Field Application of a New CSF Vaccine Based on Plant-Produced Recombinant E2 Marker Proteins on Pigs in Areas with Two Different Control Strategies
Abstract
:1. Introduction
2. Materials and Methods
2.1. E2 Recombinant Protein Production, Purification, and Vaccine Formulations
2.2. Animals and Vaccination Trials
2.2.1. Jeju Island
2.2.2. Suburb of Pohang
2.3. Detection of Erns-Specific and E2-Specific Antibodies
2.4. Neutralizing Antibodies
2.5. Statistical Analysis
3. Results
3.1. Field Application at Farms on Jeju Island with Naïve Pregnant Sows and Young Piglets
3.2. Field Application with Piglets with Maternal E2 Antibodies at Farms in the Suburb of Pohang
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moennig, V.; Floegel-Niesmann, G.; Greiser-Wilke, I. Clinical signs and epidemiology of classical swine fever: A review of new knowledge. Vet. J. 2003, 165, 11–20. [Google Scholar] [CrossRef]
- Sato, U.; Hanaki, T.; Nobuto, K. Attenuation of the hog cholera virus by continuous cell-virus propagation. 3. Growth interference of Newcastle disease virus by attenuated hog cholera virus and its application to virus titration and the neutralization test. Arch. Gesamte Virusforsch. 1969, 26, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Song, J.Y.; Tark, D.S.; Lim, S.I.; Choi, E.J.; Kim, J.; Park, C.K.; Lee, B.Y.; Wee, S.H.; Bae, Y.C.; et al. Feed contaminated with classical swine fever vaccine virus (LOM strain) can induce antibodies to the virus in pigs. Vet. Rec. 2008, 162, 12–17. [Google Scholar] [CrossRef]
- Choe, S.; Kim, J.H.; Kim, K.S.; Song, S.; Cha, R.M.; Kang, W.C.; Kim, H.J.; Park, G.N.; Shin, J.; Jo, H.N.; et al. Adverse Effects of Classical Swine Fever Virus LOM Vaccine and Jeju LOM Strains in Pregnant Sows and Specific Pathogen-Free Pigs. Pathogens 2019, 9, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, G.; Kim, J.A.; Yoo, H.; Yang, K.; Yang, H.S.; Park, C.; Jeong, K.; Park, C.K.; Lyoo, Y.S.; Lee, C. Genomic characterization of classical swine fever virus LOM variants with 3′-UTR INDELs from pigs on Jeju Island, South Korea. Arch. Virol. 2020, 165, 1691–1696. [Google Scholar] [CrossRef]
- Francis, M.J. Recent Advances in Vaccine Technologies. Vet. Clin. N. Am. Small Anim. Pract. 2018, 48, 231–241. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Peng, G.; Tang, C.; Zhu, S.; Qian, S.; Xu, J.; Qian, P. Glycoprotein E2 of classical swine fever virus expressed by baculovirus induces the protective immune responses in rabbits. Vaccine 2014, 32, 6607–6613. [Google Scholar] [CrossRef]
- Madera, R.; Gong, W.; Wang, L.; Burakova, Y.; Lleellish, K.; Galliher-Beckley, A.; Nietfeld, J.; Henningson, J.; Jia, K.; Li, P.; et al. Pigs immunized with a novel E2 subunit vaccine are protected from subgenotype heterologous classical swine fever virus challenge. BMC Vet. Res. 2016, 12, 197. [Google Scholar] [CrossRef] [Green Version]
- Owczarek, B.; Gerszberg, A.; Hnatuszko-Konka, K. A Brief Reminder of Systems of Production and Chromatography-Based Recovery of Recombinant Protein Biopharmaceuticals. Biomed. Res. Int. 2019, 2019, 4216060. [Google Scholar] [CrossRef]
- Lomonossoff, G.P.; D’Aoust, M.A. Plant-produced biopharmaceuticals: A case of technical developments driving clinical deployment. Science 2016, 353, 1237–1240. [Google Scholar] [CrossRef]
- Rybicki, E.P. Plant-made vaccines and reagents for the One Health initiative. Hum. Vaccines Immunother. 2017, 13, 2912–2917. [Google Scholar] [CrossRef] [PubMed]
- Lico, C.; Santi, L.; Baschieri, S.; Noris, E.; Marusic, C.; Donini, M.; Pedrazzini, E.; Maga, G.; Franconi, R.; Di Bonito, P.; et al. Plant Molecular Farming as a Strategy Against COVID-19—The Italian Perspective. Front. Plant Sci. 2020, 11. [Google Scholar] [CrossRef]
- Aguirreburualde, M.S.P.; Petruccelli, S.; Almonacid, F.B.; Wigdorovitz, A. Plant-based vaccine for livestock: Key points to unleash platform translation in developing countries. Curr. Mol. Biol. Rep. 2016, 2, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.B.; Meyers, G.; Bukh, J.; Gould, E.A.; Monath, T.; Muerhoff, A.S.; Pletnev, A.; Rico-Hesse, R.; Stapleton, J.T.; Simmonds, P.; et al. Proposed revision to the taxonomy of the genus Pestivirus, family Flaviviridae. J. Gen. Virol. 2017, 98, 2106–2112. [Google Scholar] [CrossRef]
- Park, Y.; An, D.J.; Choe, S.; Lee, Y.; Park, M.; Park, S.; Gu, S.; Min, K.; Kim, N.H.; Lee, S.; et al. Development of Recombinant Protein-Based Vaccine Against Classical Swine Fever Virus in Pigs Using Transgenic Nicotiana benthamiana. Front. Plant Sci. 2019, 10, 624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terpstra, C.; Bloemraad, M.; Gielkens, A.L. The neutralizing peroxidase-linked assay for detection of antibody against swine fever virus. Vet. Microbiol. 1984, 9, 113–120. [Google Scholar] [CrossRef]
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Chen, Y.; Wang, A.; Wei, Q.; Liu, D.; Zhang, G. Large-scale manufacture of VP2 VLP vaccine against porcine parvovirus in Escherichia coli with high-density fermentation. Appl. Microbiol. Biotechnol. 2020, 104, 3847–3857. [Google Scholar] [CrossRef]
- Park, Y.; Min, K.; Kim, N.H.; Kim, J.H.; Park, M.; Kang, H.; Sohn, E.J.; Lee, S. Porcine circovirus 2 capsid protein produced in N. benthamiana forms virus-like particles that elicit production of virus-neutralizing antibodies in guinea pigs. New Biotechnol. 2021, 63, 29–36. [Google Scholar] [CrossRef]
- Opriessnig, T.; Patterson, A.R.; Madson, D.M.; Pal, N.; Ramamoorthy, S.; Meng, X.J.; Halbur, P.G. Comparison of the effectiveness of passive (dam) versus active (piglet) immunization against porcine circovirus type 2 (PCV2) and impact of passively derived PCV2 vaccine-induced immunity on vaccination. Vet. Microbiol. 2010, 142, 177–183. [Google Scholar] [CrossRef]
- Oh, Y.; Seo, H.W.; Park, C.; Chae, C. Comparison of sow and/or piglet vaccination of 3 commercial porcine circovirus type 2 (PCV2) single-dose vaccines on pigs under experimental PCV2 challenge. Vet. Microbiol. 2014, 172, 371–380. [Google Scholar] [CrossRef] [PubMed]
Delivery Date | −70 | −49 | −28 | 20 | 40 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Day Post-Vaccination (dpv) | 0 | 21 | 42 | 62 | 102 | ||||||||
1st Vaccination | 2nd Vaccination | 3rd Vaccination | - | - | |||||||||
Test | Erns 1 | E2 2 | NA 3 | Erns | E2 | NA | E2 | NA | E2 | NA | E2 | NA | |
Jeju A | 1 | 0.00 | 2.35 | - 4 | 0.00 | 42.56 | 1/8 | 90.71 | 1/2048 | 89.21 | 1/512 | 83.40 | 1/128 |
2 | 0.00 | 3.84 | - | 0.00 | 30.38 | - | 88.85 | 1/512 | 73.14 | 1/128 | 60.51 | 1/32 | |
3 | 0.00 | 0.00 | - | * D | * D | * D | * D | * D | * D | * D | * D | * D | |
Jeju B | 1 | 0.00 | 41.13 | - | 0.00 | 50.23 | 1/16 | 83.93 | 1/512 | 80.51 | 1/256 | 54.40 | 1/32 |
2 | 0.00 | 0.00 | - | 0.00 | 45.37 | 1/8 | 91.56 | 1/1024 | 92.96 | 1/1024 | 89.81 | 1/128 | |
3 | 0.00 | 1.38 | - | 0.00 | 47.72 | 1/8 | 94.43 | 1/1024 | 94.36 | 1/512 | 74.99 | 1/64 | |
Jeju C | 1 | 0.04 | 0.00 | - | 0.00 | 67.77 | 1/32 | 91.82 | 1/1024 | 94.10 | 1/1024 | 93.80 | 1/512 |
2 | 0.00 | 11.10 | - | ** N/A | ** N/A | ** N/A | 92.01 | 1/2048 | 94.30 | 1/1024 | 92.20 | 1/256 | |
3 | 0.00 | 0.26 | - | ** N/A | ** N/A | ** N/A | 92.70 | 1/1024 | ** N/A | ** N/A | 94.65 | 1/512 |
Time after Birth (days) | 20 | 40 | |||
---|---|---|---|---|---|
Test | E2 1 | NA 2 | E2 | NA | |
Jeju A | 1 | 92.73 | 1/1024 | 87.36 | 1/256 |
2 | 94.07 | 1/1024 | 87.30 | 1/128 | |
3 | 92.86 | 1/1024 | 84.82 | 1/128 | |
Jeju B | 1 | 96.58 | 1/1024 | 93.21 | 1/512 |
2 | 96.12 | 1/2048 | 90.17 | 1/1024 | |
3 | 95.80 | 1/1024 | 93.44 | 1/512 | |
4 | 96.58 | 1/4096 | 94.36 | 1/2048 | |
5 | ** N/A | ** N/A | 92.32 | 1/1024 | |
Jeju C | 1 | 96.35 | 1/1024 | 95.27 | 1/1024 |
2 | 92.01 | 1/1024 | 96.43 | 1/1024 | |
3 | 94.23 | 1/1024 | 94.06 | 1/1024 | |
4 | ** N/A | 1/4096 | 95.25 | 1/4096 | |
5 | ** N/A | 1/2048 | 96.72 | 1/2048 | |
6 | ** N/A | 1/512 | 84.44 | 1/512 | |
7 | ** N/A | ** N/A | 96.28 | 1/2048 | |
8 | ** N/A | ** N/A | 94.86 | 1/4096 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, Y.; Park, Y.; Choi, B.-H.; Park, S.; Gu, S.; Park, J.; Kim, J.-K.; Sohn, E.-J. Field Application of a New CSF Vaccine Based on Plant-Produced Recombinant E2 Marker Proteins on Pigs in Areas with Two Different Control Strategies. Vaccines 2021, 9, 537. https://doi.org/10.3390/vaccines9060537
Oh Y, Park Y, Choi B-H, Park S, Gu S, Park J, Kim J-K, Sohn E-J. Field Application of a New CSF Vaccine Based on Plant-Produced Recombinant E2 Marker Proteins on Pigs in Areas with Two Different Control Strategies. Vaccines. 2021; 9(6):537. https://doi.org/10.3390/vaccines9060537
Chicago/Turabian StyleOh, Yeonsu, Youngmin Park, Bo-Hwa Choi, Soohong Park, Sungmin Gu, Jungae Park, Jong-Kook Kim, and Eun-Ju Sohn. 2021. "Field Application of a New CSF Vaccine Based on Plant-Produced Recombinant E2 Marker Proteins on Pigs in Areas with Two Different Control Strategies" Vaccines 9, no. 6: 537. https://doi.org/10.3390/vaccines9060537
APA StyleOh, Y., Park, Y., Choi, B. -H., Park, S., Gu, S., Park, J., Kim, J. -K., & Sohn, E. -J. (2021). Field Application of a New CSF Vaccine Based on Plant-Produced Recombinant E2 Marker Proteins on Pigs in Areas with Two Different Control Strategies. Vaccines, 9(6), 537. https://doi.org/10.3390/vaccines9060537