Investigation of Post Vaccination Reactions of Two Live Attenuated Vaccines against Lumpy Skin Disease of Cattle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vaccine Preparation
2.2. Sequencing
2.3. Experimental Animals
2.4. Virus Neutralization (VNT)
2.5. PCR
3. Results
3.1. Viral Excretion
3.2. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Introduction and Spread of Lumpy Skin Disease in South, East and Southeast Asia—Qualitative Risk Assessment and Management; FAO: Rome, Italy, 2020. [Google Scholar]
- Buller, R.; Arif, B.; Black, D.; Dumbell, K.; Esposito, J.; Lefkowitz, E.J.; McFadden, G.; Moss, B.; Mercer, A.; Moyer, R.; et al. Family Poxviridae; Elsevier Academic Press: San Diego, CA, USA, 2005; pp. 117–133. [Google Scholar]
- Chihota, C.M.; Rennie, L.F.; Kitching, R.P.; Mellor, P.S. Mechanical transmission of lumpy skin disease virus by Aedes aegypti (Diptera: Culicidae). Epidemiol. Infect. 2001, 126, 317–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuppurainen, E.S.; Stoltsz, W.H.; Troskie, M.; Wallace, D.B.; Oura, C.A.L.; Mellor, P.S.; Coetzer, J.A.W.; Venter, E.H. A potential role for ixodid (hard) tick vectors in the transmission of lumpy skin disease virus in cattle. Transbound. Emerg. Dis. 2011, 58, 93–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carn, M.; Kitching, P. An investigation of possible routes of transmission of lumpy skin disease virus (Neethling). Epidemiol. Infect. 1995, 114, 219–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowden, T.; Babiuk, S.; Parkyn, G.; Copps, J.; Boyle, D.B. Capripoxvirus tissue tropism and shedding: A quantitative study in experimentally infected sheep and goats. Virology 2008, 371, 380–393. [Google Scholar] [CrossRef] [Green Version]
- Gari, G.; Abie, G.; Gizaw, D.; Wubete, A.; Kidane, M.; Asgedom, H.; Bayissa, B.; Ayelet, G.A.L.; Oura, C.; Roger, F.; et al. Evaluation of the safety, immunogenicity and efficacy of three capripoxvirus vaccine strains against lumpy skin disease virus. Vaccine 2015, 33, 3256–3261. [Google Scholar] [CrossRef]
- Lubinga, J.C.; Tuppurainen, E.S.M.; Mahlare, R.; Coetzer, J.A.W.; Stoltsz, W.H.; Venter, E.H. Evidence of transstadial and mechanical transmission of lumpy skin disease virus by Amblyomma hebraeum ticks. Transbound. Emerg. Dis. 2015, 62, 174–182. [Google Scholar] [CrossRef]
- Sohier, C.; Haegeman, A.; Mostin, L.; De Leeuw, I.; Van Campe, W.; De Vleeschauwer, A.; Tuppurainen, E.S.; van den Berg, T.; De Regge, N.; De Clercq, K. Experimental evidence of mechanical lumpy skin disease virus transmission by Stomoxys calcitrans biting flies and Haematopota spp. Horseflies. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef]
- Davies, F. Lumpyskin Disease; Cambridge University Press: London, UK, 1981. [Google Scholar]
- Prozesky, L.; Barnard, B. A study of the pathology of lumpy skin disease in cattle. Onderstepoort J. Vet. Res. 1982, 49, 167–175. [Google Scholar]
- Davies, F. Lumpy skin disease, an african capripox virus disease of cattle. Br. Vet. J. 1991, 147, 489–503. [Google Scholar] [CrossRef]
- Babiuk, S.; Bowden, T.R.; Parkyn, G.; Dalman, B.; Manning, L.; Neufeld, J. Quantification of Lumpy Skin Disease Virus Following Experimental Infection in Cattle. Transbound. Emerg. Dis. 2008, 55, 299–307. [Google Scholar] [CrossRef]
- Weiss, K. Lumpy Skin Disease Virus. Virol. Monogr. 1968, 3, 111–131. [Google Scholar]
- Yeruham, I.; Perl, S.; Nyska, A.; Abraham, A.; Davidson, M.; Haymovitch, M.; Zamir, O.; Grinstein, H. Adverse reactions in cattle to a capripox vaccine. Vet. Rec. Rec. 1994, 135, 330–332. [Google Scholar] [CrossRef]
- Ayelet, G.; Abate, Y.; Sisay, T.; Nigussie, H.; Gelaye, E.; Jemberie, S.; Asmare, K. Lumpy skin disease: Preliminary vaccine efficacy assessment and overview on outbreak impact in dairy cattle at Debre Zeit, central Ethiopia. Antivir. Res. 2013, 98, 261–265. [Google Scholar] [CrossRef]
- Salib, F.A.; Osman, A.H. Incidence of lumpy skin disease among Egyptian cattle in Giza Governorate, Egypt. Vet. World 2011, 4, 162–167. [Google Scholar] [CrossRef]
- Tuppurainen, E.; Alexandrov, T.; Beltran-Alcrudo, D. Lumpy Skin Disease Field Manual-A Manual for Veterinarians; FAO Animal Production and Health Manual No.20. Rome; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2017; ISBN 9789251097762. [Google Scholar]
- Tuppurainen, E.S.M.; Oura, C.A.L. Review: Lumpy Skin Disease: An Emerging Threat to Europe, the Middle East and Asia. Transbound. Emerg. Dis. 2011, 59, 40–48. [Google Scholar] [CrossRef]
- Abutarbush, S.M.; Tuppurainen, E.S. Serological and clinical evaluation of the Yugoslavian RM65 sheep pox strain vaccine use in cattle against lumpy skin disease. Transbound. Emerg. Dis. 2018, 1–7. [Google Scholar] [CrossRef]
- Ben-Gera, J.; Klement, E.; Khinich, E.; Stram, Y.; Shpigel, N.Y. Comparison of the efficacy of Neethling lumpy skin disease virus and x10RM65 sheep-pox live attenuated vaccines for the prevention of lumpy skin disease—The results of a randomized controlled field study. Vaccine 2015, 33, 1–6. [Google Scholar] [CrossRef]
- Katsoulos, P.D.; Chaintoutis, S.C.; Dovas, C.I.; Polizopoulou, Z.S.; Brellou, G.D.; Agianniotaki, E.I.; Tasioudi, K.E.; Chondrokouki, E.; Papadopoulos, O.; Karatzias, H.; et al. Investigation on the incidence of adverse reactions, viraemia and haematological changes following field immunization of cattle using a live attenuated vaccine against lumpy skin disease. Transbound. Emerg. Dis. 2018, 65, 174–185. [Google Scholar] [CrossRef]
- Calistri, P.; Declercq, K.; Gubbins, S.; Klement, E.; Stegeman, A.; Cortinas Abrahantes, J.; Sotiria-Eleni, A.; Broglia, A.; Gogin, A. Lumpy skin disease III. Data collection and analysis. EFSA J. 2019, 17, 1–26. [Google Scholar] [CrossRef]
- Abutarbush, S.M.; Hananeh, W.M.; Ramadan, W.; Al Sheyab, O.M.; Alnajjar, A.R.; Al Zoubi, I.G.; Knowles, N.; Bachanek-Bankowska, K.; Tuppurainen, E.S. Adverse Reactions to Field Vaccination Against Lumpy Skin Disease in Jordan. Transbound. Emerg. Dis. 2017, 63, e213–e219. [Google Scholar] [CrossRef]
- Thompson, J.; Higgins, D.; Gibson, T. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [Green Version]
- Hall, T. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis for Windows 95/98/NT: Nucleic Acids Symp; Series 41; Oxford University Press: Oxford, UK, 1999; pp. 95–98. [Google Scholar]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [Green Version]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M. A Simple Method for Estimating Evolutionary Rate of Base Substitutions through Comparative Studies of Nucleotide Sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef]
- Vandenbussche, F.; Mathijs, E.; Haegeman, A.; Al-Majali, A.; Van Borm, S.; De Clercqb, K. Complete Genome Sequence of Capripoxvirus Strain KSGP 0240 from a Commercial Live Attenuated Vaccine. Genome Announc. 2016, 4, e01114-16. [Google Scholar] [CrossRef] [Green Version]
- Parlement Européen et du Conseil de l’Union Européenne. Directives EU Commission Protection des animaux utilisés à des fins scientifiques. J. Off. l’Union Eur. 2010, 276, 1–162. [Google Scholar]
- OIE. Terrestrial Animal Health Code Use of Animals. In Research and Education; Chapter 7.8; OIE Terrestrial Animal Health Code; OIE: Paris, France, 2016; pp. 1–10. [Google Scholar]
- Office International des Epizooties. Manual of diagnostic tests and vaccines for terrestrial animals. In Chapter 2.4.13. Paris: Lumpy Skin Disease; OIE: Paris, France, 2017; pp. 1–14. [Google Scholar]
- Tuppurainen, E.S.; Venter, E.; Shisler, J.; Gari, G.; Mekonnen, G.; Juleff, N.; Lyons, N.; De Clercq, K.; Upton, C.; Bowden, T.; et al. Review: Capripoxvirus Diseases: Current Status andOpportunities for Control. Transbound. Emerg. Dis. 2017, 64, 729–745. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority); Calistri, P.; De Clercq, K.; Gubbins, S.; Klement, E.; Stegeman, A.; Cortiñas Abrahantes, J.; Marojevic, D.; Antoniou, S.E.; Broglia, A. Lumpy Skin Disease Epidemiological Report IV: Data Collection and Analysis. EFSA J. 2020, 18, e06010. [Google Scholar]
- Kitching, R. Vaccines for lumpy skin disease, sheep pox and goat pox. Dev. Biol. 2003, 114, 161–167. [Google Scholar]
- Tuppurainen, E.S.; Pearson, C.R.; Bachanek-bankowska, K.; Knowles, N.J.; Amareen, S.; Frost, L.; Henstock, M.R.; Lamien, C.E.; Diallo, A.; Mertens, P.P.C. Characterization of sheep pox virus vaccine for cattle against lumpy skin disease virus. Antivir. Res. 2014, 109, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenner, J.; Bellaiche, M.; Gross, E.; Elad, D.; Oved, Z.; Haimovitz, M.; Wasserman, A.; Friedgut, O.; Stram, Y.; Bumbarov, V.; et al. Appearance of skin lesions in cattle populations vaccinated against lumpy skin disease: Statutory challenge. Vaccine 2009, 27, 1500–1503. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.M. An Outbreak of Lumpy Skin Disease in a Holstein Dairy Herd in Oman: A Clinical Report. Asian J. Anim. Vet. Adv. 2011, 6, 851–859. [Google Scholar] [CrossRef] [Green Version]
- Zhugunissova, K.; Bulatov, Y.; Orynbayev, M.; Kutumbetov, L.; Abduraimov, Y.; Shayakhmetova, Y.; Taranov, D.; Amanova, Z.; Mambetaliyev, M.; Absatova, Z.; et al. Goatpox virus (G20-LKV) vaccine strain elicits a protective response in cattle against lumpy skin disease at challenge with lumpy skin disease virulent field strain in a comparative study. Vet. Microbiol. 2020, 245, 108695. [Google Scholar] [CrossRef]
- Klement, E.; Broglia, A.; Sotiria Eleni, A.; Tsiamadis, V.; Plevraki, E.; Petrović, T.; Polaček, V.; Debeljak, Z.; Miteva, A.; Tsviatko, A.; et al. Neethling vaccine proved highly effective in controlling lumpy skin disease epidemics in the Balkans. Prev. Vet. Med. 2018. [Google Scholar] [CrossRef]
- Bedekovic, T.; Simic, I.; Kresic, N.; Lojkic, I. Detection of lumpy skin disease virus in skin lesions, blood, nasal swabs and milk following preventive vaccination. Transbound. Emerg. Dis. 2017, 1–6. [Google Scholar] [CrossRef]
- Gelaye, E.; Belay, A.; Ayelet, G.; Jenberie, S.; Yami, M.; Loitsch, A.; Tuppurainen, E.; Grabherr, R.; Diallo, A.; Lamien Euloge, C. Capripox disease in Ethiopia: Genetic differences between field isolates and vaccine strain, and implications for vaccination failure. Antivir. Res. 2015, 119, 28–35. [Google Scholar] [CrossRef]
- Tuppurainen, E.S.M.; Antoniou, S.; Tsiamadis, E.; Topkaridou, M.; Labus, T.; Debeljak, Z.; Plavšić, B.; Miteva, A.; Alexandrov, T.; Pite, L.; et al. Field observations and experiences gained from the implementation of control measures against lumpy skin disease in South-East Europe between 2015 and 2017. Prev. Vet. Med. 2018, 1–39. [Google Scholar] [CrossRef]
- Lojkić, I.; Šimić, I.; Krešić, N.; Bedeković, T. Complete genome sequence of a lumpy skin disease virus strain isolated from the skin of a vaccinated animal. Genome Announc. 2018, 6, e00482-18. [Google Scholar] [CrossRef]
- Şevik, M.; Doğan, M. Epidemiological and Molecular Studies on Lumpy Skin Disease Outbreaks in Turkey during 2014–2015. Transbound. Emerg. Dis. 2016, 64, 1268–1279. [Google Scholar] [CrossRef]
- Tageldin, M.H.; Wallace, D.B.; Gerdes, G.H.; Putterill, J.F.; Greyling, R.R.; Phosiwa, M.N.; Al Busaidy, R.M.; Al Ismaaily, S.I. Lumpy skin disease of cattle: An emerging problem in the Sultanate of Oman. Trop. Anim. Health Prod. 2014, 46, 241–246. [Google Scholar] [CrossRef] [Green Version]
- Norian, R.; Ahangaran, N.; Varshovi, H.; Azadmehr, A. Evaluation of humoral and cell-mediated immunity of two capripoxvirus vaccine strains against lumpy skin disease virus. Iran. J. Virol. 2016, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Milovanović, M.; Dietze, K.; Milicévić, V.; Radojičić, S.; Valčić, M.; Moritz, T.; Hoffmann, B. Humoral immune response to repeated lumpy skin disease virus vaccination and performance of serological tests. BMC Vet. Res. 2019, 15, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hamdi, J.; Boumart, Z.; Daouam, S.; El Arkam, A.; Bamouh, Z.; Jazouli, M.; Omari, K.; Fassi, O.; Gavrilov, B.; El Harrak, M. Development and Evaluation of an Inactivated Lumpy Skin Disease Vaccine for Cattle. Vet. Microbiol. 2020, 245, 1–6. [Google Scholar] [CrossRef]
- Samojlovic, M.; PolaČek, V.; Gurjanov, V.; LupuloviĆ, D.; LaziĆ, G.; PetroviĆ, T.; LaziĆ, S. Detection of Antibodies Against Lumpy Skin Disease Virus by Virus Neutralization Test and Elisa Methods. Acta Vet. 2019, 69, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Badhy, S.C.; Chowdhury, M.G.A.; Settypalli, T.B.K.; Cattoli, G.; Lamien, C.E.; Fakir, M.A.U.; Akter, S.; Osmani, M.G.; Talukdar, F.; Begum, N.; et al. Molecular characterization of lumpy skin disease virus (LSDV) emerged in Bangladesh reveals unique genetic features compared to contemporary field strains. BMC Vet. Res. 2021, 17, 1–11. [Google Scholar] [CrossRef]
- Sprygin, A.; Babin, Y.; Pestova, Y.; Kononova, S.; Wallace, D.B.; Van Schalkwyk, A.; Byadovskaya, O.; Diev, V.; Lozovoy, D.; Kononov, A. Analysis and insights into recombination signals in lumpy skin disease virus recovered in the field. PLoS ONE 2018, 12, e0207480. [Google Scholar] [CrossRef]
- Kononov, A.; Prutnikov, P.; Bjadovskaya, O.; Kononova, S.; Rusaleev, V.; Pestova, Y.; Sprygin, A. Emergence of a new lumpy skin disease virus variant in Kurgan oblast, Russia, in 2018. Arch. Virol. 2020, 165, 1343–1356. [Google Scholar]
Clinical Signs | Score | |
---|---|---|
General behavior | Normal | 0 |
Inactive | 1 | |
Very inactive | 2 | |
Fever | Normal | 0 |
39–40 °C | 1 | |
>40 °C | 2 | |
Food uptake | Normal | 0 |
Loss of appetite | 1 | |
Anorexia | 2 | |
Local inflammation | None | 0 |
<2 cm | 1 | |
>2 cm | 2 | |
Neethling Disease | None | 0 |
1 to 2 nodules in one area | 1 | |
Up to 5 nodules in one area | 2 | |
>5 nodules in two areas | 3 | |
>5 nodules in three areas | 4 | |
Generalized nodules | 5 |
Reference Position | Type | Length | Ref | Allele | Overlapping Annotations | Coding Region Change | Amino Acid Change |
---|---|---|---|---|---|---|---|
17 | SNV | 1 | T | A | |||
18,578 | Deletion | 1 | A | - | Gene: LSDV026, CDS: LSDV026 | AOE47602.1:c.479del | AOE47602.1:p.Leu160fs |
22,772 | Insertion | 1 | - | A | |||
28,073 | Insertion | 1 | - | T | |||
84,168 | SNV | 1 | C | A | Gene: LSDV089, CDS: LSDV089 | AOE47665.1:c.48G > T | AOE47665.1:p.Leu16Phe |
89,076 | SNV | 1 | G | T | Gene: LSDV094, CDS: LSDV094 | AOE47670.1:c.254C > A | AOE47670.1:p.Pro85His |
125,083 | Deletion | 1 | A | - |
Group | G1 | G2 | G3 | G4 | G5 | |
---|---|---|---|---|---|---|
Vaccine | Neethling Strain | Kenyan Strain | Unvaccinated | |||
Dose | Low | High | Low | High | - | |
Number of animals | 15 | 30 | 12 | 12 | 4 | |
Fever (days/animal) | 0.93 | 1.87 | 2.33 | 2.92 | 0 | |
Duration of fever in days | 2 | 4.3 | 5.6 | 3.8 | 0 | |
Number of animals showing local reaction at the inoculations site | 0 | 2 | 0 | 1 | 0 | |
Clinical score | 1 | 1 | 1 | 2.5 | 0 | |
Neethling disease | Number of cases | 1 | 2 | 0 | 3 | 0 |
Percentage | 6.7% | 6.7% | 0% | 25.0% | 0% |
Group | Animal ID | Fever | Local Inflammation | Neethling Disease | Total Score |
---|---|---|---|---|---|
G1 | 833 | 1 | 0 | 1 | 2 |
G2 | 906 | 1 | 2 | 2 | 5 |
4599 | 1 | 2 | 2 | 5 | |
G3 | All | 1 | 0 | 0 | 1 |
G4 | 661 | 2 | 0 | 5 | 7 |
5136 | 1 | 0 | 3 | 4 | |
698 | 2 | 2 | 4 | 8 |
Vaccine | A Total Number of Seropositive Animals/Day Post Vaccination | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Group | Number of Animals | D0 | D7 | D14 | D21 | D28 | D35 | D42 | D60 | D90 |
Nt low dose (G1) | 15 | 0 | 0 | 3 | 6 | 6 | 6 | 7 | 7 | 6 |
Nt high dose (G2) | 30 | 0 | 5 | 8 | 15 | 20 | 22 | 22 | 22 | 14 |
Kn low dose (G3) | 12 | 0 | 0 | 8 | 12 | 12 | 12 | 12 | 12 | 9 |
Kn high dose (G4) | 12 | 0 | 3 | 10 | 12 | 12 | 12 | 12 | 12 | 12 |
Unvaccinated (G5) | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bamouh, Z.; Hamdi, J.; Fellahi, S.; Khayi, S.; Jazouli, M.; Tadlaoui, K.O.; Fihri, O.F.; Tuppurainen, E.; Elharrak, M. Investigation of Post Vaccination Reactions of Two Live Attenuated Vaccines against Lumpy Skin Disease of Cattle. Vaccines 2021, 9, 621. https://doi.org/10.3390/vaccines9060621
Bamouh Z, Hamdi J, Fellahi S, Khayi S, Jazouli M, Tadlaoui KO, Fihri OF, Tuppurainen E, Elharrak M. Investigation of Post Vaccination Reactions of Two Live Attenuated Vaccines against Lumpy Skin Disease of Cattle. Vaccines. 2021; 9(6):621. https://doi.org/10.3390/vaccines9060621
Chicago/Turabian StyleBamouh, Zahra, Jihane Hamdi, Siham Fellahi, Slimane Khayi, Mohammed Jazouli, Khalid Omari Tadlaoui, Ouafaa Fassi Fihri, Eeva Tuppurainen, and Mehdi Elharrak. 2021. "Investigation of Post Vaccination Reactions of Two Live Attenuated Vaccines against Lumpy Skin Disease of Cattle" Vaccines 9, no. 6: 621. https://doi.org/10.3390/vaccines9060621
APA StyleBamouh, Z., Hamdi, J., Fellahi, S., Khayi, S., Jazouli, M., Tadlaoui, K. O., Fihri, O. F., Tuppurainen, E., & Elharrak, M. (2021). Investigation of Post Vaccination Reactions of Two Live Attenuated Vaccines against Lumpy Skin Disease of Cattle. Vaccines, 9(6), 621. https://doi.org/10.3390/vaccines9060621