Urine Treatment on the International Space Station: Current Practice and Novel Approaches
Abstract
:1. Introduction
2. The Dynamic Urine Composition
Urine in Space
3. Current Practice on the ISS
- Urine Processor Assembly (UPA) and,
- Water Processor Assembly (WPA).
3.1. Urine Processor Assembly (UPA)
3.2. Water Processor Assembly (WPA)
3.3. Major Challenges of the Current WRM System
4. New Alternatives for Urine Treatment in Space
- ➢
- To increase the water recovery rates beyond 85% and potentially broaden the types of wastewaters that can be processed.
- ➢
- ➢
- To transform the produced wastes (e.g., brine from the UPA and WPA) into edible and valuable produce [2].
- ➢
- ➢
- To improve the dormancy of the system. Dormancy refers to the capability to maintain functions following lengthy downtime periods, typically to support crew activity for at least one year, followed by a dormant period of up to one year, and subsequently for an additional crewed mission of up to one year [45].
4.1. Urine Stabilisation and Disinfection
4.2. Membrane-Based Urine’s Water Recovery Systems
4.2.1. Hybrid forward Osmosis—Reverse Osmosis
4.2.2. Hybrid forward Osmosis—Osmotic Distillation/Membrane Distillation
4.3. Emerging New Materials to Enhance Water Treatment Efficiency
4.3.1. Aquaporin-Based Membranes
4.3.2. Graphene Oxide-Based Adsorbents/Membranes
5. Nutrient Recovery and Valorisation Projects
5.1. MELiSSA PROJECT
5.2. Water Wall Concept
6. Conclusions
- ➢
- broadening the types of wastewaters that the WRM can process and increasing the current recovery rates beyond 85%,
- ➢
- improving the resilience of the system by tackling the critical issue of “dormancy”, defined as the concerns of microbial growth or chemical degradation that would prevent water systems from operating once crew returned to the vehicle,
- ➢
- improving the reliability, redundancy and weight of the system while minimising the use of consumables,
- ➢
- investigating the use of “green pre-treatments” of urine to allow for the subsequent reuse of wastewater brine as a nutrient solution.
Author Contributions
Funding
Conflicts of Interest
References
- Harper, L.D.; Neal, C.R.; Poynter, J.; Schalkwyk, J.D.; Wingo, D.R. Life Support for a Low-Cost Lunar Settlement: No Showstoppers. New Space 2016, 4, 40–49. [Google Scholar] [CrossRef]
- Gormly, S.; Flynn, M.; Howe, S. Space Cargo Transport Bags Through Membrane Water Treatment Elements To Space Architecture Building Element: A Total Product Sustainability And Life Cycle Design Optimisation Experiment. J. Green Build. 2012, 7, 71–84. [Google Scholar] [CrossRef]
- Clauwaert, P.; Muys, M.; Alloul, A.; De Paepe, J.; Luther, A.; Sun, X.; Ilgrande, C.; Christiaens, M.E.R.; Hu, X.; Zhang, D.; et al. Nitrogen cycling in Bioregenerative Life Support Systems: Challenges for waste refinery and food production processes. Prog. Aerosp. Sci. 2017, 91, 87–98. [Google Scholar] [CrossRef]
- Taylor, Z. A Study of Space Bathroom Design. Acta Astronaut. 2020, 174, 55–60. [Google Scholar] [CrossRef]
- Pruitt, J.M.; Carter, L.; Bagdigian, R.M.; Kayatin, M.J. Upgrades to the ISS Water Recovery System. In Proceedings of the 45th International Conference on Environmental Systems, Washington, DC, USA, 12 May 2015. [Google Scholar]
- Deng, S.; Xie, B.; Liu, H. The recycle of water and nitrogen from urine in bioregenerative life support system. Acta Astronaut. 2016, 123, 86–90. [Google Scholar] [CrossRef]
- Gòdia, F.; Albiol, J.; Montesinos, J.L.; Pérez, J.; Creus, N.; Cabello, F.; Mengual, X.; Montras, A.; Lasseur, C. MELISSA: A loop of interconnected bioreactors to develop life support in Space. J. Biotechnol. 2002, 99, 319–330. [Google Scholar] [CrossRef]
- Hanford, A.; Ewert, M. Exploration Life Support Baseline Values and Assumptions Document; NASA: Houston, TX, USA, 2006.
- Pickett, M.T.; Roberson, L.B.; Calabria, J.L.; Bullard, T.J.; Turner, G.; Yeh, D.H. Regenerative water purification for space applications: Needs, challenges, and technologies towards ‘closing the loop’. Life Sci. Space Res. 2020, 24, 64–82. [Google Scholar] [CrossRef]
- Putnam, D.; Thomas, E. Recovery of potable water from human urine. Aerosp. Med. 1969, 40, 736–739. [Google Scholar]
- Putnam, D. Composition and Concentrative Proprieties of Human Urine; NASA: Washington, DC, USA, 1971.
- NASA. Technology Roadmaps: Human Health, Life Support, and Habitation Systems; National Aeronautics and Space Administration: Washington, DC, USA, 2015.
- Anderson, M.S.; Ewert, M.K.; Keener, J.F. Life Support Baseline Values and Assumptions Document; NASA Technical Reports Server (NTRS): Houston, TX, USA, 2018.
- Randall, D.G.; Naidoo, V. Urine: The liquid gold of wastewater. J. Environ. Chem. Eng. 2018. [Google Scholar] [CrossRef]
- Gioia, D.M.; Nicole, F.D.; John, A.C.; Mary, E.H.; Raymond, M.W.; Robert, C.M.; Trent, M.S. VEG-01: Veggie Hardware Validation Testing on the International Space Station. Open Agric. 2017, 2. [Google Scholar] [CrossRef]
- Udert, K.M.; Larsen, T.A.; Gujer, W. Biologically induced precipitation in urine-collecting systems. Water Sci. Technol. Water Supply 2003, 3, 71–78. [Google Scholar] [CrossRef]
- Udert, K.M.; Larsen, T.A.; Biebow, M.; Gujer, W. Urea hydrolysis and precipitation dynamics in a urine-collecting system. Water Res. 2003, 37, 2571–2582. [Google Scholar] [CrossRef]
- Randall, D.G.; Krähenbühl, M.; Köpping, I.; Larsen, T.A.; Udert, K.M. A novel approach for stabilizing fresh urine by calcium hydroxide addition. Water Res. 2016, 95, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Volpin, F.; Yu, H.; Cho, J.; Lee, C.; Phuntsho, S.; Ghaffour, N.; Vrouwenvelder, J.S.; Shon, H.K. Human urine as a forward osmosis draw solution for the application of microalgae dewatering. J. Hazard. Mater. 2019, 378, 120724. [Google Scholar] [CrossRef]
- Rose, C.; Parker, A.; Jefferson, B.; Cartmell, E. The Characterization of Feces and Urine: A Review of the Literature to Inform Advanced Treatment Technology. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1827–1879. [Google Scholar] [CrossRef] [Green Version]
- Mehta, C.M.; Khunjar, W.O.; Nguyen, V.; Tait, S.; Batstone, D.J. Technologies to recover nutrients from waste streams: A critical review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 385–427. [Google Scholar] [CrossRef] [Green Version]
- Larsen, T.A.; Udert, K.M.; Lienert, J. Source Separation and Decentralization for Wastewater Management; IWA Publishing: London, UK, 2013. [Google Scholar]
- Lienert, J.; Bürki, T.; Escher, B.I. Reducing micropollutants with source control: Substance flow analysis of 212 pharmaceuticals in faeces and urine. Water Sci. Technol. 2007, 56, 87–96. [Google Scholar] [CrossRef]
- Bischel, H.N.; Özel Duygan, B.D.; Strande, L.; McArdell, C.S.; Udert, K.M.; Kohn, T. Pathogens and pharmaceuticals in source-separated urine in eThekwini, South Africa. Water Res. 2015, 85, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, C.A.; Fam, D.M.; Abeysuriya, K. Transitioning to Sustainable Sanitation: A Transdisciplinary Pilot Project of Urine Diversion; Institute for Sustainable Futures, UTS: Sydney, Australia, 2013; pp. 1–137. [Google Scholar]
- Abeysuriya, K.; Fam, D.; Mitchell, C. Trialling urine diversion in Australia: Technical and social learnings. Water Sci. Technol. 2013, 68, 2186–2194. [Google Scholar] [CrossRef]
- Heitland, P.; Köster, H.D. Fast, simple and reliable routine determination of 23 elements in urine by ICP-MS. J. Anal. At. Spectrom. 2004, 19, 1552–1558. [Google Scholar] [CrossRef]
- Kirchmann, H.; Pettersson, S. Human urine-Chemical composition and fertilizer use efficiency. Fertil. Res. 1994, 40, 149–154. [Google Scholar] [CrossRef]
- Smith, S.M.; Wastney, M.E.; O’Brien, K.O.; Morukov, B.V.; Larina, I.M.; Abrams, S.A.; Davis-Street, J.E.; Oganov, V.; Shackelford, L.C. Bone Markers, Calcium Metabolism, and Calcium Kinetics During Extended-Duration Space Flight on the Mir Space Station. J. Bone Miner. Res. 2005, 20, 208–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, V.; Oganov, V.; LeBlanc, A.; Rakmonov, A.; Taggart, L.; Bakulin, A.; Huntoon, C.; Grigoriev, A.; Varonin, L. Bone and body mass changes during space flight. Acta Astronaut. 1995, 36, 463–466. [Google Scholar] [CrossRef]
- Pietrzyk, R.A.; Jones, J.A.; Sams, C.F.; Whitson, P.A. Renal Stone Formation among Astronauts. Aviat. Space Environ. Med. 2007, 78, A9–A13. [Google Scholar]
- Liakopoulos, V.; Leivaditis, K.; Eleftheriadis, T.; Dombros, N. The kidney in space. Int. Urol. Nephrol. 2012, 44, 1893–1901. [Google Scholar] [CrossRef]
- Heer, C.; Kamps, N.; Biener, C.; Korr, C.; Boerger, A.; Zittermann, A.; Stehle, P.; Drummer, C. Calcium Metabolism in Microgravity. Eur. J. Med. Res. 1999, 4, 357–360. [Google Scholar]
- Layne, C.; Jennifer, P.; Christopher, A.B.; Ryan, S.; Lyndsey, B. Status of ISS Water Management and Recovery. In Proceedings of the 45th International Conference on Environmental Systems, Washington, DC, USA, 12 May 2015. [Google Scholar]
- Cath, T.Y.; Gormly, S.; Beaudry, E.G.; Flynn, M.T.; Adams, V.D.; Childress, A.E. Membrane contactor processes for wastewater reclamation in space: Part I. Direct osmotic concentration as pretreatment for reverse osmosis. J. Membr. Sci. 2005, 257, 85–98. [Google Scholar] [CrossRef]
- Layne, C.; Jill, W.; Christopher, B.; Jesse, B.; Daniel, G.; Ryan, S.; Frank, T. Status of ISS Water Management and Recovery. In Proceedings of the 48th International Conference on Environmental Systems, Albuquerque, NM, USA, 8–12 July 2018. [Google Scholar]
- Ping, Y.; Tim, N. Development of Advanced ISS-WPA Catalysts for Organic Oxidation at Reduced Pressure/Temperature. In Proceedings of the 46th International Conference on Environmental Systems, Vienna, Austria, 10–14 July 2016. [Google Scholar]
- Straub, J.E.I.; Plumlee, D.K.; Wallace, W.T.; Alverson, J.T.; Benoit, M.J.; Gillispie, R.L.; Hunter, D.; Kuo, M.; Rutz, J.A.; Hudson, E.K.; et al. Chemical Characterization of ISS Potable Water Collected in 2017. In Proceedings of the 48th International Conference on Environmental Systems, Albuquerque, NM, USA, 8–12 July 2018. [Google Scholar]
- M Smith, S.; McCoy, T.; Gazda, D.; Morgan, J.; Heer, M.; R Zwart, S. Space Flight Calcium: Implications for Astronaut Health, Spacecraft Operations, and Earth. Nutrients 2012, 4, 2047–2068. [Google Scholar] [CrossRef] [Green Version]
- Buelke, C.; Alshami, A.; Casler, J.; Lewis, J.; Al-Sayaghi, M.; Hickner, M.A. Graphene oxide membranes for enhancing water purification in terrestrial and space-born applications: State of the art. Desalination 2018, 448, 113–132. [Google Scholar] [CrossRef]
- Dean, L.M.; Layne, C. Dimethylsilanediol (DMSD) Source Assessment and Mitigati201on on ISS: Estimated Contributions from Personal Hygiene Products Containing Volatile Methyl Siloxanes (VMS). In Proceedings of the 48th International Conference on Environmental Systems, Albuquerque, NM, USA, 8–12 July 2018. [Google Scholar]
- Perry, J.; Kayatin, M. The Incidence and Fate of Volatile Methyl Siloxanes in a Crewed Spacecraft Cabin. In Proceedings of the 47th International Conference on Environmental Systems, Charleston, SC, USA, 16–20 July 2017. [Google Scholar]
- Lim, S.; Park, M.J.; Phuntsho, S.; Mai-Prochnow, A.; Murphy, A.B.; Seo, D.; Shon, H. Dual-layered nanocomposite membrane incorporating graphene oxide and halloysite nanotube for high osmotic power density and fouling resistance. J. Membr. Sci. 2018, 564, 382–393. [Google Scholar] [CrossRef]
- Layne, C.; David, T.; Molly, A. Water Recovery System Architecture and Operational Concepts to Accommodate Dormancy. In Proceedings of the 47th International Conference on Environmental Systems, Charleston, SC, USA, 16–20 July 2017. [Google Scholar]
- Jackson, W.; Thompson, B.; Sevanthi, R.; Morse, A.; Meyer, C.; Callahan, M. Biologically Pre-Treated Habitation Waste Water as a Sustainable Green Urine Pre-Treat Solution. In Proceedings of the 47th International Conference on Environmental Systems, Charleston, SC, USA, 16–20 July 2017. [Google Scholar]
- Jackson, W.A.; Barta, D.J.; Anderson, M.S.; Lange, K.E.; Hanford, A.J.; Shull, S.A.; Carter, D.L. Water Recovery from Brines to Further Close the Water Recovery Loop in Human Spaceflight. In Proceedings of the 44th International Conference on Environmental Systems, ICES-2014-186, Tucson, AZ, USA, 13–17 July 2014. [Google Scholar]
- Carter, D.L.; Tobias, B.; Orozco, N.Y. Status of ISS Water Management and Recovery. In Proceedings of the 43rd International Conference on Environmental Systems, Vail, CO, USA, 14–18 July 2013. [Google Scholar]
- Udert, K.M.; Wächter, M. Complete nutrient recovery from source-separated urine by nitrification and distillation. Water Res. 2012, 46, 453–464. [Google Scholar] [CrossRef]
- Fumasoli, A.; Etter, B.; Sterkele, B.; Morgenroth, E.; Udert, K.M. Operating a pilot-scale nitrification/distillation plant for complete nutrient recovery from urine. Water Sci. Technol. 2016, 73, 215–222. [Google Scholar] [CrossRef] [PubMed]
- De Paepe, J.; De Paepe, K.; Gòdia, F.; Rabaey, K.; Vlaeminck, S.E.; Clauwaert, P. Bio-electrochemical COD removal for energy-efficient, maximum and robust nitrogen recovery from urine through membrane aerated nitrification. Water Res. 2020, 185, 116223. [Google Scholar] [CrossRef] [PubMed]
- Peerapong, P. Removal of Organic Contaminants by Argon Plasma Jet: A Prospective Treatment of Urine on Spacecraft. In Proceedings of the 9th International Conference on Mechanical and Aerospace Engineering, Budapest, Hungary, 10–13 July 2018. [Google Scholar]
- Jiang, B.; Zheng, J.; Qiu, S.; Wu, M.; Zhang, Q.; Yan, Z.; Xue, Q. Review on electrical discharge plasma technology for wastewater remediation. Chem. Eng. J. 2014, 236, 348–368. [Google Scholar] [CrossRef]
- Reddy, P.M.K.; Subrahmanyam, C. Green Approach for Wastewater Treatment—Degradation and Mineralization of Aqueous Organic Pollutants by Discharge Plasma. Ind. Eng. Chem. Res. 2012, 51, 11097–11103. [Google Scholar] [CrossRef]
- Reddy, P.M.K.; Dayamani, A.; Mahammadunnisa, S.; Subrahmanyam, C. Mineralization of Phenol in Water by Catalytic Non-Thermal Plasma Reactor–An Eco-Friendly Approach for Wastewater Treatment. Plasma Process. Polym. 2013, 10, 1010–1017. [Google Scholar] [CrossRef]
- Tang, Q.; Jiang, W.; Zhang, Y.; Wei, W.; Lim, T.M. Degradation of Azo Dye Acid Red 88 by Gas Phase Dielectric Barrier Discharges. Plasma Chem. Plasma Process. 2009, 29, 291–305. [Google Scholar] [CrossRef]
- Magureanu, M.; Piroi, D.; Mandache, N.B.; David, V.; Medvedovici, A.; Parvulescu, V.I. Degradation of pharmaceutical compound pentoxifylline in water by non-thermal plasma treatment. Water Res. 2010, 44, 3445–3453. [Google Scholar] [CrossRef]
- Magureanu, M.; Piroi, D.; Mandache, N.B.; Parvulescu, V. Decomposition of methylene blue in water using a dielectric barrier discharge: Optimization of the operating parameters. J. Appl. Phys. 2008, 104, 103306. [Google Scholar] [CrossRef]
- Nguyen, D.V.; Ho, P.Q.; Pham, T.V.; Nguyen, T.V.; Kim, L. Treatment of surface water using cold plasma for domestic water supply. Environ. Eng. Res. 2019, 24, 412–417. [Google Scholar] [CrossRef]
- Patange, A.; Boehm, D.; Giltrap, M.; Lu, P.; Cullen, P.J.; Bourke, P. Assessment of the disinfection capacity and eco-toxicological impact of atmospheric cold plasma for treatment of food industry effluents. Sci. Total Environ. 2018, 631–632, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Cath, T.Y.; Adams, D.; Childress, A.E. Membrane contactor processes for wastewater reclamation in space: II. Combined direct osmosis, osmotic distillation, and membrane distillation for treatment of metabolic wastewater. J. Membr. Sci. 2005, 257, 111–119. [Google Scholar] [CrossRef]
- Siddiqui, F.A.; She, Q.; Fane, A.G.; Field, R.W. Exploring the differences between forward osmosis and reverse osmosis fouling. J. Membr. Sci. 2018, 565, 241–253. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.P.; Xu, L.; Shang, X.; Chen, K. Water regeneration from human urine by vacuum membrane distillation and analysis of membrane fouling characteristics. Sep. Purif. Technol. 2013, 118, 369–376. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, C.; Zhao, L.; Ma, W.; Liu, H.; Ma, J. Integrated forward osmosis-membrane distillation process for human urine treatment. Water Res. 2016, 91, 45–54. [Google Scholar] [CrossRef]
- Gryta, M. The long-term studies of osmotic membrane distillation. Chem. Pap. 2018, 72, 99–107. [Google Scholar] [CrossRef]
- Ongaratto, R.S.; Menezes, L.; Borges, C.P.; Laranjeira da Cunha Lage, P. Osmotic distillation applying potassium pyrophosphate as brine. J. Food Eng. 2018, 228, 69–78. [Google Scholar] [CrossRef]
- Drioli, E.; Ali, A.; Macedonio, F. Membrane distillation: Recent developments and perspectives. Desalination 2015, 356, 56–84. [Google Scholar] [CrossRef]
- Ashoor, B.B.; Mansour, S.; Giwa, A.; Dufour, V.; Hasan, S.W. Principles and applications of direct contact membrane distillation (DCMD): A comprehensive review. Desalination 2016, 398, 222–246. [Google Scholar] [CrossRef]
- Abu-Zeid, M.A.E.-R.; Zhang, Y.; Dong, H.; Zhang, L.; Chen, H.-L.; Hou, L. A comprehensive review of vacuum membrane distillation technique. Desalination 2015, 356, 1–14. [Google Scholar] [CrossRef]
- Hali, L.S.; Michael, F.; David, B.; Kevin, H.; Brian, K.; Thomas, A.; Kim, K.; Jörg, V.; Jurek, P. Multifiltration Bed Replacement (MFBR) System for the International Space Station using Aquaporin Membranes and Humidity Condensate Ersatz Wastewater. In Proceedings of the 47th International Conference on Environmental Systems, Charleston, SC, USA, 16–20 July 2017. [Google Scholar]
- Tommerup, M.B.; Kleinschmidt, K.; Vogel, J.; Flynn, M.; Shaw, H. Testing Aquaporin InsideTM Membrane on the International Space Station. In Proceedings of the 46th International Conference on Environmental Systems, Vienna, Austria, 10–14 July 2016. [Google Scholar]
- Tang, C.; Wang, Z.; Petrinić, I.; Fane, A.G.; Hélix-Nielsen, C. Biomimetic aquaporin membranes coming of age. Desalination 2015, 368, 89–105. [Google Scholar] [CrossRef]
- Tang, C.Y.; Zhao, Y.; Wang, R.; Hélix-Nielsen, C.; Fane, A.G. Desalination by biomimetic aquaporin membranes: Review of status and prospects. Desalination 2013, 308, 34–40. [Google Scholar] [CrossRef]
- Xie, M.; Luo, W.; Guo, H.; Nghiem, L.D.; Tang, C.Y.; Gray, S.R. Trace organic contaminant rejection by aquaporin forward osmosis membrane: Transport mechanisms and membrane stability. Water Res. 2018, 132, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Agre, P.; Kozono, D. Aquaporin water channels: Molecular mechanisms for human diseases1. FEBS Lett. 2003, 555, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Tommerup, M.B.; Kleinschmidt, K.; Vogel, J.; Flynn, M.; Shaw, H. Testing Aquaporin InsideTM Membrane on the International Space Station–Part II. In Proceedings of the 47th International Conference on Environmental Systems, Charleston, SC, USA, 16–20 July 2017. [Google Scholar]
- Flynn, M.T. Microgravity Testing of the Forward Osmosis Bag (FOB), A Personal Water Purification Device. In Proceedings of the 43rd International Conference on Environmental Systems, Vail, CO, USA, 14–18 July 2013. [Google Scholar]
- Chen, Y.; Chen, L.; Bai, H.; Li, L. Graphene oxide–chitosan composite hydrogels as broad-spectrum adsorbents for water purification. J. Mater. Chem. A 2013, 1, 1992–2001. [Google Scholar] [CrossRef]
- Jiang, Y.; Biswas, P.; Fortner, J.D. A review of recent developments in graphene-enabled membranes for water treatment. Environ. Sci. Water Res. Technol. 2016, 2, 915–922. [Google Scholar] [CrossRef]
- Bingham, S.A. Urine Nitrogen as a Biomarker for the Validation of Dietary Protein Intake. J. Nutr. 2003, 133, 921S–924S. [Google Scholar] [CrossRef]
- Gitelson, J.I.; Lisovsky, I.I.; Rygalov, V.E. Man-Made Closed Ecological Systems: Scientific and Applied Significance, and Prospects for International Collaboration. In Science Policy: New Mechanisms for Scientific Collaboration between East and West; Koptyug, V.A., Klerkx, J., Eds.; Springer: Dordrecht, The Netherlands, 1995; pp. 63–68. [Google Scholar]
- Massa, G.D.; Wheeler, R.M.; Morrow, R.C.; Levine, H.G. Growth Chambers on the International Space Station for Large Plants. In Proceedings of the 8th International Symposium on Light in Horticulture, East Lansing, MI, USA, 22–26 May 2016. [Google Scholar]
- European Space Agency. MELISSA-How it Began. 2015. Available online: https://www.esa.int/Our_Activities/Space_Engineering_Technology/Melissa/How_it_began (accessed on 19 October 2020).
- Walker, J.; Granjou, C. MELiSSA the minimal biosphere: Human life, waste and refuge in deep space. Futures 2017, 92, 59–69. [Google Scholar] [CrossRef]
- De Paepe, J.; Lindeboom, R.E.F.; Vanoppen, M.; De Paepe, K.; Demey, D.; Coessens, W.; Lamaze, B.; Verliefde, A.R.D.; Clauwaert, P.; Vlaeminck, S.E. Refinery and concentration of nutrients from urine with electrodialysis enabled by upstream precipitation and nitrification. Water Res. 2018, 144, 76–86. [Google Scholar] [CrossRef]
- Jacquin, C.; Monnot, M.; Hamza, R.; Kouadio, Y.; Zaviska, F.; Merle, T.; Lesage, G.; Héran, M. Link between dissolved organic matter transformation and process performance in a membrane bioreactor for urinary nitrogen stabilization. Environ. Sci. Water Res. Technol. 2018, 4, 806–819. [Google Scholar] [CrossRef]
- Lindeboom, R.E.F.; Ilgrande, C.; Carvajal-Arroyo, J.M.; Coninx, I.; Van Hoey, O.; Roume, H.; Morozova, J.; Udert, K.M.; Sas, B.; Paille, C.; et al. Nitrogen cycle microorganisms can be reactivated after Space exposure. Sci. Rep. 2018, 8, 13783. [Google Scholar] [CrossRef]
- De Paepe, S.V.; Rabaey, K.; Gòdia, F.; Clauwaert, P. Bio-electrochemical Pre-treatment and Membrane Aeration to Intensify Full Nitrogen Recovery for Spaceflight Urine Nitrification. In Proceedings of the AgroSpace-MELiSSA, 1st Joint Workshop, Rome, Italy, 14–18 May 2018. [Google Scholar]
- Coppens, J.; Lindeboom, R.; Muys, M.; Coessens, W.; Alloul, A.; Meerbergen, K.; Lievens, B.; Clauwaert, P.; Boon, N.; Vlaeminck, S.E. Nitrification and microalgae cultivation for two-stage biological nutrient valorization from source separated urine. Bioresour. Technol. 2016, 211, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Flynn, M.T.; Cohen, M.M.; Matossian, R.L.; Gormly, S.; Mancinelli, R.; Miller, J.; Parodi, J.; Grossi, E. Water Walls Architecture: Massively Redundant and Highly Reliable Life Support for Long Duration Exploration Missions; NASA: Houston, TX, USA, 2018.
- Cohen, M.M.; Matossian, R.L.; Levy, F.; Flynn, M.T. Water Walls Life Support Architecture: System Overview. In Proceedings of the 44th International Conference on Environmental Systems, Tucson, AZ, USA, 13–17 July 2014. [Google Scholar]
EC | COD | Urea | TAN | Creatinine | PO43−-P | K+ | Mg2+ | Na+ | Ca2+ | B | Mn | Fe | Cu | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[mS/m] | [mg/L] | [g/L] | [mg/L] | [µg/L] | |||||||||||
UTS Waterless Urinal (hydrolysed urine) 1 | 40.5 ± 0.7 | 6174 ± 621 | n.d. | 6817 ± 145 | - | 178 ± 15 | 1604 ± 112 | 13 ± 21 | 1971 ± 129 | 5 ± 31 | 883 ± 101 | <1 | 19 ± 8 | 6.7 ± 1.1 | 200 ± 34 |
UTS Urine Diverting Toilet (hydrolysed urine) 1 | 25.9 ± 0.4 | 4873 ± 728 | n.d. | 3846 ± 121 | - | 85 ± 5 | 1387 ± 97 | 36 ± 25 | 1204 ± 83 | 7 ± 20 | 1170 ± 50 | <1 | 23 ± 11 | 18 ± 3 | 137 ± 31 |
Fresh Urine 2 | 15.5–19.6 | - | 9.3–23.3 | 200–730 | 670–2150 | 470–1070 | 750–2610 | 102–205 | 1170–4390 | 30–390 | 435–440 | 0.062 | 165–205 | 13 ±11 | 19–665 |
Urine Collected from the Crew of “Lunar Palace 1” 3 | - | - | 25,745 ± 1535 | 304 ± 4 | 1300–1500 | 1186 ± 3 | 1629 ± 53 | 146 ± 10 | 8740 ± 81 | 110 ± 8 | - | - | - | - | - |
Caffeine | Carbamazepine | Ibuprofen | Naproxen | Estrone | Estriol | Fluoxetine | 4-Acetamidophenol | Triclosan | Diclofenac | |
---|---|---|---|---|---|---|---|---|---|---|
UTS Waterless Urinals 1 [µg/L] | 1475 ± 35 | 37 ± 3 | 497 ± 41 | <10 | <10 | 6 ± 4 | 12 ± 2 | 477 ± 278 | 48 ± 9 | <10 |
UTS Urine Diverting Toilet 1 [µg/L] | 2165 ± 145 | <5 | <10 | 197 ± 195 | <10 | 9 ± 7 | <5 | 2700 ± 1560 | 25 ± 4 | <10 |
Diclofenac | Sulfamethoxazole | N4 Acetyl-SMX | Trimethoprim | Hydrochlorothiazide | Atenolol Acid | Ritonavir | Atenolol | Emtricitabine | Clarithromycin | |
Concentration Range 2 [µg/L] | 3.2–72 | <2–6800 | <1–3500 | <2–1300 | <3–134 | <4–1100 | <1–4.6 | <1–300 | <6–920 | <1 |
Frequency of Occurrence 2 | 100% | 95% | 90% | 85% | 80% | 75% | 70% | 55% | 40% | 20% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volpin, F.; Badeti, U.; Wang, C.; Jiang, J.; Vogel, J.; Freguia, S.; Fam, D.; Cho, J.; Phuntsho, S.; Shon, H.K. Urine Treatment on the International Space Station: Current Practice and Novel Approaches. Membranes 2020, 10, 327. https://doi.org/10.3390/membranes10110327
Volpin F, Badeti U, Wang C, Jiang J, Vogel J, Freguia S, Fam D, Cho J, Phuntsho S, Shon HK. Urine Treatment on the International Space Station: Current Practice and Novel Approaches. Membranes. 2020; 10(11):327. https://doi.org/10.3390/membranes10110327
Chicago/Turabian StyleVolpin, Federico, Umakant Badeti, Chen Wang, Jiaxi Jiang, Jörg Vogel, Stefano Freguia, Dena Fam, Jaeweon Cho, Sherub Phuntsho, and Ho Kyong Shon. 2020. "Urine Treatment on the International Space Station: Current Practice and Novel Approaches" Membranes 10, no. 11: 327. https://doi.org/10.3390/membranes10110327
APA StyleVolpin, F., Badeti, U., Wang, C., Jiang, J., Vogel, J., Freguia, S., Fam, D., Cho, J., Phuntsho, S., & Shon, H. K. (2020). Urine Treatment on the International Space Station: Current Practice and Novel Approaches. Membranes, 10(11), 327. https://doi.org/10.3390/membranes10110327