58, 295–307. [Google Scholar] [CrossRef]
- Buchanan-Smith, H.M.; Prescott, M.J.; Cross, N.J. What factors should determine cage sizes for primates in the laboratory? Anim. Welfare 2004, 13, S197–S201. [Google Scholar]
- NC3Rs. Macaque Website. Available online: www.nc3rs.org.uk/macaques (accessed on 1 February 2021).
- Smither, S.J.; Lever, M.S. A review of filovirus work and facilities at the Defence Science and Technology Laboratory, Porton Down. Viruses 2012, 4, 1305–1317. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.; Hearson, S. Refining Handling for Marmosets in High Levels of Biocontainment. In Proceedings of the LASA Winter Meeting, Brighton, UK, 21–23 November 2007. [Google Scholar]
- Stone, L.H.; Oppler, S.H.; Nugent, J.L.; Gresch, S.; Hering, B.J.; Murtaugh, M.P.; Hegstad-Davies, R.J.; Ramachandran, S.; Graham, M.L. Serum cytokine profiles in healthy nonhuman primates are blunted by sedation and demonstrate sexual dimorphism as detected by a validated multiplex immunoassay. Sci. Rep. 2021, 11, 2340. [Google Scholar] [CrossRef]
- Springer, D.A.; Baker, K.C. Effect of ketamine anesthesia on daily food intake in Macaca mulatta and Cercopithecus aethiops. Am. J. Primatol. 2007, 69, 1080–1092. [Google Scholar] [CrossRef]
- Bertrand, H.G.; Ellen, Y.C.; O’Keefe, S.; Flecknell, P.A. Comparison of the effects of ketamine and fentanyl-midazolam-medetomidine for sedation of rhesus macaques (Macaca mulatta). BMC Vet. Res. 2016, 12, 93. [Google Scholar] [CrossRef] [Green Version]
- Prescott, M.J.; Buchanan-Smith, H.M. Training nonhuman primates using positive reinforcement techniques: Guest editors’ introduction. J. Appl. Anim. Welf. Sci. 2003, 6, 157–161. [Google Scholar] [CrossRef]
- Schapiro, S.J.; Bloosmith, M.A.; Laule, G.E. Training nonhuman primates to perform behaviors useful in biomedical research. Lab. Anim. 2005, 34, 37–42. [Google Scholar] [CrossRef]
- Westlund, K. Training laboratory primates—Benefits and techniques. Primate Biol. 2015, 2, 119–132. [Google Scholar] [CrossRef]
- Nehete, P.N.; Shelton, K.A.; Nehete, B.P.; Chitta, S.; Williams, L.E.; Schapiro, S.J.; Abee, C.R. Effects of transportation, relocation, and acclimation on phenotypes and functional characteristics of peripheral blood lymphocytes in rhesus monkeys (Macaca mulatta). PLoS ONE 2017, 12, e0188694. [Google Scholar] [CrossRef]
- Laule, G.E.; Bloomsmith, M.A.; Schapiro, S.J. The use of positive reinforcement training techniques to enhance the care, management, and welfare of primates in the laboratory. J. Appl. Anim. Welf. Sci. 2003, 6, 163–173. [Google Scholar] [CrossRef]
- Prescott, M.J.; Bowell, V.A.; Buchanan-Smith, H.M. Training laboratory-housed non-human primates, part 2: Resources of developing and implementing training programmes. Anim. Technol. Welf. 2005, 4, 133–148. Available online: https://www.nc3rs.org.uk/sites/default/files/documents/Guidelines/Papers/Prescott%20et%20al.%202007%20Animal%20Welfare.pdf (accessed on 1 February 2021).
- Perlman, J.E.; Bloomsmith, M.A.; Whittaker, M.A.; McMillan, J.L.; Minier, D.E.; McCowan, B. Implementing positive reinforcement animal training programs at primate laboratories. Appl. Anim. Behav. Sci. 2012, 137, 114–126. [Google Scholar] [CrossRef]
- Kemp, C.; Thatcher, H.; Farningham, D.; Witham, C.; MacLarnon, A.; Holmes, A.; Semple, S.; Bethell, E.J. A protocol for training group-housed rhesus macaques (Macaca mulatta) to cooperate with husbandry and research procedures using positive reinforcement. Appl. Anim. Behav. Sci. 2017, 197, 90–100. [Google Scholar] [CrossRef]
- Daly, M.B.; Clayton, A.M.; Ruone, S.; Mitchell, J.; Dinh, C.; Holder, A.; Jolly, J.; Garcia-Lerma, G.; Weed, J.L. Training rhesus macaques to take daily oral antiretroviral therapy for preclinical evaluation of HIV prevention and treatment strategies. PLoS ONE 2019, 14, e0225146. [Google Scholar] [CrossRef]
- Powell, D.S.; Reagen, C.W.; Heflin, D.T.; Fisher, D.; Kosky, J.B.; Homer, L.C.; Reed, D.S.; Stefano-Cole, K.; Trichel, A.M.; Hartman, A.L. Development of novel mechanisms for housing, handling, and remote monitoring of common marmosets at animal biosafety level 3. Pathog. Dis. 2014, 71, 219–226. [Google Scholar] [CrossRef] [PubMed]
- McKinley, J.; Buchanan-Smith, H.M.; Bassett, L.; Morris, K. Training common marmosets (Callithrix jacchus) to cooperate during routine laboratory procedures: Ease of training and time investment. J. App. Anim. Welf. Sci. 2003, 6, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Sibley, L.; Gooch, K.; Wareham, A.; Gray, S.; Chancellor, A.; Dowall, S.; Bate, S.; Marriott, A.; Dennis, M.; White, A.D.; et al. Differences in monocyte: Lymphocyte ratio and tuberculosis disease progression in genetically distinct populations of macaques. Sci. Rep. 2019, 9, e3340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, B.; Veazey, R.S.; Luckay, A.; Penedo, C.; Xu, K.; Lifson, J.D.; Marx, P.A. SIV(mac) pathogenesis in rhesus macaques of Chinese and Indian origin compared with primary HIV infections in humans. AIDS 2002, 16, 1489–1496. [Google Scholar] [CrossRef]
- Trichel, A.M.; Rajakumar, P.A.; Murphey-Corb, M. Species-specific variation in SIV disease progression between Chinese and Indian subspecies of rhesus macaque. J. Med. Primatol. 2002, 31, 171–178. [Google Scholar] [CrossRef]
- OECD. Environmental Health and Safety Publications Series on Testing and Assessment No. 19: Guidance Document on the Recognition, Assessment, and Use of Clinical Signs as Humane Endpoints for Experimental Animals Used in Safety Evaluation; OECD: Paris, France, 2000. [Google Scholar]
- Association of Primate Veterinarians. Humane endpoint guidelines for nonhuman primates in biomedical research. J. Am. Assoc. Lab. Anim. Sci. 2020, 59, 6–8. [Google Scholar] [PubMed]
- Toth, L.A. Defining the moribund condition as an experimental endpoint for animal research. ILAR J. 2000, 41, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Colby, L.A.; Quenee, L.E.; Zitow, L.A. Considerations for infectious disease research studies. Comp. Med. 2017, 67, 222–231. [Google Scholar] [PubMed]
- Morton, D.B. A systematic approach for establishing humane endpoints. ILAR J. 2000, 41, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Kilgore, N.; Nuzum, E.O. An interagency collaboration to facilitate development of filovirus medical countermeasures. Viruses 2012, 4, 2312–2316. [Google Scholar] [CrossRef]
- Hirschberg, R.; Ward, L.A.; Kilgore, N.; Kurnat, R.; Schiltz, H.; Albrecht, M.T.; Christopher, G.W.; Nuzum, E. Challenges, progress, and opportunities: Proceedings of the filovirus medical countermeasures workshop. Viruses 2014, 6, 2673–2697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olfert, E.D.; Godson, D.L. Humane endpoints for infectious disease animal models. ILAR J. 2000, 41, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Warren, T.K.; Trefry, J.C.; Marko, S.T.; Chance, T.B.; Wells, J.B.; Pratt, W.D.; Johnson, J.C.; Mucker, E.M.; Norris, S.L.; Chappell, M.; et al. Euthanasia assessment in Ebola virus infected nonhuman primates. Viruses 2014, 6, 4666–4682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfson, K.J.; Avena, L.E.; Beadles, M.W.; Worwa, G.; Amen, M.; Patterson, J.L.; Carrion, R., Jr.; Griffiths, A. Intramuscular exposure of Macaca fascicularis to low doses of low passage- or cell culture-adapted Sudan virus or Ebola virus. Viruses 2018, 10, 642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, M.; Lever, M.S.; Dean, R.E.; Pearce, P.C.; Stevens, D.J.; Simpson, A.J. Bioavailability and efficacy of levofloxacin against Francisella tularensis in the common marmoset (Callithrix jacchus). Antimicrob. Agents Chemother. 2010, 54, 3922–3926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guina, T.; Lanning, L.L.; Omland, K.S.; Williams, M.S.; Wolfraim, L.A.; Heyse, S.P.; Houchens, C.R.; Sanz, P.; Hewitt, J.A. The cynomolgus macaque natural history model of pneumonic tularemia for predicting clinical efficacy under the Animal Rule. Front. Cell. Infect. Microbiol. 2018, 8, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharpe, S.A.; Scott, S.; Taylor, I.; Skinner, O.; Clark, S.O.; Smyth, D.; McIntyre, A.; Gleeson, F.V.; Dennis, M.J. Use of high frequency jet ventilation as a refinement for imaging macaques with respiratory disease. Lab. Anim. 2020, 54, 386–390. [Google Scholar] [CrossRef]
- Maisonnasse, P.; Guedj, J.; Contreras, V.; Behillil, S.; Solas, C.; Marlin, R.; Naninck, T.; Pizzorno, A.; Lemaitre, J.; Gonçalves, A.; et al. Hydroxychloroquine use against SARS-CoV-2 infection in non-human primates. Nature 2020, 585, 584–587. [Google Scholar] [CrossRef]
- Vogel, A.B.; Kanevsky, I.; Che, Y.; Swanson, K.A.; Muik, A.; Vormehr, M.; Kranz, L.M.; Walzer, K.C.; Hein, S.; Güler, A.; et al. Immunogenic BNT162b vaccines protect rhesus macaques from SARS-CoV-2. Nature 2021. [Google Scholar] [CrossRef]
- Vogel, A.B.; Kanevsky, I.; Che, Y.; Swanson, K.A.; Muik, A.; Vormehr, M.; Kranz, L.M.; Walzer, K.C.; Hein, S.; Güler, A.; et al. BNT162b vaccines are immunogenic and protect non-human primates against SARS-CoV-2. bioRxiv 2020. [Google Scholar] [CrossRef]
- Blair, P.W.; Kortepeter, M.G.; Downey, L.G.; Madar, C.S.; Downs, I.L.; Martins, K.A.; Rossi, F.; Williams, J.A.; Madar, A.; Schellhase, C.W.; et al. ICU-like care of nonhuman primates with Ebola virus disease. J. Infect. Dis. 2020, jiaa781. [Google Scholar] [CrossRef] [PubMed]
- Jennings, M.; Morton, D.B.; Charton, E.; Cooper, J.; Hendriksen, C.; Martin, S.; Pearce, M.C.; Price, S.; Redhead, K.; Reed, N.; et al. Application of the Three Rs to challenge assays used in vaccine testing: Tenth report of the BVAAWF/FRAME/RSPCA/UFAW Joint Working Group on Refinement. Biologicals 2010, 38, 684–695. [Google Scholar] [CrossRef] [PubMed]
- Blair, P.W.; Keshtkar-Jahromi, M.; Psoter, K.J.; Reisler, R.B.; Warren, T.K.; Johnston, S.C.; Goff, A.J.; Downey, L.G.; Bavari, S.; Cardile, A.P. Virulence of marburg virus Angola compared to Mt. Elgon (Musoke) in macaques: A pooled survival analysis. Viruses 2018, 10, 658. [Google Scholar] [CrossRef] [Green Version]
- Kortepeter, M.G.; Lawler, J.V.; Honko, A.; Bray, M.; Johnson, J.C.; Purcell, B.K.; Olinger, G.G.; Rivard, R.; Hepburn, M.J.; Hensley, L.E. Real-time monitoring of cardiovascular function in rhesus macaques infected with Zaire ebolavirus. J. Infect. Dis. 2011, 204, S1000–S1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Copps, J. Issues related to the use of animals in biocontainment research facilities. ILAR J. 2005, 46, 34–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020, 18, e3000410. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prescott, M.J.; Clark, C.; Dowling, W.E.; Shurtleff, A.C. Opportunities for Refinement of Non-Human Primate Vaccine Studies. Vaccines 2021, 9, 284. https://doi.org/10.3390/vaccines9030284
Prescott MJ, Clark C, Dowling WE, Shurtleff AC. Opportunities for Refinement of Non-Human Primate Vaccine Studies. Vaccines. 2021; 9(3):284. https://doi.org/10.3390/vaccines9030284
Chicago/Turabian StylePrescott, Mark J., Carolyn Clark, William E. Dowling, and Amy C. Shurtleff. 2021. "Opportunities for Refinement of Non-Human Primate Vaccine Studies" Vaccines 9, no. 3: 284. https://doi.org/10.3390/vaccines9030284
APA StylePrescott, M. J., Clark, C., Dowling, W. E., & Shurtleff, A. C. (2021). Opportunities for Refinement of Non-Human Primate Vaccine Studies. Vaccines, 9(3), 284. https://doi.org/10.3390/vaccines9030284