Mechanism and Compatibility of Pretreated Lignocellulosic Biomass and Polymeric Mixed Matrix Membranes: A Review
Abstract
:1. Introduction
2. Membrane Materials and Gas Separation Mechanism
3. Lignocellulosic Biomasses Retrospect
4. Perspective and Prospects for CO2 Separation
Funding
Conflicts of Interest
References
- Dolgonosov, B.M. Knowledge production and world population dynamics. Technol. Forecast. Soc. Chang. 2016, 103, 127–141. [Google Scholar] [CrossRef]
- Deryng, D.; Elliott, J.; Folberth, C.; Müller, C.; Pugh, T.A.M.; Boote, K.J.; Conway, D.; Ruane, A.C.; Gerten, D.; Jones, J.W.; et al. Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity. Nat. Clim. Chang. 2016, 6, 786–790. [Google Scholar] [CrossRef] [Green Version]
- Kuroyanagi, T.; Yasuba, K.-I.; Higashide, T.; Iwasaki, Y.; Takaichi, M. Efficiency of carbon dioxide enrichment in an unventilated greenhouse. Biosyst. Eng. 2014, 119, 58–68. [Google Scholar] [CrossRef]
- Amusa, A.A.; Ahmad, A.L.; Adewole, J.K. A review on recent developments and progress in natural gas processing and separating using nanoparticles incorporated membranes. Soc. Pet. Eng. J. 2018, 1–36. [Google Scholar] [CrossRef]
- Global Monitoring Laboratory. Carbon Cycle Greenhouse Gases. 2019. Available online: https://www.esrl.noaa.gov/gmd/ccgg/trends/gl_trend.html (accessed on 12 June 2020).
- BP Energy Outlook 2019 Edition. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2019.pdf (accessed on 13 June 2020).
- Lin, B.; Raza, M.Y. Analysis of energy security indicators and CO2 emissions. A case from a developing economy. Energy 2020, 200, 117575. [Google Scholar] [CrossRef]
- Li, S.; Zhou, C.; Wang, S. Does modernization affect carbon dioxide emissions? A panel data analysis. Sci. Total Environ. 2019, 663, 426–435. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, X.; Zhang, X. The 2 °C Global Temperature Target and the Evolution of the Long-Term Goal of Addressing Climate Change—From the United Nations Framework Convention on Climate Change to the Paris Agreement. Engineering 2017, 3, 272–278. [Google Scholar] [CrossRef]
- Bauer, A.; Menrad, K. Standing up for the Paris Agreement: Do global climate targets influence individuals’ greenhouse gas emissions? Environ. Sci. Policy 2019, 99, 72–79. [Google Scholar] [CrossRef]
- Shea, M.M.; Thornton, T.F. Tracing country commitment to Indigenous peoples in the UN Framework Convention on Climate Change. Glob. Environ. Chang. 2019, 58, 101973. [Google Scholar] [CrossRef]
- Faramawy, S.; Zaki, T.; Sakr, A.A.-E. Natural gas origin, composition, and processing: A review. J. Nat. Gas Sci. Eng. 2016, 34, 34–54. [Google Scholar] [CrossRef]
- Alcheikhhamdon, Y.; Hoorfar, M. Natural Gas Quality Enhancement: A Review of the Conventional Treatment Processes, and the Industrial Challenges Facing Emerging Technologies; Elsevier: Amsterdam, The Netherlands, 2016; Volume 34, pp. 689–701. [Google Scholar]
- Yang, H.; Fan, S.; Lang, X.; Wang, Y.; Nie, J. Economic comparison of three gas separation technologies for CO2 capture from power plant flue gas. Chin. J. Chem. Eng. 2011, 19, 615–620. [Google Scholar] [CrossRef]
- Salvinder, K.M.S.; Zabiri, H.; Taqvi, S.A.; Ramasamy, M.; Isa, F.; Rozali, N.E.M.; Suleman, H.; Maulud, A.; Shariff, A.M. An overview on control strategies for CO2 capture using absorption/stripping system. Chem. Eng. Res. Des. 2019, 147, 319–337. [Google Scholar] [CrossRef]
- Koronaki, I.P.; Prentza, L.; Papaefthimiou, V. Modeling of CO2 capture via chemical absorption processes—An extensive literature review. Renew. Sustain. Energy Rev. 2015, 50, 547–566. [Google Scholar] [CrossRef]
- Zhao, B.; Tao, W.; Zhong, M.; Su, Y.; Cui, G. Process, performance and modeling of CO2 capture by chemical absorption using high gravity: A review. Renew. Sustain. Energy Rev. 2016, 65, 44–56. [Google Scholar] [CrossRef]
- Bernhardsen, I.M.; Knuutila, H.K. A review of potential amine solvents for CO2 absorption process: Absorption capacity, cyclic capacity and pKa. Int. J. Greenh. Gas Control 2017, 61, 27–48. [Google Scholar] [CrossRef]
- Grande, C.A.; Roussanaly, S.; Anantharaman, R.; Lindqvist, K.; Singh, P.; Kemper, J. CO2 Capture in Natural Gas Production by Adsorption Processes. In Proceedings of the Energy Procedia; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Volume 114, pp. 2259–2264. [Google Scholar]
- Ünveren, E.E.; Monkul, B.Ö.; Sarıoğlan, Ş.; Karademir, N.; Alper, E. Solid amine sorbents for CO2 capture by chemical adsorption: A review. Petroleum 2017, 3, 37–50. [Google Scholar] [CrossRef]
- Abd, A.A.; Naji, S.Z.; Hashim, A.S.; Othman, M.R. Carbon dioxide removal through Physical Adsorption using Carbonaceous and non-Carbonaceous Adsorbents: A review. J. Environ. Chem. Eng. 2020, 104142. [Google Scholar] [CrossRef]
- Sepahvand, S.; Jonoobi, M.; Ashori, A.; Gauvin, F.; Brouwers, H.J.H.; Oksman, K.; Yu, Q. A promising process to modify cellulose nanofibers for carbon dioxide (CO2) adsorption. Carbohydr. Polym. 2020, 230, 115571. [Google Scholar] [CrossRef]
- Adewole, J.K.; Ahmad, A.L.; Ismail, S.; Leo, C.P.; Sultan, A.S. Comparative studies on the effects of casting solvent on physico-chemical and gas transport properties of dense polysulfone membrane used for CO2/CH4 separation. J. Appl. Polym. Sci. 2015, 132, 1–10. [Google Scholar] [CrossRef]
- Chu, Y.; Lindbråthen, A.; Lei, L.; He, X.; Hillestad, M. Mathematical modeling and process parametric study of CO2 removal from natural gas by hollow fiber membranes. Chem. Eng. Res. Des. 2019, 148, 45–55. [Google Scholar] [CrossRef]
- Jiamjirangkul, P.; Inprasit, T.; Intasanta, V.; Pangon, A. Metal organic framework-integrated chitosan/poly(vinyl alcohol) (PVA) nanofibrous membrane hybrids from green process for selective CO2 capture and filtration. Chem. Eng. Sci. 2020, 221, 115650. [Google Scholar] [CrossRef]
- Qazi, S.; Gómez-Coma, L.; Albo, J.; Druon-Bocquet, S.; Irabien, A.; Sanchez-Marcano, J. CO2 capture in a hollow fiber membrane contactor coupled with ionic liquid: Influence of membrane wetting and process parameters. Sep. Purif. Technol. 2020, 233, 115986. [Google Scholar] [CrossRef]
- Song, C.; Liu, Q.; Deng, S.; Li, H.; Kitamura, Y. Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges. Renew. Sustain. Energy Rev. 2019, 101, 265–278. [Google Scholar] [CrossRef]
- Yousef, A.M.; El-Maghlany, W.M.; Eldrainy, Y.A.; Attia, A. New approach for biogas purification using cryogenic separation and distillation process for CO2 capture. Energy 2018, 156, 328–351. [Google Scholar] [CrossRef]
- Yousef, A.M.; El-Maghlany, W.M.; Eldrainy, Y.A.; Attia, A. Upgrading biogas to biomethane and liquid CO2: A novel cryogenic process. Fuel 2019, 251, 611–628. [Google Scholar] [CrossRef]
- Wang, H.; Fan, M.; Zhang, Z.; Hao, J.; Wang, C. Control of cryogenic extractive distillation process for separating CO2–C2H6 azeotrope. Comput. Chem. Eng. 2019, 128, 384–391. [Google Scholar] [CrossRef]
- Bernardo, P.; Drioli, E.; Golemme, G. Membrane gas separation: A review/state of the art. Ind. Eng. Chem. Res. 2009, 48, 4638–4663. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Z.; Zhao, S.; Wang, J.; Wang, S. Recent advances on mixed matrix membranes for CO2 separation. Chin. J. Chem. Eng. 2017, 25, 1581–1597. [Google Scholar] [CrossRef]
- Han, Y.; Ho, W.S.W. Recent advances in polymeric membranes for CO2 capture. Chin. J. Chem. Eng. 2018, 26, 2238–2254. [Google Scholar] [CrossRef]
- Hafis, Z.M.; Shafie, M.; Ahmad, A.L.; Siew, A.; Low, C.; Rode, S.; Belaissaoui, B. Lithium chloride (LiCl)-modified polyethersulfone (PES) substrate surface pore architectures on thin poly(dimethylsiloxane) (PDMS) dense layer formation and the composite membrane’s performance in gas separation. RSC Adv. 2020, 10, 9500–9511. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Goh, K.; Yang, Y.; Gong, H.; Li, W.; Karahan, H.E.; Guiver, M.D.; Wang, R.; Bae, T.H. Harnessing filler materials for enhancing biogas separation membranes. Chem. Rev. 2018, 118, 8655–8769. [Google Scholar] [CrossRef] [PubMed]
- Adewole, J.K. Transport properties of gases through integrally skinned asymmetric composite membranes prepared from date pit powder and polysulfone. J. Appl. Polym. Sci. 2016, 133, 1–8. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Adewole, J.K.; Ismail, S.B.; Peng, L.C.; Sultan, A.S. Membrane Separation of CO2 from Natural Gas: A State-of-the-Art Review on Material Development. Defect Diffus. Forum 2013, 333, 135–147. [Google Scholar] [CrossRef]
- Rezakazemi, M.; Sadrzadeh, M.; Matsuura, T. Thermally stable polymers for advanced high-performance gas separation membranes. Prog. Energy Combust. Sci. 2018, 66, 1–41. [Google Scholar] [CrossRef]
- González-Díaz, M.O.; Cetina-Mancilla, E.; Sulub-Sulub, R.; Montes-Luna, A.; Olvera, L.I.; Zolotukhin, M.G.; Cárdenas, J.; Aguilar-Vega, M. Novel fluorinated aromatic polymers with ether-bond-free aryl backbones for pure and mixed gas separation. J. Memb. Sci. 2020, 606, 118114. [Google Scholar] [CrossRef]
- Usman, M.; Ahmed, A.; Yu, B.; Peng, Q.; Shen, Y.; Cong, H. A review of different synthetic approaches of amorphous intrinsic microporous polymers and their potential applications in membrane-based gases separation. Eur. Polym. J. 2019, 120, 109262. [Google Scholar] [CrossRef]
- Chong, K.C.; Lai, S.O.; Thiam, H.S.; Teoh, H.C.; Heng, S.L. Recent Progress of Oxygen/Nitrogen Separation Using Memebrane Technology. J. Eng. Sci. Technol. 2016, 11, 1016–1030. [Google Scholar]
- Liguori, S.; Kian, K.; Buggy, N.; Anzelmo, B.H.; Wilcox, J. Opportunities and Challenges of Low-Carbon Hydrogen via Metallic Membranes. Prog. Energy Combust. Sci. 2020, 80, 100851. [Google Scholar] [CrossRef]
- Meinema, H.A.; Dirrix, R.W.J.; Brinkman, H.W.; Terpstra, R.A.; Jekerle, J.; Kösters, P.H. Ceramic Membranes for Gas Separation–Recent Developments and State of the Art. High Perform. Ceram. 2005, 54, 86–91. [Google Scholar]
- Mansoori, S.; Davarnejad, R.; Matsuura, T.; Ismail, A.F. Membranes Based on Non-Synthetic (Natural) Polymers for Wastewater Treatment; Elsevier Ltd.: Amsterdam, The Netherlands, 2020; Volume 84, ISBN 9886341734. [Google Scholar]
- Al-Saffar, H.B.; Ozturk, B.; Hughes, R. A comparison of porous and non-porous gas-liquid membrane contactors for gas separation. Chem. Eng. Res. Des. 1997, 75, 685–692. [Google Scholar] [CrossRef]
- Xia, Q.C.; Liu, M.L.; Cao, X.L.; Wang, Y.; Xing, W.; Sun, S.P. Structure design and applications of dual-layer polymeric membranes. J. Memb. Sci. 2018, 562, 85–111. [Google Scholar] [CrossRef]
- Koros, W.J. Membrane Handbook; Van Nostrand Reinhold Company: New York, NY, USA, 1995; Volume 99, ISBN 9781461365754. [Google Scholar]
- Han, Y.; Salim, W.; Chen, K.K.; Wu, D.; Ho, W.S.W. Field trial of spiral-wound facilitated transport membrane module for CO2 capture from flue gas. J. Memb. Sci. 2019, 575, 242–251. [Google Scholar] [CrossRef]
- Salim, W.; Vakharia, V.; Chen, Y.; Wu, D.; Han, Y.; Ho, W.S.W. Fabrication and field testing of spiral-wound membrane modules for CO2 capture from flue gas. J. Memb. Sci. 2018, 556, 126–137. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.K.; Salim, W.; Han, Y.; Wu, D.; Ho, W.S.W. Fabrication and scale-up of multi-leaf spiral-wound membrane modules for CO2 capture from flue gas. J. Memb. Sci. 2020, 595, 117504. [Google Scholar] [CrossRef]
- Gu, B.; Kim, D.Y.; Kim, J.H.; Yang, D.R. Mathematical model of flat sheet membrane modules for FO process: Plate-and-frame module and spiral-wound module. J. Memb. Sci. 2011, 379, 403–415. [Google Scholar] [CrossRef]
- Ricardo, A.R.; Velizarov, S.; Crespo, J.G.; Reis, M.A.M. Validation of the ion-exchange membrane bioreactor concept in a plate-and-frame module configuration. Process Biochem. 2012, 47, 1832–1838. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, G.; Zhang, H.; Mo, J. Performance evaluation of electrodeionization process based on ionic equilibrium with plate and frame modules. Desalination 2008, 221, 425–432. [Google Scholar] [CrossRef]
- Ismail, A.F.; Yaacob, N. Performance of treated and untreated asymmetric polysulfone hollow fiber membrane in series and cascade module configurations for CO2/CH4 gas separation system. J. Memb. Sci. 2006, 275, 151–165. [Google Scholar] [CrossRef] [Green Version]
- Mourgues, A.; Sanchez, J. Theoretical analysis of concentration polarization in membrane modules for gas separation with feed inside the hollow-fibers. J. Memb. Sci. 2005, 252, 133–144. [Google Scholar] [CrossRef]
- Sugiyama, T.; Miyahara, N.; Tanaka, M.; Munakata, K.; Yamamoto, I. A simulation model for transient response of a gas separation module using a hollow fiber membrane. Fusion Eng. Des. 2011, 86, 2743–2746. [Google Scholar] [CrossRef]
- Lee, H.J.; Park, Y.G.; Kim, M.K.; Lee, S.H.; Park, J.H. Study on CO2 absorption performance of lab-scale ceramic hollow fiber membrane contactor by gas/liquid flow direction and module design. Sep. Purif. Technol. 2019, 220, 189–196. [Google Scholar] [CrossRef]
- Matsumiya, N.; Teramoto, M.; Kitada, S.; Matsuyama, H. Evaluation of energy consumption for separation of CO2 in flue gas by hollow fiber facilitated transport membrane module with permeation of amine solution. Sep. Purif. Technol. 2005, 46, 26–32. [Google Scholar] [CrossRef]
- Katoh, T.; Tokumura, M.; Yoshikawa, H.; Kawase, Y. Dynamic simulation of multicomponent gas separation by hollow-fiber membrane module: Nonideal mixing flows in permeate and residue sides using the tanks-in-series model. Sep. Purif. Technol. 2011, 76, 362–372. [Google Scholar] [CrossRef]
- Dutczak, S.M.; Luiten-Olieman, M.W.J.; Zwijnenberg, H.J.; Bolhuis-Versteeg, L.A.M.; Winnubst, L.; Hempenius, M.A.; Benes, N.E.; Wessling, M.; Stamatialis, D. Composite capillary membrane for solvent resistant nanofiltration. J. Memb. Sci. 2011, 372, 182–190. [Google Scholar] [CrossRef]
- Buysse, C.; Kovalevsky, A.; Snijkers, F.; Buekenhoudt, A.; Mullens, S.; Luyten, J.; Kretzschmar, J.; Lenaerts, S. Fabrication and oxygen permeability of gastight, macrovoid-free Ba0.5Sr0.5Co0.8Fe0.2O3-δ capillaries for high temperature gas separation. J. Memb. Sci. 2010, 359, 86–92. [Google Scholar] [CrossRef]
- Bonyadi, S.; Mackley, M. The development of novel micro-capillary film membranes. J. Memb. Sci. 2012, 389, 137–147. [Google Scholar] [CrossRef]
- Middelkoop, V.; Chen, H.; Michielsen, B.; Jacobs, M.; Syvertsen-Wiig, G.; Mertens, M.; Buekenhoudt, A.; Snijkers, F. Development and characterisation of dense lanthanum-based perovskite oxygen-separation capillary membranes for high-temperature applications. J. Memb. Sci. 2014, 468, 250–258. [Google Scholar] [CrossRef]
- Teramoto, M.; Kitada, S.; Ohnishi, N.; Matsuyama, H.; Matsumiya, N. Separation and concentration of CO2 by capillary-type facilitated transport membrane module with permeation of carrier solution. J. Memb. Sci. 2004, 234, 83–94. [Google Scholar] [CrossRef]
- Tawalbeh, M.; Tezel, F.H.; Al-Ismaily, M.; Kruczek, B. Highly permeable tubular silicalite-1 membranes for CO2 capture. Sci. Total Environ. 2019, 676, 305–320. [Google Scholar] [CrossRef]
- Sazali, N.; Salleh, W.N.W.; Ismail, A.F.; Ismail, N.H.; Yusof, N.; Aziz, F.; Jaafar, J.; Kadirgama, K. Influence of intermediate layers in tubular carbon membrane for gas separation performance. Int. J. Hydrogen Energy 2019, 44, 20914–20923. [Google Scholar] [CrossRef]
- Nian, P.; Liu, H.; Zhang, X. Bottom-up fabrication of two-dimensional Co-based zeolitic imidazolate framework tubular membranes consisting of nanosheets by vapor phase transformation of Co-based gel for H2/CO2 separation. J. Memb. Sci. 2019, 573, 200–209. [Google Scholar] [CrossRef]
- Li, Y.; Ma, C.; Nian, P.; Liu, H.; Zhang, X. Green synthesis of ZIF-8 tubular membranes from a recyclable 2-methylimidazole water-solvent solution by ZnO nanorods self-converted strategy for gas separation. J. Memb. Sci. 2019, 581, 344–354. [Google Scholar] [CrossRef]
- Antunes, R.; Borisevich, O.; Demange, D. Numerical analysis of H2/He gas separation experiments performed with a MFI-type tubular zeolite membrane. Chem. Eng. Res. Des. 2016, 109, 327–334. [Google Scholar] [CrossRef]
- Kim, J.P.; Magnone, E.; Park, J.H.; Lee, Y. Oxygen production of tubular module with La0.6Sr0.4Ti0.3Fe0.7O3-δ coated Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3-δ membrane. J. Memb. Sci. 2012, 403–404, 188–195. [Google Scholar] [CrossRef]
- Latif, M.; Kasi, A.K.; Kasi, J.K.; Bokhari, M. Strengthening of alumina tubular membrane by Al support and its application for oil-in-water stable emulsion. Microelectron. Eng. 2019, 218, 111134. [Google Scholar] [CrossRef]
- Sazali, N.; Salleh, W.N.W.; Ismail, A.F. Carbon tubular membranes from nanocrystalline cellulose blended with P84 co-polyimide for H2 and He separation. Int. J. Hydrogen Energy 2017, 42, 9952–9957. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, D.; Kong, C.; Zhou, F.; Jiang, T.; Chen, L. Design of thin and tubular MOFs-polymer mixed matrix membranes for highly selective separation of H2 and CO2. Sep. Purif. Technol. 2019, 220, 197–205. [Google Scholar] [CrossRef]
- Galizia, M.; Chi, W.S.; Smith, Z.P.; Merkel, T.C.; Baker, R.W.; Freeman, B.D. 50th Anniversary Perspective: Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities. Macromolecules 2017, 50, 7809–7843. [Google Scholar] [CrossRef]
- Smit, B.; Reimer, J.A.; Oldenburg, C.M.; Bourg, I.C. Introduction to Carbon Capture and Sequestration; Imperial College Press: London, UK, 2014; ISBN 9781783263271. [Google Scholar]
- Robeson, L. Polymer membranes for gas separation. Curr. Opin. Solid State Mater. Sci. 1999, 4, 549–552. [Google Scholar] [CrossRef]
- Robeson, L.M. The upper bound revisited. J. Memb. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Comesaña-Gándara, B.; Chen, J.; Bezzu, C.G.; Carta, M.; Rose, I.; Ferrari, M.C.; Esposito, E.; Fuoco, A.; Jansen, J.C.; McKeown, N.B. Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy Environ. Sci. 2019, 12, 2733–2740. [Google Scholar] [CrossRef] [Green Version]
- Baker, R.W.; Low, B.T. Gas Separation Membrane Materials: A Perspective. Macromolecules 2014, 47, 6999–7013. [Google Scholar] [CrossRef]
- Adewole, J.K.K.; Ahmad, A.L.L.; Ismail, S.; Leo, C.P.P. Current challenges in membrane separation of CO2 from natural gas: A review. Int. J. Greenh. Gas Control 2013, 17, 46–65. [Google Scholar] [CrossRef]
- Khan, A.L.; Li, X.; Vankelecom, I.F.J. SPEEK/Matrimid blend membranes for CO2 separation. J. Memb. Sci. 2011, 380, 55–62. [Google Scholar] [CrossRef]
- Lee, W.H.; Seong, J.G.; Hu, X.; Lee, Y.M. Recent progress in microporous polymers from thermally rearranged polymers and polymers of intrinsic microporosity for membrane gas separation: Pushing performance limits and revisiting trade-off lines. J. Polym. Sci. 2020, 5, pol.20200110. [Google Scholar] [CrossRef]
- Raza, A.; Farrukh, S.; Hussain, A.; Khan, I.U.; Noor, T.; Othman, M.H.D.; Yousaf, M.F. Development of high performance amine functionalized zeolitic imidazolate framework (ZIF-8)/cellulose triacetate mixed matrix membranes for CO2/CH4 separation. Int. J. Energy Res. 2020, 44, 7989–7999. [Google Scholar] [CrossRef]
- Park, H.B.; Freeman, B.D. Gas separation properties and their applications of high permeable amorphous perfluoropolymer membranes. Memburein 2007, 17, 81–92. [Google Scholar]
- Azizi, N.; Zarei, M.M. CO2/CH4 separation using prepared and characterized poly (ether-block-amide)/ZIF-8 mixed matrix membranes. Pet. Sci. Technol. 2017, 35, 869–874. [Google Scholar] [CrossRef]
- Scholes, C.A.; Chen, G.Q.; Stevens, G.W.; Kentish, S.E. Plasticization of ultra-thin polysulfone membranes by carbon dioxide. J. Memb. Sci. 2010, 346, 208–214. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Misra, B.N. Grafting: A versatile means to modify polymers: Techniques, factors and applications. Prog. Polym. Sci. 2004, 29, 767–814. [Google Scholar] [CrossRef]
- Li, H.; Lin, Y.; Tsui, T.Y.; Vlassak, J.J. The effect of porogen loading on the stiffness and fracture energy of brittle organosilicates. J. Mater. Res. 2009, 24, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Marti, N.; Quattrini, F.; Butté, A.; Morbidelli, M. Production of polymeric materials with controlled pore structure: The “reactive gelation” process. Macromol. Mater. Eng. 2005, 290, 221–229. [Google Scholar] [CrossRef]
- Xiao, Y.; Low, B.T.; Hosseini, S.S.; Chung, T.S.; Paul, D.R. The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—A review. Prog. Polym. Sci. 2009, 34, 561–580. [Google Scholar] [CrossRef]
- Scholes, C.A.; Smith, K.H.; Kentish, S.E.; Stevens, G.W. CO2 capture from pre-combustion processes—Strategies for membrane gas separation. Int. J. Greenh. Gas Control 2010, 4, 739–755. [Google Scholar] [CrossRef] [Green Version]
- Yong, W.F.; Li, F.Y.; Xiao, Y.C.; Li, P.; Pramoda, K.P.; Tong, Y.W.; Chung, T.S. Molecular engineering of PIM-1/Matrimid blend membranes for gas separation. J. Memb. Sci. 2012, 407–408, 47–57. [Google Scholar] [CrossRef]
- Ribeiro, C.P.; Freeman, B.D.; Paul, D.R. Pure- and mixed-gas carbon dioxide/ethane permeability and diffusivity in a cross-linked poly(ethylene oxide) copolymer. J. Memb. Sci. 2011, 377, 110–123. [Google Scholar] [CrossRef]
- Ismail, A.F.; Lai, P.Y. Effects of phase inversion and rheological factors on formation of defect-free and ultrathin-skinned asymmetric polysulfone membranes for gas separation. Sep. Purif. Technol. 2003, 33, 127–143. [Google Scholar] [CrossRef]
- Han, J.; Lee, W.; Choi, J.M.; Patel, R.; Min, B.R. Characterization of polyethersulfone/polyimide blend membranes prepared by a dry/wet phase inversion: Precipitation kinetics, morphology and gas separation. J. Memb. Sci. 2010, 351, 141–148. [Google Scholar] [CrossRef]
- Khan, A.L.; Li, X.; Vankelecom, I.F.J. Mixed-gas CO2/CH4 and CO2/N2 separation with sulfonated PEEK membranes. J. Memb. Sci. 2011, 372, 87–96. [Google Scholar] [CrossRef]
- Kruczek, B.; Matsuura, T. Effect of metal substitution of high molecular weight sulfonated polyphenylene oxide membranes on their gas separation performance. J. Memb. Sci. 2000, 167, 203–216. [Google Scholar] [CrossRef]
- Li, Y.; Chung, T.S. Highly selective sulfonated polyethersulfone (SPES)-based membranes with transition metal counterions for hydrogen recovery and natural gas separation. J. Memb. Sci. 2008, 308, 128–135. [Google Scholar] [CrossRef]
- McKeown, N.B.; Budd, P.M. Exploitation of intrinsic microporosity in polymer-based materials. Macromolecules 2010, 43, 5163–5176. [Google Scholar] [CrossRef]
- Du, N.; Robertson, G.P.; Dal-Cin, M.M.; Scoles, L.; Guiver, M.D. Polymers of intrinsic microporosity (PIMs) substituted with methyl tetrazole. Polymer 2012, 53, 4367–4372. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.S.; Jeon, H.J.; Choi, J.H.; Lee, G.H.; Kang, J.K. Tailoring open metal sites for selective capture of CO2 in isostructural metalloporphyrin porous organic networks. Nanoscale 2015, 7, 18923–18927. [Google Scholar] [CrossRef] [PubMed]
- Zakharova, M.V.; Kleitz, F.; Fontaine, F.-G. Lewis acidity quantification and catalytic activity of Ti, Zr and Al-supported mesoporous silica. Dalt. Trans. 2017, 46, 3864–3876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kundu, S.K.; Bhaumik, A. Novel nitrogen and sulfur rich hyper-cross-linked microporous poly-triazine-thiophene copolymer for superior CO2 capture. ACS Sustain. Chem. Eng. 2016, 4, 3697–3703. [Google Scholar] [CrossRef]
- Lim, C.H.; Holder, A.M.; Musgrave, C.B. Mechanism of homogeneous reduction of CO2 by pyridine: Proton relay in aqueous solvent and aromatic stabilization. J. Am. Chem. Soc. 2013, 135, 142–154. [Google Scholar] [CrossRef]
- Duque-Acevedo, M.; Belmonte-Ureña, L.J.; Cortés-García, F.J.; Camacho-Ferre, F. Agricultural waste: Review of the evolution, approaches and perspectives on alternative uses. Glob. Ecol. Conserv. 2020, 22. [Google Scholar] [CrossRef]
- Gallo, J.M.R.; Trapp, M.A. The chemical conversion of biomass-derived saccharides: An overview. J. Braz. Chem. Soc. 2017, 28, 1586–1607. [Google Scholar] [CrossRef]
- Zevallos Torres, L.A.; Lorenci Woiciechowski, A.; de Andrade Tanobe, V.O.; Karp, S.G.; Guimarães Lorenci, L.C.; Faulds, C.; Soccol, C.R. Lignin as a potential source of high-added value compounds: A review. J. Clean. Prod. 2020, 263, 121499. [Google Scholar] [CrossRef]
- Bhuiyan, N.H.; Selvaraj, G.; Wei, Y.; King, J. Role of lignification in plant defense. Plant Signal. Behav. 2009, 4, 158–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, G.W.; Stillet, S.C.; Jennings, G.M.; Davis, S.D. The limits to tree height. Nature 2004, 428, 851–854. [Google Scholar] [CrossRef] [PubMed]
- Boerjan, W.; Ralph, J.; Baucher, M. Lignin Biosynthesis. Annu. Rev. Plant Biol. 2003, 54, 519–546. [Google Scholar] [CrossRef] [PubMed]
- Plomion, C.; Leprovost, G.; Stokes, A. Wood formation in trees. Plant Physiol. 2001, 127, 1513–1523. [Google Scholar] [CrossRef] [PubMed]
- Himmel, M.E.; Ding, S.Y.; Johnson, D.K.; Adney, W.S.; Nimlos, M.R.; Brady, J.W.; Foust, T.D. Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science 2007, 315, 804–807. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Pu, Y.; Ragauskas, A.J. Current understanding of the correlation of lignin structure with biomass recalcitrance. Front. Chem. 2016, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zoghlami, A.; Paës, G. Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis. Front. Chem. 2019, 7, 874. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Pu, Y.; Yoo, C.G.; Li, M.; Bali, G.; Park, D.Y.; Gjersing, E.; Davis, M.F.; Muchero, W.; Tuskan, G.A.; et al. An In-Depth Understanding of Biomass Recalcitrance Using Natural Poplar Variants as the Feedstock. ChemSusChem 2017, 10, 139–150. [Google Scholar] [CrossRef]
- Novaes, E.; Osorio, L.; Drost, D.R.; Miles, B.L.; Boaventura-Novaes, C.R.D.; Benedict, C.; Dervinis, C.; Yu, Q.; Sykes, R.; Davis, M.; et al. Quantitative genetic analysis of biomass and wood chemistry of Populus under different nitrogen levels. New Phytol. 2009, 182, 878–890. [Google Scholar] [CrossRef]
- Kirst, M.; Myburg, A.A.; De León, J.P.G.; Kirst, M.E.; Scott, J.; Sederoff, R. Coordinated genetic regulation of growth and lignin revealed by quantitative trait locus analysis of cDNA microarray data in an interspecific backcross of eucalyptus. Plant Physiol. 2004, 135, 2368–2378. [Google Scholar] [CrossRef] [Green Version]
- Andersson-Gunnerås, S.; Mellerowicz, E.J.; Love, J.; Segerman, B.; Ohmiya, Y.; Coutinho, P.M.; Nilsson, P.; Henrissat, B.; Moritz, T.; Sundberg, B. Biosynthesis of cellulose-enriched tension wood in Populus: Global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. Plant J. 2006, 45, 144–165. [Google Scholar] [CrossRef] [PubMed]
- Erdtman, H. Lignins: Occurrence, formation, structure and reactions, K.V. Sarkanen and C.H. Ludwig, Eds., John Wiley & Sons, Inc., New York, 1971. 916 pp. $35.00. J. Polym. Sci. Part B Polym. Lett. 1972, 10, 228–230. [Google Scholar] [CrossRef]
- Robinson, J.M. Lignin, land plants, and fungi: Biological evolution affecting Phanerozoic oxygen balance. Geology 1990, 18, 607–610. [Google Scholar] [CrossRef]
- Fernandez, J.A.; Asso-, C.P.; House, E.; Street, E.S. Nutritional ecology of the ruminant. Livest. Prod. Sci. 1995, 43, 179–180. [Google Scholar]
- Fengel, D.; Wegner, G. Wood Chemistry, Ultrastructure, Reactions; de Gruyter: Berlin, Germany, 1983; ISBN 3110120593. [Google Scholar]
- Schaefer, D.; Steinberger, Y.; Whitford, W.G. The failure of nitrogen and lignin control of decomposition in a North American desert. Oecologia 1985, 65, 382–386. [Google Scholar] [CrossRef]
- Kumar, B.; Bhardwaj, N.; Agrawal, K.; Chaturvedi, V.; Verma, P. Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel Process. Technol. 2020, 199, 106244. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Q.; Yan, L.; Gao, Y.; Wang, Y.; Wang, W. A novel lignin degradation bacterial consortium for efficient pulping. Bioresour. Technol. 2013, 139, 113–119. [Google Scholar] [CrossRef]
- Wang, S.; Wang, K.; Liu, Q.; Gu, Y.; Luo, Z.; Cen, K.; Fransson, T. Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnol. Adv. 2009, 27, 562–567. [Google Scholar] [CrossRef]
- Lupoi, J.S.; Singh, S.; Parthasarathi, R.; Simmons, B.A.; Henry, R.J. Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renew. Sustain. Energy Rev. 2015, 49, 871–906. [Google Scholar] [CrossRef] [Green Version]
- Gabrielii, I.; Gatenholm, P.; Glasser, W.G.; Jain, R.K.; Kenne, L. Separation, characterization and hydrogel-formation of hemicellulose from aspen wood. Carbohydr. Polym. 2000, 43, 367–374. [Google Scholar] [CrossRef]
- Sun, R.C.; Fang, J.M.; Tomkinson, J. Characterization and esterification of hemicelluloses from rye straw. J. Agric. Food Chem. 2000, 48, 1247–1252. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.M.; Sun, R.C.; Tomkinson, J.; Fowler, P. Acetylation of wheat straw hemicellulose B in a new non-aqueous swelling system. Carbohydr. Polym. 2000, 41, 379–387. [Google Scholar] [CrossRef]
- Peng, F.; Peng, P.; Xu, F.; Sun, R.C. Fractional purification and bioconversion of hemicelluloses. Biotechnol. Adv. 2012, 30, 879–903. [Google Scholar] [CrossRef] [PubMed]
- Sunna, A.; Antranikian, G. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 1997, 17, 39–67. [Google Scholar] [CrossRef] [PubMed]
- Fundador, N.G.V.; Enomoto-Rogers, Y.; Takemura, A.; Iwata, T. Acetylation and characterization of xylan from hardwood kraft pulp. Carbohydr. Polym. 2012, 87, 170–176. [Google Scholar] [CrossRef]
- Akais, O.C. Global Perspectives on Sustainable Forest Management; InTech: London, UK, 2012. [Google Scholar]
- Kusema, B.T.; Murzin, D.Y. Catalytic oxidation of rare sugars over gold catalysts. Catal. Sci. Technol. 2013, 3, 297–307. [Google Scholar] [CrossRef]
- Farhat, W.; Venditti, R.A.; Hubbe, M.; Taha, M.; Becquart, F.; Ayoub, A. A Review of Water-Resistant Hemicellulose-Based Materials: Processing and Applications. ChemSusChem 2017, 10, 305–323. [Google Scholar] [CrossRef]
- Serra, D.O.; Richter, A.M.; Hengge, R. Cellulose as an architectural element in spatially structured escherichia coli biofilms. J. Bacteriol. 2013, 195, 5540–5554. [Google Scholar] [CrossRef] [Green Version]
- Morgan, J.L.W.; Strumillo, J.; Zimmer, J. Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 2013, 493, 181–186. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Yano, H. Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 2009, 16, 1017–1023. [Google Scholar] [CrossRef]
- Beck-Candanedo, S.; Roman, M.; Gray, D.G. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 2005, 6, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- Eichhorn, S.J.; Dufresne, A.; Aranguren, M.; Marcovich, N.E.; Capadona, J.R.; Rowan, S.J.; Weder, C.; Thielemans, W.; Roman, M.; Renneckar, S.; et al. Review: Current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci. 2010, 45, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Farooq, A.; Patoary, M.K.; Zhang, M.; Mussana, H.; Li, M.; Naeem, M.A.; Mushtaq, M.; Farooq, A.; Liu, L. Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/zinc oxide nanocomposite materials. Int. J. Biol. Macromol. 2020, 154, 1050–1073. [Google Scholar] [CrossRef] [PubMed]
- Ferrier, W.G. The crystal and molecular structure of β-D-glucose. Acta Crystallogr. 1963, 16, 1023–1031. [Google Scholar] [CrossRef]
- Chu, S.S.C.; Jeffrey, G.A. The refinement of the crystal structures of β-D-glucose and cellobiose. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1968, 24, 830–838. [Google Scholar] [CrossRef]
- Kono, H.; Yunoki, S.; Shikano, T.; Fujiwara, M.; Erata, T.; Takai, M. CP/MAS 13C NMR study of cellulose and cellulose derivatives. 1. Complete assignment of the CP/MAS 13C NMR spectrum of the native cellulose. J. Am. Chem. Soc. 2002, 124, 7506–7511. [Google Scholar] [CrossRef]
- Nishiyama, Y.; Langan, P.; Chanzy, H. Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 2002, 124, 9074–9082. [Google Scholar] [CrossRef]
- Olsson, C.; Westm, G. Direct Dissolution of Cellulose: Background, Means and Applications. In Cellulose—Fundamental Aspects; InTech: London, UK, 2013; pp. 143–178. [Google Scholar]
- Kumari, D.; Singh, R. Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renew. Sustain. Energy Rev. 2018, 90, 877–891. [Google Scholar] [CrossRef]
- Akhtar, N.; Gupta, K.; Goyal, D.; Goyal, A. Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass. Environ. Prog. Sustain. Energy 2016, 35, 489–511. [Google Scholar] [CrossRef]
- Sun, S.; Sun, S.; Cao, X.; Sun, R. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour. Technol. 2016, 199, 49–58. [Google Scholar] [CrossRef]
- Chen, H.; Liu, J.; Chang, X.; Chen, D.; Xue, Y.; Liu, P.; Lin, H.; Han, S. A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process. Technol. 2017, 160, 196–206. [Google Scholar] [CrossRef]
- Nauman Aftab, M.; Iqbal, I.; Riaz, F.; Karadag, A.; Tabatabaei, M. Different Pretreatment Methods of Lignocellulosic Biomass for Use in Biofuel Production. In Biomass for Bioenergy—Recent Trends and Future Challenges; IntechOpen: London, UK, 2019; p. 24. [Google Scholar]
- Balan, V.; Bals, B.; Chundawat, S.P.S.; Marshall, D.; Dale, B.E. Lignocellulosic biomass pretreatment using AFEX. Methods Mol. Biol. 2009, 581, 61–77. [Google Scholar] [CrossRef] [PubMed]
- Baruah, J.; Nath, B.K.; Sharma, R.; Kumar, S.; Deka, R.C.; Baruah, D.C.; Kalita, E. Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Front. Energy Res. 2018, 6, 141. [Google Scholar] [CrossRef]
- Ji, X.J.; Huang, H.; Nie, Z.K.; Qu, L.; Xu, Q.; Tsao, G.T. Fuels and chemicals from hemicellulose sugars. Adv. Biochem. Eng. Biotechnol. 2012, 128, 199–224. [Google Scholar] [CrossRef] [PubMed]
- Iona Capital pioneers trials of two biogas pretreatment technologies. Bioenergy Int. 2018, 3–5. Available online: https://bioenergyinternational.com/technology-suppliers/iona-capital-pioneers-trials-of-two-biogas-pretreatment-technologies (accessed on 19 November 2020).
- Barakat, A.; Mayer-Laigle, C.; Solhy, A.; Arancon, R.A.D.; De Vries, H.; Luque, R. Mechanical pretreatments of lignocellulosic biomass: Towards facile and environmentally sound technologies for biofuels production. RSC Adv. 2014, 4, 48109–48127. [Google Scholar] [CrossRef]
- Kumar, P.; Barrett, D.M.; Delwiche, M.J.; Stroeve, P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 2009, 48, 3713–3729. [Google Scholar] [CrossRef]
- Hendriks, A.T.W.M.; Zeeman, G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 2009, 100, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Badiei, M.; Asim, N.; Jahim, J.M.; Sopian, K. Comparison of Chemical Pretreatment Methods for Cellulosic Biomass. APCBEE Procedia 2014, 9, 170–174. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Li, B.; Mu, X. Review of Alkali-Based Pretreatment to Enhance Enzymatic Saccharification for Lignocellulosic Biomass Conversion. Ind. Eng. Chem. Res. 2016, 55, 8691–8705. [Google Scholar] [CrossRef]
- Borand, M.N.; Karaosmanoǧlu, F. Effects of organosolv pretreatment conditions for lignocellulosic biomass in biorefinery applications: A review. J. Renew. Sustain. Energy 2018, 10, 033104. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Goto, M. Ionic Liquid Pretreatment of Lignocellulosic Biomass for Enhanced Enzymatic Delignification. In Advances in Biochemical Engineering/Biotechnology; Springer Science and Business Media Deutschland GmbH: Berlin/Heidelberg, Germany, 2019; Volume 168, pp. 61–77. [Google Scholar]
- Agbor, V.B.; Cicek, N.; Sparling, R.; Berlin, A.; Levin, D.B. Biomass Pretreatment: Fundamentals toward Application. Biotechnol. Adv. 2011, 29, 675–685. [Google Scholar] [CrossRef] [PubMed]
- Amin, F.R.; Khalid, H.; Zhang, H.; Rahman, S.; Zhang, R.; Liu, G.; Chen, C. Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 2017, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liew, Y.X.; Chan, Y.J.; Manickam, S.; Chong, M.F.; Chong, S.; Tiong, T.J.; Lim, J.W.; Pan, G.T. Enzymatic pretreatment to enhance anaerobic bioconversion of high strength wastewater to biogas: A review. Sci. Total Environ. 2020, 713, 136373. [Google Scholar] [CrossRef] [PubMed]
- Hosseini Koupaie, E.; Dahadha, S.; Bazyar Lakeh, A.A.; Azizi, A.; Elbeshbishy, E. Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production-A review. J. Environ. Manage. 2019, 233, 774–784. [Google Scholar] [CrossRef]
- Li, X.; Weng, J.K.; Chapple, C. Improvement of biomass through lignin modification. Plant J. 2008, 54, 569–581. [Google Scholar] [CrossRef]
- Park, H.B.; Kamcev, J.; Robeson, L.M.; Elimelech, M.; Freeman, B.D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 2017, 356, 1138–1148. [Google Scholar] [CrossRef] [Green Version]
- Setiawan, W.K.; Chiang, K.Y. Silica applied as mixed matrix membrane inorganic filler for gas separation: A review. Sustain. Environ. Res. 2019, 29, 32. [Google Scholar] [CrossRef] [Green Version]
- Phanthong, P.; Reubroycharoen, P.; Hao, X.; Xu, G.; Abudula, A.; Guan, G. Nanocellulose: Extraction and application. Carbon Resour. Convers. 2018, 1, 32–43. [Google Scholar] [CrossRef]
- Prakash Menon, M.; Selvakumar, R.; Suresh Kumar, P.; Ramakrishna, S. Extraction and modification of cellulose nanofibers derived from biomass for environmental application. RSC Adv. 2017, 7, 42750–42773. [Google Scholar] [CrossRef] [Green Version]
- Andrade, R.; Skurtys, O.; Osorio, F. Drop impact of gelatin coating formulated with cellulose nanofibers on banana and eggplant epicarps. LWT Food Sci. Technol. 2015, 61, 422–429. [Google Scholar] [CrossRef]
- Cara, C.; Ruiz, E.; Ballesteros, M.; Manzanares, P.; Negro, M.J.; Castro, E. Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel 2008, 87, 692–700. [Google Scholar] [CrossRef]
- Yousefi, H.; Nishino, T.; Faezipour, M.; Ebrahimi, G.; Shakeri, A. Direct fabrication of all -cellulose nanocomposite from cellulose microfibers using ionic liquid-based nanowelding. Biomacromolecules 2011, 12, 4080–4085. [Google Scholar] [CrossRef] [PubMed]
- Kalita, E.; Nath, B.K.; Deb, P.; Agan, F.; Islam, M.R.; Saikia, K. High quality fluorescent cellulose nanofibers from endemic rice husk: Isolation and characterization. Carbohydr. Polym. 2015, 122, 308–313. [Google Scholar] [CrossRef]
- Theng, D.; Arbat, G.; Delgado-Aguilar, M.; Vilaseca, F.; Ngo, B.; Mutjé, P. All-lignocellulosic fiberboard from corn biomass and cellulose nanofibers. Ind. Crops Prod. 2015, 76, 166–173. [Google Scholar] [CrossRef]
- Andrade-Mahecha, M.M.; Pelissari, F.M.; Tapia-Blácido, D.R.; Menegalli, F.C. Achira as a source of biodegradable materials: Isolation and characterization of nanofibers. Carbohydr. Polym. 2015, 123, 406–415. [Google Scholar] [CrossRef] [Green Version]
- Sehaqui, H.; Mautner, A.; Perez De Larraya, U.; Pfenninger, N.; Tingaut, P.; Zimmermann, T. Cationic cellulose nanofibers from waste pulp residues and their nitrate, fluoride, sulphate and phosphate adsorption properties. Carbohydr. Polym. 2016, 135, 334–340. [Google Scholar] [CrossRef]
- Khawas, P.; Deka, S.C. Effect of modified resistant starch of culinary banana on physicochemical, functional, morphological, diffraction, and thermal properties. Int. J. Food Prop. 2017, 20, 133–150. [Google Scholar] [CrossRef]
- Khawas, P.; Deka, S.C. Comparative Nutritional, Functional, Morphological, and Diffractogram Study on Culinary Banana (Musa ABB) Peel at Various Stages of Development. Int. J. Food Prop. 2016, 19, 2832–2853. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Yu, H.; Liu, Y.; Chen, P.; Zhang, M.; Hai, Y. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr. Polym. 2011, 83, 1804–1811. [Google Scholar] [CrossRef]
- Chen, W.; Li, Q.; Cao, J.; Liu, Y.; Li, J.; Zhang, J.; Luo, S.; Yu, H. Revealing the structures of cellulose nanofiber bundles obtained by mechanical nanofibrillation via TEM observation. Carbohydr. Polym. 2015, 117, 950–956. [Google Scholar] [CrossRef] [PubMed]
- Bettaieb, F.; Nechyporchuk, O.; Khiari, R.; Mhenni, M.F.; Dufresne, A.; Belgacem, M.N. Effect of the oxidation treatment on the production of cellulose nanofiber suspensions from Posidonia oceanica: The rheological aspect. Carbohydr. Polym. 2015, 134, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Hsieh, Y. Lo Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydr. Polym. 2015, 122, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Elrasheedy, A.; Nady, N.; Bassyouni, M.; El-Shazly, A. Metal Organic Framework Based Polymer Mixed Matrix Membranes: Review on Applications in Water Purification. Membranes 2019, 9, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Harra, K.E.; Kammakakam, I.; Devriese, E.M.; Noll, D.M.; Bara, J.E.; Jackson, E.M. Synthesis and performance of 6FDA-based polyimide-ionenes and composites with ionic liquids as gas separation membranes. Membranes 2019, 9, 79. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Lu, X.; Ng, P.F.; Lee, K.I.; Fei, B.; Xin, J.H.; Wu, J. yong Polyethylenimine coated bacterial cellulose nanofiber membrane and application as adsorbent and catalyst. J. Colloid Interface Sci. 2015, 440, 32–38. [Google Scholar] [CrossRef]
- Hu, W.; Chen, S.; Yang, Z.; Liu, L.; Wang, H. Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. J. Phys. Chem. B 2011, 115, 8453–8457. [Google Scholar] [CrossRef]
- Lin, Z.; Guan, Z.; Huang, Z. New bacterial cellulose/polyaniline nanocomposite film with one conductive side through constrained interfacial polymerization. Ind. Eng. Chem. Res. 2013, 52, 2869–2874. [Google Scholar] [CrossRef]
- Hobzova, R.; Duskova-Smrckova, M.; Michalek, J.; Karpushkin, E.; Gatenholm, P. Methacrylate hydrogels reinforced with bacterial cellulose. Polym. Int. 2012, 61, 1193–1201. [Google Scholar] [CrossRef]
- Kramer, F.; Klemm, D.; Schumann, D.; Heßler, N.; Wesarg, F.; Fried, W.; Stadermann, D. Nanocellulose Polymer Composites as Innovative Pool for (Bio)Material Development. Macromol. Symp. 2006, 244, 136–148. [Google Scholar] [CrossRef]
- Nogi, M.; Yano, H. Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv. Mater. 2008, 20, 1849–1852. [Google Scholar] [CrossRef]
- Millon, L.E.; Wan, W.K. The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2006, 79, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Xu, H.; Fang, J.; Yin, J. Synthesis and characterization of novel aromatic polyamides via Yamazaki-Higashi phosphorylation method. J. Appl. Polym. Sci. 2012, 126, 244–252. [Google Scholar] [CrossRef]
- Brown, E.E.; Laborie, M.P.G. Bioengineering bacterial cellulose/poly(ethylene oxide) nanocomposites. Biomacromolecules 2007, 8, 3074–3081. [Google Scholar] [CrossRef] [PubMed]
- Sato, A.; Kabusaki, D.; Okumura, H.; Nakatani, T.; Nakatsubo, F.; Yano, H. Surface modification of cellulose nanofibers with alkenyl succinic anhydride for high-density polyethylene reinforcement. Compos. Part A Appl. Sci. Manuf. 2016, 83, 72–79. [Google Scholar] [CrossRef]
- Ding, W.; Chu, R.K.M.; Mark, L.H.; Park, C.B.; Sain, M. Non-isothermal crystallization behaviors of poly(lactic acid)/cellulose nanofiber composites in the presence of CO2. Eur. Polym. J. 2015, 71, 231–247. [Google Scholar] [CrossRef]
- Nasri-Nasrabadi, B.; Mehrasa, M.; Rafienia, M.; Bonakdar, S.; Behzad, T.; Gavanji, S. Porous starch/cellulose nanofibers composite prepared by salt leaching technique for tissue engineering. Carbohydr. Polym. 2014, 108, 232–238. [Google Scholar] [CrossRef]
- Benhamou, K.; Kaddami, H.; Magnin, A.; Dufresne, A.; Ahmad, A. Bio-based polyurethane reinforced with cellulose nanofibers: A comprehensive investigation on the effect of interface. Carbohydr. Polym. 2015, 122, 202–211. [Google Scholar] [CrossRef]
- Prakobna, K.; Terenzi, C.; Zhou, Q.; Furó, I.; Berglund, L.A. Core-shell cellulose nanofibers for biocomposites—Nanostructural effects in hydrated state. Carbohydr. Polym. 2015, 125, 92–102. [Google Scholar] [CrossRef] [Green Version]
- Babaee, M.; Jonoobi, M.; Hamzeh, Y.; Ashori, A. Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers. Carbohydr. Polym. 2015, 132, 1–8. [Google Scholar] [CrossRef]
- Aouada, F.A.; De Moura, M.R.; Orts, W.J.; Mattoso, L.H.C. Preparation and characterization of novel micro- and nanocomposite hydrogels containing cellulosic fibrils. J. Agric. Food Chem. 2011, 59, 9433–9442. [Google Scholar] [CrossRef] [PubMed]
- Tamahkar, E.; Kutsal, T.; Denizli, A. Surface imprinted bacterial cellulose nanofibers for cytochrome c purification. Process Biochem. 2015, 50, 2289–2297. [Google Scholar] [CrossRef]
- Yang, C.; Chen, C.; Pan, Y.; Li, S.; Wang, F.; Li, J.; Li, N.; Li, X.; Zhang, Y.; Li, D. Flexible highly specific capacitance aerogel electrodes based on cellulose nanofibers, carbon nanotubes and polyaniline. Electrochim. Acta 2015, 182, 264–271. [Google Scholar] [CrossRef]
- Wang, F.; Li, D. Foldable and free-standing 3D network electrodes based on cellulose nanofibers, carbon nanotubes and elongated TiO2 nanotubes. Mater. Lett. 2015, 158, 119–122. [Google Scholar] [CrossRef]
- Liu, Q.; Li, J.; Zhao, Y.; Zhou, Y.; Li, C. CdS nanoparticle-functionalized natural cotton cellulose electrospun nanofibers for visible light photocatalysis. Mater. Lett. 2015, 138, 89–91. [Google Scholar] [CrossRef]
- Snyder, A.; Bo, Z.; Moon, R.; Rochet, J.C.; Stanciu, L. Reusable photocatalytic titanium dioxide-cellulose nanofiber films. J. Colloid Interface Sci. 2013, 399, 92–98. [Google Scholar] [CrossRef]
- He, X.; Cheng, L.; Wang, Y.; Zhao, J.; Zhang, W.; Lu, C. Aerogels from quaternary ammonium-functionalized cellulose nanofibers for rapid removal of Cr(VI) from water. Carbohydr. Polym. 2014, 111, 683–687. [Google Scholar] [CrossRef]
- Volk, N.; He, R.; Magniez, K. Enhanced homogeneity and interfacial compatibility in melt-extruded cellulose nano-fibers reinforced polyethylene via surface adsorption of poly(ethylene glycol)-block-poly(ethylene) amphiphiles. Eur. Polym. J. 2015, 72, 270–281. [Google Scholar] [CrossRef]
- Frone, A.N.; Nicolae, C.A.; Gabor, R.A.; Panaitescu, D.M. Thermal properties of water-resistant starch—Polyvinyl alcohol films modified with cellulose nanofibers. Polym. Degrad. Stab. 2015, 121, 385–397. [Google Scholar] [CrossRef]
- Abdulkhani, A.; Hosseinzadeh, J.; Ashori, A.; Dadashi, S.; Takzare, Z. Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polym. Test. 2014, 35, 73–79. [Google Scholar] [CrossRef]
- Almasi, H.; Ghanbarzadeh, B.; Dehghannya, J.; Entezami, A.A.; Asl, A.K. Novel nanocomposites based on fatty acid modified cellulose nanofibers/poly(lactic acid): Morphological and physical properties. Food Packag. Shelf Life 2015, 5, 21–31. [Google Scholar] [CrossRef]
- Panaitescu, D.M.; Frone, A.N.; Ghiurea, M.; Chiulan, I. Influence of storage conditions on starch/PVA films containing cellulose nanofibers. Ind. Crops Prod. 2015, 70, 170–177. [Google Scholar] [CrossRef]
- Zhou, C.; Chu, R.; Wu, R.; Wu, Q. Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules 2011, 12, 2617–2625. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Oksman, K.; Mathew, A.P. Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media. J. Colloid Interface Sci. 2016, 464, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, Z.; Wang, J.; Wang, S. High-performance membranes comprising polyaniline nanoparticles incorporated into polyvinylamine matrix for CO2/N2 separation. J. Memb. Sci. 2012, 403–404, 203–215. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, Z.; Qiao, Z.; Wei, X.; Zhang, C.; Wang, J.; Wang, S. Gas separation membrane with CO2-facilitated transport highway constructed from amino carrier containing nanorods and macromolecules. J. Mater. Chem. A 2013, 1, 246–249. [Google Scholar] [CrossRef]
- Nikolaeva, D.; Luis, P. Top-down polyelectrolytes for membrane-based post-combustion CO2 capture. Molecules 2020, 25, 323. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, S.; Wu, H.; Guo, R.; Liu, Y.; Jiang, Z.; Tian, Z.; Zhang, P.; Cao, X.; Wang, B. High-performance composite membrane with enriched CO2-philic groups and improved adhesion at the interface. In Proceedings of the ACS Applied Materials and Interfaces; American Chemical Society: Washington, DC, USA, 2014; Volume 6, pp. 6654–6663. [Google Scholar]
- Robeson, L.M. Polymer blends in membrane transport processes. Ind. Eng. Chem. Res. 2010, 49, 11859–11865. [Google Scholar] [CrossRef]
- Mitra, T.; Bhavsar, R.S.; Adams, D.J.; Budd, P.M.; Cooper, A.I. PIM-1 mixed matrix membranes for gas separations using cost-effective hypercrosslinked nanoparticle fillers. Chem. Commun. 2016, 52, 5581–5584. [Google Scholar] [CrossRef] [Green Version]
- Jahan, Z.; Niazi, M.B.K.; Hägg, M.B.; Gregersen, Ø.W. Cellulose nanocrystal/PVA nanocomposite membranes for CO2/CH4 separation at high pressure. J. Memb. Sci. 2018, 554, 275–281. [Google Scholar] [CrossRef]
- Khan, M.Y.; Khan, A.; Adewole, J.K.; Naim, M.; Basha, S.I.; Aziz, M.A. Biomass derived carboxylated carbon nanosheets blended polyetherimide membranes for enhanced CO2/CH4 separation. J. Nat. Gas Sci. Eng. 2020, 75, 103156. [Google Scholar] [CrossRef]
- Wu, S.Y.; Hsiao, I.C.; Liu, C.M.; Mt Yusuf, N.Y.; Wan Isahak, W.N.R.; Masdar, M.S. A novel bio-cellulose membrane and modified adsorption approach in CO2/H2 separation technique for PEM fuel cell applications. Int. J. Hydrogen Energy 2017, 42, 27630–27640. [Google Scholar] [CrossRef]
- Zhang, X.F.; Feng, Y.; Wang, Z.; Jia, M.; Yao, J. Fabrication of cellulose nanofibrils/UiO-66-NH2 composite membrane for CO2/N2 separation. J. Memb. Sci. 2018, 568, 10–16. [Google Scholar] [CrossRef]
- Venturi, D.; Grupkovic, D.; Sisti, L.; Baschetti, M.G. Effect of humidity and nanocellulose content on Polyvinylamine-nanocellulose hybrid membranes for CO2 capture. J. Memb. Sci. 2018, 548, 263–274. [Google Scholar] [CrossRef]
Separation Process | Merits | Demerits | Ref. |
---|---|---|---|
Absorption | 1. Acid gases (CO2 and H2S) removed simultaneously 2. Processing capacity and product purity is high 3. Efficiency is 50–100% | 1. Physical solvent usage requires high partial pressure. As such, it is not cheap 2. Chemical solvent usage requires low partial pressure, which makes acid gas purification take a longer time 3. Operating units’ efficiency is low, especially using the amine absorption process | [15,16,17,18] |
Adsorption | 1. Can produce an output of high purity 2. Remote field relocation of adsorbent, at the time of equipment sizing challenge, is easy 3. Simple process | 1. Lower product recovery despite the high amount of used adsorbent 2. Single pure product is most favored 3. Poor performance at low pressure 4. Adsorbent regeneration is expensive | [19,20,21,22] |
Membrane | 1. Simplicity, versatility, low capital investment, and easy operation 2. High-pressure stability 3. Product recovery is high 4. Optimized weight and space 5. Environmentally friendly | 1. Permeate can be recompressed 2. Permselectivity trade-off 3. Purity is moderate as its capacity is low 4. Available membranes are thermally unstable | [23,24,25,26] |
Cryogenic | 1. Compared to other techniques, recovery is relatively higher 2. Product purity is also relatively high 3. Operation is possible at high volume and high pressure | 1. Regeneration requires energy of high intensity 2. Scale-down is not economical 3. Being a closed system that is highly integrated, different feed streams operation is challenging | [27,28,29,30] |
Organic Membranes | Inorganic Membranes | ||
---|---|---|---|
Synthetic | Natural | Ceramic | Metal |
Polytetrafluoroethylene | Rubber | Silica membrane | Palladium membrane |
Polyvinylidene difluoride | Cellulose | Silicon membrane | Tungsten membrane |
Polyamide–imide | Wool | Zeolite | Palladium alloy membrane |
Polysulfone, etc. | Leather | Carbon | Nonpalladium membranes |
Polymers | (Barrer) | (10−8 cm2 s−1) | Ref. | ||
---|---|---|---|---|---|
Kapton polyimide | 2.7 | 0.56 | 46.0 | 11.9 | [79] |
Polysulfone | 5.6 | 2.00 | 22.0 | 5.9 | [79,80] |
Polycarbonate | 6.8 | 3.20 | 19.0 | 4.7 | [79] |
Polystyrene | 12.4 | 8.50 | 15.8 | 5.5 | [79] |
Poly(ethylene terephthalate) | 17.2 | 4.46 | 27.3 | 7.8 | [79] |
Polyisoprene | 153.0 | 125.00 | 5.1 | 1.4 | [79] |
Silicone rubber | 3800.0 | 2200.00 | 3.2 | 1.1 | [79] |
Sulfonated poly(aryl ether ketone) (SPEEK) | 15.0 | 4.89 | 26.5 | 2.8 | [81] |
Thermally rearranged polymers | 186.6 | 15.40 | 27.8 | 4.0 | [82] |
Polymers of intrinsic microporosity (PIMs) | 3672.0 | 172.00 | 10.6 | 3.9 | [82] |
Cellulose acetate | 218.0 | - | 13.8 | - | [83] |
Perfluoro polymers (Teflon AF 2400) | 2200.0 | - | 5.6 | - | [84] |
Poly(ether-block-amide) (Pebax®) | 187.5 | - | 7.3 | - | [85] |
Pretreatment Type | Examples | Uniqueness | Ref. |
---|---|---|---|
Physical | Mechanical, ultrasonic, high-temperature/energy pyrolysis, electron radiation, and microwave | It requires high energy and cost to reduce crystallinity and particle size | [157,158,159,160] |
Chemical | Pretreatments using alkali, organosolv, acids (dilute and concentrated), oxidation, and ionic liquids | The extraction of pure components is at a high cost | [161,162,163] |
Physicochemical | CO2 explosion by Ammonia fiber explosion (AFEX) method, steam explosion, and electrical catalysis | Occurrences at high temperature and pressure: hemicellulose solubilization, lignin transformation, and cellulose surface area increases. | [164,165] |
Biological | Enzymolysis | Despite low hydrolysis rate and energy consumption, degradation of lignin and hemicellulose is achievable | [166,167] |
Cellulose Sources | Preparation Techniques | Particle Size | Remarks | Reference |
---|---|---|---|---|
Pineapple peel juice | Spray coating | NA | Enhanced spread factor | [173] |
Trunks and fronds of oil palm, okra | Alkaline, electrospinning | Less than 500 nm | Binding and antioxidant activities increased | [174] |
Canola straw | nanowelding | 53 ± 16 nm | High transparency and biodegradability | [175] |
Rice husk | Hydrothermal approach, acid–alkali treatment, mechanical disruption | 30–40 nm | Thermally stable | [176] |
Corn | TEMPO-mediated oxidation | NA | High strength, elastic modulus, and value of water retention | [177] |
Achira | Acid hydrolysis, high-pressure homogenization | 13.8–37.2 nm | Mechanically stable, biodegradable, and highly crystalline | [178] |
Paper waste residue | Etherification of pulp, mechanical disintegration | 10–100 nm | Thermally stable with high fibrillation potential | [179] |
Banana peel | Chemical treatment, high-intensity ultrasonication | NA | Highly thermally stable with high crystallinity | [180,181] |
Poplar wood powder, culms of Moso bamboo, rice straw, corn straw | Chemical pretreatment, high-intensity ultrasonication, high-pressure homogenization | 5–20 nm | Highly crystalline and thermally stable | [182,183] |
Seagrass species balls and leaves | Chemical treatment, fibrillation | 5–21 nm and 2–15 nm | Transparent and biodegradable | [184] |
Tomato peels | Acidified sodium chlorite, chlorine-free alkaline peroxide | 260 ± 79 nm, | Highly crystalline | [185] |
Mixed Matrix Composition | Cellulose Source | Preparation Method | Particle Size | Remarks | Ref. |
---|---|---|---|---|---|
Natural cellulose, high-density polyethene | Needle leaf bleached kraft pulp (NBKP) | Mechanical disintegration, injection molding | NA | Mechanical strength increased | [197] |
Natural cellulose, polylactic acid | Wheat straw | Chemo–mechanical treatment, high-speed homogenization | NA | High viscosity with increased crystallinity | [198] |
Cellulose, starch | Rice straw | A chemo–mechanical method, film casting, salt leaching, freeze-drying | 49–90 nm | Highly biodegradable | [199] |
Polyurethane, cellulose | Rachis of the date palm tree (Phoenix dactylifera) | Mechanical treatment, high-intensity homogenizing, solvent exchange method | 29 ± 9 nm | Tensile strength, thermal stability, high crystallinity | [200] |
Cellulose, hemicellulose | Spruce sulfite pulp (commercially obtained) | Enzyme treatment, mechanical disintegration, filtration, drying | 190 nm | Moderate tensile strength with high thermal stability | [201] |
Cellulose, starch | Kenafbast fibers (Hibiscus cannabinus) | Solution casting | NA | Biodegradable and moderate elasticity | [202] |
Cellulose, polyester resin | Softwood (Pinus sp.) and hardwood (Eucalyptus sp.) | Mechanical treatment | 70–90 nm | Moderately crystalline and highly thermally stable | [198] |
Unsaturated polyester, cellulose | Never-dried wood pulp (Nordic Paper, Sweden) | Mechanical treatment, template-based processing approach | 100–200 μm | Highly sensitive to moisture and thermally stable with a high glass transition temperature | [199] |
Cellulose, amylopectin | Spruce sulfite pulp (Nordic pulp and Paper, Sweden) | Enzyme degradation, mechanical treatment, disintegration using a microfluidizer | 68 nm, 361 nm, 186 nm | Yield strength increased with moderate Young’s modulus | [200] |
Cellulose, polyacrylamide | Fibrous cellulose powder CF11 (commercially obtained) | Acid hydrolysis | NA | Hydrophilicity and high mechanical strength with favorable thermal stability | [203] |
Cellulose, polyaniline, carbon nanotubes | Bamboo powders from Moso bamboo | Chemical treatment, in situ chemical polymerization | 10–30 nm | Foldable and flexible | [204] |
Cellulose, multiwalled carbon nanotubes, polyaniline | Bamboo powder from Moso bamboo | Chemical treatment, solvent extraction, in situ polymerization | 10–30 nm | High porosity and redox reversibility | [205] |
Cellulose, carbon nanotubes, TiO2 nanotubes | Bamboo cellulose tissues | Mechanical treatment | 10–30 nm | Increased mechanical strength and porosity | [206] |
Cellulose, cadmium sulphate (CdS) | Natural cotton | Electrospinning, chemical bath deposition | 100 nm | Photocatalytic activity is high with characteristic amorphous properties | [207] |
Titanium dioxide (TiO2), cellulose, gold (Au), silver (Ag) | Eucalyptus pulp (USDA Forest Service, Forest Products Laboratory, Madison, WI, USA) | TEMPO-mediated oxidation, mechanical treatment | 4–20 nm | Reusable, with improved photocatalytic activities and high tensile strength | [208] |
Cellulose, quaternary ammonium | Softwood kraft pulp | Mechanical treatment | 10–40 nm | Reusable and highly porous | [209] |
Polyethylene-b-poly(ethylene glycol), cellulose | Cellulose nanofibers (Commercially obtained) | Spray drying, surface adsorption, extrusion | NA | High modulus tension | [210] |
Cellulose, polyvinyl alcohol | Microcrystalline cellulose (commercially obtained) | Acid hydrolysis | 10–65 nm | Thermally stable and water-resistant | [211] |
Cellulose, polylactic acid | Cellulose nanofibers (Commercially obtained) | Solvent casting | 28 ± 10 nm | High elastic and tensile strength and thermally stable | [212] |
Cellulose, poly(lactic acid) | Nano Nevin polymer co. (Iran) | Solution casting method | 21 nm | High degradation temperature, thermal stability, and crystallinity | [213] |
Cellulose, starch, polyvinyl alcohol | Microcrystalline cellulose (commercially obtained) | Acid treatment, solution casting | 20–35 nm | Excellent mechanical strength with high stiffness | [214] |
Polyethene oxide, cellulose nanocrystal | Microcrystalline cellulose (commercially obtained) | Acid hydrolysis, high-pressure homogenization, electrospinning | 149 ± 49 nm | High glass transition temperature and elongation at break | [215] |
Cellulose, copper (Cu2+) | Cellulose sludge (commercially obtained) | Mechanical treatment, TEMPO-mediated oxidation | 15–40 nm | Enhanced adsorption capacity of Cu2+, wettability, and hydrophilicity | [216] |
Organic Filler | Particle Size (nm) | Loading (wt%) | Polymer | Feed Gas | Operation Conditions | CO2 Permeability ×1014/mol·m·m−2·s−1·Pa−1 | CO2/CH4 Selectivity | Ref. |
---|---|---|---|---|---|---|---|---|
Polyaniline nanosheet | Thickness: 40–60 | 17 | Poly(vinylamine) | Pure gas | 25 °C, 0.11 MPa, in humidified state | 40.20 × | 12–20 | [217] |
Polyaniline nanorod | Diameter: 50 Length: 160 | 17 | Poly(vinylamine) | Pure gas | 25 °C, 0.11 MPa, in humidified state | 53.67 b | 18–25 | [218] |
Nanohydrogels | ~250 | 5,10,15,20 | Matrimid® | Pure gas | 30 °C, 0.2 MPa, in humidified state | 4.56–9.31 | 52–61 | [219] |
Carboxylic acid nanogels | 400 | 5,10,15,20,30 | Pebax® | Pure gas | 25 °C, 0.2 MPa, in humidified state | 29.82–67.87 | 19–33 | [220] |
PEGSS a | 350–420 | 20 | Matrimid® | Pure gas | 30 °C, 0.1 MPa | 0.28 | 50.29 | [221] |
Hypercrosslinked polystyrene | 55 | 16.67 | PIM-1 | Pure gas | 25 °C, 0.2 MPa | 334.06 | 20.27 | [222] |
Microfibrillated cellulose | Diameter: 5–15 | 0–4 | Polyvinylamine | Mixed gas | 35 °C, 8 bar | 13.00 | 410 | [223] |
Nanocellulose | Length: 130 ± 67 Width: 15.9 ± 1.8 | 0.5,1,1.5,2 | PSF | Mixed gas | 25 °C, 8 bar | 45.07 | 29 | [223] |
Filler Loading (wt%) | Permeance (GPU) | Selectivity | |
---|---|---|---|
CO2 Permeability | CH4 Permeability | ||
0.00 | 1.25 | 0.10 | 23 |
0.25 | 1.60 | 0.10 | 32 |
0.50 | 1.80 | 0.05 | 43 |
0.75 | - | - | - |
1.00 | 1.75 | 0.05 | 40 |
LCB in Samples (wt%) | Permeance (GPU) at 10 bar and 35 °C | Selectivity | |
---|---|---|---|
CO2 Permeability | CH4 Permeability | ||
0 | 240.292 | 318.229 | 0.755 |
2 | 13.957 | 11.957 | 1.261 |
5 | 94.949 | 115.697 | 0.821 |
10 | 445.658 | 705.246 | 0.632 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amusa, A.A.; Ahmad, A.L.; Adewole, J.K. Mechanism and Compatibility of Pretreated Lignocellulosic Biomass and Polymeric Mixed Matrix Membranes: A Review. Membranes 2020, 10, 370. https://doi.org/10.3390/membranes10120370
Amusa AA, Ahmad AL, Adewole JK. Mechanism and Compatibility of Pretreated Lignocellulosic Biomass and Polymeric Mixed Matrix Membranes: A Review. Membranes. 2020; 10(12):370. https://doi.org/10.3390/membranes10120370
Chicago/Turabian StyleAmusa, Abiodun Abdulhameed, Abdul Latif Ahmad, and Jimoh Kayode Adewole. 2020. "Mechanism and Compatibility of Pretreated Lignocellulosic Biomass and Polymeric Mixed Matrix Membranes: A Review" Membranes 10, no. 12: 370. https://doi.org/10.3390/membranes10120370
APA StyleAmusa, A. A., Ahmad, A. L., & Adewole, J. K. (2020). Mechanism and Compatibility of Pretreated Lignocellulosic Biomass and Polymeric Mixed Matrix Membranes: A Review. Membranes, 10(12), 370. https://doi.org/10.3390/membranes10120370