Targeting Haemagglutinin Antigen of Avian Influenza Virus to Chicken Immune Cell Receptors Dec205 and CD11c Induces Differential Immune-Potentiating Responses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Viruses and Cells
2.3. Construction of scFv and H9HA Fused scFv Antibodies Expressing Plasmids
2.4. Expression and Purification of scFv and H9HA Fused scFv Antibodies
2.5. Characterisation of scFv and H9HA Fused scFv Antibodies
2.6. Flow Cytometry
2.7. Bis[sulfosuccinimidyl] Suberate (BS3) Cross-Linking
2.8. Preparation and Stimulation of Chicken Splenocytes
2.9. RNA Extraction from Chicken Splenocytes and Quantitative Reverse Transcription PCR (qRT-PCR)
2.10. Haemagglutination Assay and Haemagglutination Inhibition (HI) Assay
2.11. Chicken Vaccination and Blood Sample Collection
2.12. Measurement of Serum IgM, IgY and IgA Anti-HA Antibody Levels
2.13. Plaque Assay
2.14. Virus Micro-Neutralisation (MNT) Assay
2.15. Statistical Analysis
3. Results
3.1. Expression and Purification of the Recombinant Proteins
3.2. rH9HA Can Trimerise and Retain the Haemagglutination Activity
3.3. scFv Antibodies Can Retain Their Function after Fusion to rH9HA
3.4. rH9HA-CD11c scFv Is Better at Stimulating Chicken Splenocytes to Produce Different Cytokines
3.5. Immunisation with rH9HA-Dec205 scFv and rH9HA-CD11c scFv Induces Higher Antibody Response in Chickens
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organisation. Meat Market Review. Available online: http://www.fao.org/3/I9286EN/i9286en.pdf (accessed on 3 June 2021).
- Chmielewski, R.; Swayne, D.E. Avian Influenza: Public Health and Food Safety Concerns. Annu. Rev. Food Sci. Technol. 2011, 2, 37–57. [Google Scholar] [CrossRef]
- Dey, S.; Pathak, D.; Ramamurthy, N.; Maity, H.K.; Chellappa, M.M. Infectious Bursal Disease Virus in Chickens: Prevalence, Impact, and Management Strategies. Vet. Med. Res. Rep. 2019, 10, 85–97. [Google Scholar] [CrossRef] [Green Version]
- Antipas, B.B.; Kebkiba, B.; Mopate, L.Y. Epidemiology of Newcastle Disease and Its Economic Impact in Chad. Eur. J. Exp. Biol. 2012, 2, 2286–2292. [Google Scholar]
- Boodhoo, N.; Gurung, A.; Sharif, S.; Behboudi, S. Marek’s Disease in Chickens: A Review with Focus on Immunology. Vet. Res. 2016, 47, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capua, I.; Alexander, D.J. Avian Influenza Vaccines and Vaccination in Birds. Vaccine 2008, 26, D70–D73. [Google Scholar] [CrossRef]
- Caminschi, I.; Shortman, K. Boosting Antibody Responses by Targeting Antigens to Dendritic Cells. Trends Immunol. 2012, 33, 71–77. [Google Scholar] [CrossRef]
- Pugholm, L.H.; Varming, K.; Agger, R. Antibody-Mediated Delivery of Antigen to Dendritic Cells. Immunother. Open Access 2016, 2, 1000119. [Google Scholar] [CrossRef] [Green Version]
- Keler, T.; He, L.; Ramakrishna, V.; Champion, B. Antibody-Targeted Vaccines. Oncogene 2007, 26, 3758–3767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sehgal, K.; Dhodapkar, K.M.; Dhodapkar, M.V. Targeting Human Dendritic Cells in Situ to Improve Vaccines. Immunol. Lett. 2014, 162, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, Z.A.; Yeap, S.K.; Ali, A.M.; Ho, W.Y.; Alitheen, N.B.M.; Hamid, M. ScFv Antibody: Principles and Clinical Application. Clin. Dev. Immunol. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Nelson, A.L. Antibody Fragments: Hope and Hype. mAbs 2010, 2, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.K.; Wall, K.A. Use of Dendritic Cell Receptors as Targets for Enhancing Anti-Cancer Immune Responses. Cancers 2019, 11, 418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheong, C.; Choi, J.; Vitale, L.; He, L.-Z.; Trumpfheller, C.; Bozzacco, L.; Do, Y.; Nchinda, G.; Park, S.H.; Dandamudi, D.B.; et al. Improved Cellular and Humoral Immune Responses in Vivo Following Targeting of HIV Gag to Dendritic Cells within Human Anti—Human DEC205 Monoclonal Antibody. Blood 2010, 116, 3828–3838. [Google Scholar] [CrossRef] [Green Version]
- Reuter, A.; Panozza, S.E.; Macri, C.; Dumont, C.; Li, J.; Liu, H.; Segura, E.; Vega-Ramos, J.; Gupta, N.; Caminschi, I.; et al. Criteria for Dendritic Cell Receptor Selection for Efficient Antibody-Targeted Vaccination. J. Immunol. 2015, 194, 2696–2705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jáuregui-Zúñiga, D.; Pedraza-Escalona, M.; Espino-Solís, G.P.; Quintero-Hernández, V.; Olvera-Rodríguez, A.; Díaz-Salinas, M.A.; López, S.; Possani, L.D. Targeting Antigens to Dec-205 on Dendritic Cells Induces a Higher Immune Response in Chickens: Hemagglutinin of Avian Influenza Virus Example. Res. Vet. Sci. 2017, 111, 55–62. [Google Scholar] [CrossRef]
- Staines, K.; Young, J.R.; Butter, C. Expression of Chicken DEC205 Reflects the Unique Structure and Function of the Avian Immune System. PLoS ONE 2013, 8, e51799. [Google Scholar] [CrossRef] [Green Version]
- Dhodapkar, M.V.; Sznol, M.; Zhao, B.; Wang, D.; Carvajal, R.D.; Keohan, M.L.; Chuang, E.; Sanborn, R.E.; Lutzky, J.; Powderly, J.; et al. Induction of Antigen-Specific Immunity with a Vaccine Targeting NY-ESO-1 to the Dendritic Cell Receptor DEC-205. Sci. Transl. Med. 2014, 6, 232ra51. [Google Scholar] [CrossRef]
- Park, H.-Y.; Tan, P.; Kavishna, R.; Ker, A.; Lu, J.; Chan, C.; Hanson, B.; MacAry, P.; Caminschi, I.; Shortman, K.; et al. Enhancing Vaccine Antibody Responses by Targeting Clec9A on Dendritic Cells. NPJ Vaccines 2017, 2, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickgreber, N.; Stoitzner, P.; Bai, Y.; Price, K.M.; Farrand, K.J.; Manning, K.; Angel, C.E.; Dunbar, P.R.; Ronchese, F.; Fraser, J.D.; et al. Targeting Antigen to MHC Class II Molecules Promotes Efficient Cross-Presentation and Enhances Immunotherapy. J. Immunol. 2009, 182, 1260. [Google Scholar] [CrossRef]
- White, A.L.; Tutt, A.L.; James, S.; Wilkinson, K.A.; Castro, F.V.V.; Dixon, S.V.; Hitchcock, J.; Khan, M.; Al-Shamkhani, A.; Cunningham, A.F.; et al. Ligation of CD11c during Vaccination Promotes Germinal Centre Induction and Robust Humoral Responses without Adjuvant. Immunology 2010, 131, 141–151. [Google Scholar] [CrossRef]
- Ejaz, A.; Ammann, C.G.; Werner, R.; Huber, G.; Oberhauser, V.; Hörl, S.; Schimmer, S.; Dittmer, U.; von Laer, D.; Stoiber, H.; et al. Targeting Viral Antigens to CD11c on Dendritic Cells Induces Retrovirus-Specific T Cell Responses. PloS ONE 2012, 7, e45102. [Google Scholar] [CrossRef] [PubMed]
- Lahoud, M.H.; Ahmet, F.; Kitsoulis, S.; San, S.; Vremec, D.; Lee, C.; Phipson, B.; Smyth, G.K.; Lew, A.M.; Kato, Y.; et al. Targeting Antigen to Mouse Dendritic Cells via Clec9A Induces Potent CD4 T Cell Responses Biased toward a Follicular Helper Phenotype. J. Immunol. 2018, 187, 842–850. [Google Scholar] [CrossRef] [Green Version]
- Radford, K.J.; Caminschi, I. New Generation of Dendritic Cell Vaccines. Hum. Vaccines Immunother. 2013, 9, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Carayanniotis, G.; Skea, D.L.; Luscher, M.A.; Barber, B.H. Adjuvant-Independent Immunization by Immunotargeting Antigens to MHC and Non-MHC Determinants in Vivo. Mol. Immunol. 1991, 28, 261. [Google Scholar] [CrossRef]
- Arnaout, M.A. Biology and Structure of Leukocyte Β2 Integrins and Their Role in Inflammation. F1000Research 2016, 5, 2433. [Google Scholar] [CrossRef]
- Nagy, N.; Bódi, I.; Oláh, I. Avian Dendritic Cells: Phenotype and Ontogeny in Lymphoid Organs. Dev. Comp. Immunol. 2016, 58, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Rothwell, L.; Young, J.R.; Kaufman, J.; Butter, C.; Kaiser, P. Generation and Characterization of Chicken Bone Marrow-Derived Dendritic Cells. Immunology 2010, 129, 133–145. [Google Scholar] [CrossRef]
- Castro, F.V.V.; Tutt, A.L.; White, A.L.; Teeling, J.L.; James, S.; French, R.R.; Glennie, M.J. CD11c Provides an Effective Immunotarget for the Generation of Both CD4 and CD8 T Cell Responses. Eur. J. Immunol. 2008, 38, 2263–2273. [Google Scholar] [CrossRef]
- Berry, J.D.; Licea, A.; Popkov, M.; Cortez, X.; Fuller, R.; Elia, M.; Kerwin, L.; Kubitz, D.; Barbas, C.F. Rapid Monoclonal Antibody Generation Via Dendritic Cell Targeting In Vivo. Hybrid. Hybridomics 2003, 22, 23–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Griffiths, M.N.; Burton, D.R.; Ghazal, P. Rapid Antibody Responses by Low-Dose, Single-Step, Dendritic Cell-Targeted Immunization. Proc. Natl. Acad. Sci. USA 2000, 97, 847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Güthe, S.; Kapinos, L.; Möglich, A.; Meier, S.; Grzesiek, S.; Kiefhaber, T. Very Fast Folding and Association of a Trimerization Domain from Bacteriophage T4 Fibritin. J. Mol. Biol. 2004, 337, 905–915. [Google Scholar] [CrossRef]
- Kim, J.K.; Peacock, T.; Iqbal, M. A Generic Approach to Antigen Design Based on Minimising Sequence Distances. Poster abstracts of German Conference on Bioinformatics (GCB) 2015. PeerJ PrePrints 2015, 3, e1350v1. [Google Scholar] [CrossRef]
- Zitzmann, J.; Schreiber, C.; Eichmann, J.; Bilz, R.O.; Salzig, D.; Weidner, T.; Czermak, P. Single-Cell Cloning Enables the Selection of More Productive Drosophila Melanogaster S2 Cells for Recombinant Protein Expression. Biotechnol. Rep. 2018, 19, e00272. [Google Scholar] [CrossRef] [PubMed]
- Weldon, W.C.; Wang, B.Z.; Martin, M.P.; Koutsonanos, D.G.; Skountzou, I.; Compans, R.W. Enhanced Immunogenicity of Stabilized Trimeric Soluble Influenza Hemagglutinin. PLoS ONE 2010, 5, e12466. [Google Scholar] [CrossRef]
- Peacock, T.; Reddy, K.; James, J.; Adamiak, B.; Barclay, W.; Shelton, H.; Iqbal, M. Antigenic Mapping of an H9N2 Avian Influenza Virus Reveals Two Discrete Antigenic Sites and a Novel Mechanism of Immune Escape. Sci. Rep. 2016, 6, 18745. [Google Scholar] [CrossRef]
- Walker, J.M. Animal Infuenza Virus, 2nd ed.; Spackman, E., Ed.; Springer Science+Business Media: New York, NY, USA, 2014; pp. 6–10. ISBN 978-1-4939-0757-1. [Google Scholar]
- Fatima, M.; Amraiz, D.; Zaidi, N.-U.-S.S. High Level Expression and Purification of Hemagglutinin Subtype H9 of Influenza Virus. In Proceedings of the 2015 12th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 13–17 January 2015; pp. 93–99. [Google Scholar] [CrossRef]
- Shi, J.M.; Pei, J.; Liu, E.Q.; Zhang, L. Bis(Sulfosuccinimidyl) Suberate (BS3) Crosslinking Analysis of the Behavior of Amyloid-β Peptide in Solution and in Phospholipid Membranes. PLoS ONE 2017, 12, e0173871. [Google Scholar] [CrossRef] [PubMed]
- Phan, H.T.; Gresch, U.; Conrad, U. In Vitro-Formulated Oligomers of Strep-Tagged Avian Influenza Haemagglutinin Produced in Plants Cause Neutralizing Immune Responses. Front. Bioeng. Biotechnol. 2018, 6, 115. [Google Scholar] [CrossRef] [PubMed]
- Kaspers, B.; Kaiser, P. Avian Antigen-Presenting Cells. In Avian Immunology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 169–188. [Google Scholar] [CrossRef]
- Quéré, P.; Pierre, J.; Hoang, M.-D.; Esnault, E.; Domenech, J.; Sibille, P.; Dimier-Poisson, I. Presence of Dendritic Cells in Chicken Spleen Cell Preparations and Their Functional Interaction with the Parasite Toxoplasma Gondii. Vet. Immunol. Immunopathol. 2013, 153, 57–69. [Google Scholar] [CrossRef]
- Lacal, P.M.; Balsinde, J.; Cabañas, C.; Bernabeu, C.; Sánchez-Madrid, F.; Mollinedo, F. The CD11c Antigen Couples Concanavalin A Binding to Generation of Superoxide Anion in Human Phagocytes. Biochem. J. 1990, 268, 707. [Google Scholar] [CrossRef] [Green Version]
- Truelove, S.; Zhu, H.; Lessler, J.; Riley, S.; Read, J.M.; Wang, S.; Kwok, K.O.; Guan, Y.; Jiang, C.Q.; Cummings, D.A.T. A Comparison of Hemagglutination Inhibition and Neutralization Assays for Characterizing Immunity to Seasonal Influenza A. Influenza Other Respi. Viruses 2016, 10, 518–524. [Google Scholar] [CrossRef]
- Swayne, D.E. Avian Influenza Vaccines and Therapies for Poultry. Comp. Immunol. Microbiol. Infect. Dis. 2009, 32, 351–363. [Google Scholar] [CrossRef]
- Higgins, S.; Mills, K. TLR, NLR Agonists, and Other Immune Modulators as Infectious Disease Vaccine Adjuvants. Curr. Infect. Dis. Rep. 2010, 12, 4–12. [Google Scholar] [CrossRef]
- Shirota, H.; Klinman, D.M. Recent Progress Concerning CpG DNA and Its Use as a Vaccine Adjuvant. Expert Rev. Vaccines 2014, 13, 299–312. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Lillehoj, H.S.; Jang, S.I.; Lee, K.W.; Baldwin, C.; Tompkins, D.; Wagner, B.; del Cacho, E.; Lillehoj, E.P.; Hong, Y.H. Development and Characterization of Mouse Monoclonal Antibodies Reactive with Chicken CD83. Vet. Immunol. Immunopathol. 2012, 145, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Janda, A.; Bowen, A.; Greenspan, N.S.; Casadevall, A. Ig Constant Region Effects on Variable Region Structure and Function. Front. Microbiol. 2016, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Geeraedts, F.; Bungener, L.; Pool, J.; ter Veer, W.; Wilschut, J.; Huckriede, A. Whole Inactivated Virus Influenza Vaccine Is Superior to Subunit Vaccine in Inducing Immune Responses and Secretion of Proinflammatory Cytokines by DCs. Influenza Other Respi. Viruses 2008, 2, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Geeraedts, F.; Goutagny, N.; Hornung, V.; Severa, M.; de Haan, A.; Pool, J.; Wilschut, J.; Fitzgerald, K.A.; Huckriede, A. Superior Immunogenicity of Inactivated Whole Virus H5N1 Influenza Vaccine Is Primarily Controlled by Toll-like Receptor Signalling (TLRs Determine Influenza Vaccine Immunogenicity). PLoS Pathog. 2008, 4, e1000138. [Google Scholar] [CrossRef]
- Badillo-Godinez, O.; Gutierrez-Xicotencatl, L.; Plett-Torres, T.; Pedroza-Saavedra, A.; Gonzalez-Jaimes, A.; Chihu-Amparan, L.; Maldonado-Gama, M.; Espino-Solis, G.; Bonifaz, L.; Esquivel-Guadarrama, F. Targeting of Rotavirus VP6 to DEC-205 Induces Protection against the Infection in Mice. Vaccine 2015, 33, 4228–4237. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shrestha, A.; Sadeyen, J.-R.; Lukosaityte, D.; Chang, P.; Van Hulten, M.; Iqbal, M. Targeting Haemagglutinin Antigen of Avian Influenza Virus to Chicken Immune Cell Receptors Dec205 and CD11c Induces Differential Immune-Potentiating Responses. Vaccines 2021, 9, 784. https://doi.org/10.3390/vaccines9070784
Shrestha A, Sadeyen J-R, Lukosaityte D, Chang P, Van Hulten M, Iqbal M. Targeting Haemagglutinin Antigen of Avian Influenza Virus to Chicken Immune Cell Receptors Dec205 and CD11c Induces Differential Immune-Potentiating Responses. Vaccines. 2021; 9(7):784. https://doi.org/10.3390/vaccines9070784
Chicago/Turabian StyleShrestha, Angita, Jean-Remy Sadeyen, Deimante Lukosaityte, Pengxiang Chang, Marielle Van Hulten, and Munir Iqbal. 2021. "Targeting Haemagglutinin Antigen of Avian Influenza Virus to Chicken Immune Cell Receptors Dec205 and CD11c Induces Differential Immune-Potentiating Responses" Vaccines 9, no. 7: 784. https://doi.org/10.3390/vaccines9070784
APA StyleShrestha, A., Sadeyen, J. -R., Lukosaityte, D., Chang, P., Van Hulten, M., & Iqbal, M. (2021). Targeting Haemagglutinin Antigen of Avian Influenza Virus to Chicken Immune Cell Receptors Dec205 and CD11c Induces Differential Immune-Potentiating Responses. Vaccines, 9(7), 784. https://doi.org/10.3390/vaccines9070784