Mesoporous Silica Membranes Silylated by Fluorinated and Non-Fluorinated Alkylsilanes for the Separation of Methyl Tert-Butyl Ether from Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Mesoporous Silica Membranes
2.3. Surface Silylation
2.4. Material Characterization
2.5. Pervaporation (PV)
3. Results and Discussion
3.1. Surface Silylation of Silica Membranes
3.2. Pore Structure
3.3. Pervaporation Separation Performance of Methyl Tert-Butyl Ether (MTBE) from Water
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tong, R.; Zhang, L.; Yang, X.; Liu, J.; Zhou, P.; Li, J. Emission characteristics and probabilistic health risk of volatile organic compounds from solvents in wooden furniture manufacturing. J. Clean. Prod. 2019, 208, 1096–1108. [Google Scholar] [CrossRef]
- Zheng, H.; Kong, S.; Yan, Y.; Chen, N.; Yao, L.; Liu, X.; Wu, F.; Cheng, Y.; Niu, Z.; Zheng, S.; et al. Compositions, sources and health risks of ambient volatile organic compounds (VOCs) at a petrochemical industrial park along the Yangtze River. Sci. Total Environ. 2020, 703, 135505. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Ning, M. Thoughts on control path of the volatile organic compounds pollution during the period of “13th Five-Year”. Sci. Environ. Prot. 2017, 45, 14–17. [Google Scholar]
- Altalyan, H.N.; Jones, B.; Bradd, J.; Nghiem, L.D.; Alyazichi, Y.M. Removal of volatile organic compounds (VOCs) from groundwater by reverse osmosis and nanofiltration. J. Water Process. Eng. 2016, 9, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Ghoreyshi, A.A.; Sadeghifar, H.; Entezarion, F. Efficiency assessment of air stripping packed towers for removal of VOCs (volatile organic compounds) from industrial and drinking waters. Energy 2014, 73, 838–843. [Google Scholar] [CrossRef]
- Khan, F.I.; Ghoshal, A.K. Removal of volatile organic compounds from polluted air. J. Loss. Prevent. Proc. 2000, 13, 527–545. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, Y.; Zheng, S.; Zaher, H. Adsorption of volatile organic compounds onto natural porous minerals. J. Hazard. Mater. 2019, 364, 317–324. [Google Scholar] [CrossRef]
- Zou, W.; Gao, B.; Sik, O.Y.; Dong, L. Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: A critical review. Chemosphere 2019, 218, 845–859. [Google Scholar] [CrossRef]
- Rao, Z.; Xie, X.; Wang, X.; Mahmood, A.; Tong, S.; Ge, M.; Sun, J. Defect chemistry of Er3+-doped TiO2 and its photocatalytic activity for the degradation of flowing gas-phase VOCs. J. Phys. Chem. 2019, 123, 12321–12334. [Google Scholar] [CrossRef]
- Yang, C.; Miao, G.; Pi, Y.; Xia, Q.; Wu, J.; Li, Z.; Xiao, J. Abatement of various types of VOCs by adsorption/catalytic oxidation: A review. Chem. Eng. J. 2019, 370, 1128–1153. [Google Scholar] [CrossRef]
- He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z. Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources. Chem. Rev. 2019, 119, 4471–4568. [Google Scholar] [CrossRef] [PubMed]
- Kujawa, J.; Al-Gharabli, S.; Kujawski, W.; Knozowska, K. Molecular grafting of fluorinated and nonflfluorinated alkylsiloxanes on various ceramic membrane surfaces for the removal of volatile organic compounds applying vacuum membrane distillation. ACS Appl. Mater. Inter. 2017, 9, 6571–6590. [Google Scholar] [CrossRef] [PubMed]
- Kujawa, J.; Kujawski, W.; Cyganiuk, A.; Dumée, L.F.; Al-Gharabli, S. Upgrading of zirconia membrane performance in removal of hazardous VOCs from water by surface functionalization. Chem. Eng. J. 2019, 374, 155–169. [Google Scholar] [CrossRef]
- He, K.; Wei, Q.; Wang, Y.; Wang, S.; Cui, S.; Li, Q.; Nie, Z. Hydrophobic mesoporous organosilica membranes: Preparation and application in the separation of volatile organic compounds from water. Microporous Mesoporous Mater. 2019, 288, 109606. [Google Scholar] [CrossRef]
- Araki, S.; Gondo, D.; Imasaka, S.; Yamamoto, H. Permeation properties of organic compounds from aqueous solutions through hydrophobic silica membranes with different functional groups by pervaporation. J. Membr. Sci. 2016, 514, 458–466. [Google Scholar] [CrossRef]
- Kujawa, J.; Cerneaux, S.; Kujawski, W. Removal of hazardous volatile organic compounds from water by vacuum pervaporation with hydrophobic ceramic membranes. J. Membr. Sci. 2015, 474, 11–19. [Google Scholar] [CrossRef]
- Kujawski, W.; Kujawa, J.; Wierzbowska, E.; Cerneaux, S.; Bryjak, M.; Kujawski, J. Influence of hydrophobization conditions and ceramic membranes pore size on their properties in vacuum membrane distillation of water–organic solvent mixtures. J. Membr. Sci. 2016, 499, 442–451. [Google Scholar] [CrossRef]
- Kujawa, J.; Cerneaux, S.; Kujawski, W. Highly hydrophobic ceramic membranes applied to the removal of volatile organic compounds in pervaporation. Chem. Eng. J. 2015, 260, 43–54. [Google Scholar] [CrossRef]
- Tian, X.; Jiang, X. Poly(vinylidene fluoride- co -hexafluoropropene) (PVDF-HFP) membranes for ethyl acetate removal from water. J. Hazard. Mater. 2007, 153, 128–135. [Google Scholar] [CrossRef]
- Zhu, B.; Tian, X.; Xu, Y. Recovering ethyl acetate from aqueous solution using P(VDF-co-HFP) membrane based pervaporation. Desalination 2005, 184, 71–78. [Google Scholar] [CrossRef]
- Sampranpiboon, P.; Jiraratananon, R.; Uttapap, D.; Feng, X.; Huang, R. Pervaporation separation of ethyl butyrate and isopropanol with polyether block amide (PEBA) membranes. J. Membr. Sci. 2000, 173, 53–59. [Google Scholar] [CrossRef]
- Yoshida, W.; Cohen, Y. Removal of methyl tert -butyl ether from water by pervaporation using ceramic-supported polymer membranes. J. Membr. Sci. 2004, 229, 27–32. [Google Scholar] [CrossRef]
- Korelskiy, D.; Leppäjärvi, T.; Zhou, H.; Grahn, M.; Tanskanen, J.; Hedlund, J. High flux MFI membranes for pervaporation. J. Membr. Sci. 2013, 427, 381–389. [Google Scholar] [CrossRef]
- Sakaki, K.; Habe, H.; Negishi, H.; Ikegami, T. Pervaporation of aqueous dilute 1-butanol, 2-propanol, ethanol and acetone using a tubular silicalite membrane. Desalin. Water. Treat. 2011, 34, 290–294. [Google Scholar] [CrossRef]
- Pelin, K.; Cindy, H.; Mieke, W.J.L.-O.; Arian, N.; Louis, W. Sol-gel processed magnesium-doped silica membranes with improved H2/CO2 separation. J. Membr.Sci. 2017, 543, 195–201. [Google Scholar]
- Qi, W.; Yuan-Li, D.; Zuo-Ren, N.; Xiang-Ge, L.; Qun-Yan, L. Wettability, pore structure and performance of perfluorodecyl-modified silica membranes. J. Membr. Sci. 2014, 466, 114–122. [Google Scholar]
- Scott, B.; Simon, S.; Bradley, L.; Shaomin, L.; Mikel, C.D.; Victor, R.; João CDiniz da, C. Hydrothermal stability of cobalt silica membranes in a water gas shift membrane reactor. Sep. Purif. Technol. 2009, 66, 299–305. [Google Scholar]
- Muthia, E.; Christelle, Y.; David, K.W.; Simon, S.; João CDiniz da, C. Microporous Silica Based Membranes for Desalination. Water 2012, 4, 629–649. [Google Scholar]
- Duke, M.C.; João CDiniz da, C.; Do, D.D.; Gray, P.G.; Lu, G.Q. Hydrothermally robust molecular sieve silica for wet gas separation. Adv. Funct. Mater. 2006, 16, 1215–1220. [Google Scholar] [CrossRef]
- Araki, S.; Okabe, A.; Ogawa, A.; Gondo, D.; Imasaka, S.; Hasegawa, Y.; Sato, K.; Li, K.; Yamamoto, H. Preparation and pervaporation performance of vinyl-functionalized silica membranes. J. Membr. Sci. 2018, 548, 66–72. [Google Scholar] [CrossRef]
- Park, D.H.; Nishiyama, N.; Egashira, Y.; Ueyama, K. Separation of organic/water mixtures with silylated MCM-48 silica membranes. Microporous Mesoporous Mater. 2003, 66, 69–76. [Google Scholar] [CrossRef]
- Kim, H.J.; Brunelli, N.A.; Brown, A.J.; Jang, K.S.; Kim, W.G.; Rashidi, F.; Johnson, J.R.; Koros, W.J.; Jones, C.W.; Nair, S. Silylated mesoporous silica membranes on polymeric hollow fiber supports: Synthesis and permeation properties. ACS Appl. Mater. Inter. 2014, 6, 17877–17886. [Google Scholar] [CrossRef] [PubMed]
- Dapeng, M.; Dong, Y.; Xingyi, L.; Ying, X.; Zhaoyou, Z.; Yinglong, W.; Jun, G. Mechanism analysis, economic optimization, and environmental assessment of hybrid extractive distillation−pervaporation processes for dehydration of n-Propanol. ACS Sustain. Chem. Eng. 2020, 8, 4561–4571. [Google Scholar]
- Scott, K. Separation of liquid mixtures/pervaporation. In Handbook of Industrial Membranes, 1st ed.; Elsevier Science Publishers Ltd.: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Araki, S.; Imasaka, S.; Tanaka, S.; Miyake, Y. Pervaporation of organic/water mixtures with hydrophobic silica membranes functionalized by phenyl groups. J. Membr. Sci. 2011, 380, 41–47. [Google Scholar] [CrossRef]
- Qi, W.; Fei, W.; Zuo-Ren, N.; Chun-Lin, S.; Yan-Li, W.; Qun-Yan, L. Highly hydrothermally stable microporous silica membranes for hydrogen separation. J. Phys.Chem. B 2008, 112, 9354–9359. [Google Scholar]
- Zadaka-Amir, D.; Nasser, A.; Nir, S.; Mishael, Y.G. Removal of methyl tertiary-butyl ether(MTBE) from water by polymer-zeolite composites. Microporous Mesoporous Mater. 2012, 151, 216–222. [Google Scholar] [CrossRef]
- Li, Q.; Zhong, X. Preparation and surface properties of novel low surface free energy fluorinated silane-functional polybenzoxazine films. Langmuir 2011, 27, 8365–8370. [Google Scholar]
- Campostrini, R.; Ischia, M.; Armelao, L.J. Pyrolysis study of fluorinated sol-gel silica. J. Therm. Anal. Calorim. 2004, 78, 657–677. [Google Scholar] [CrossRef]
- Colthup, N.B.; Daly, L.H.; Wiberley, S.E. Introduction to Infrared and Raman Spectroscopy; Academic Press: Cambridge, MA, USA, 1990. [Google Scholar]
- The Free Dictionary by Farlex. Available online: https://encyclopedia.thefreedictionary.com/pervaporation (accessed on 10 March 2020).
- Kujawski, W.; Roszak, W. Pervaporative removal of volatile organic compounds from multicomponent aqueous mixtures. Sep. Sci. Technol. 2002, 37, 3559–3575. [Google Scholar]
Samples | Surface Area (m2 g−1) | Pore Volume (cm3 g−1) | Mean Pore Size (nm) |
---|---|---|---|
SiO2 | 591.3 | 0.36 | 3.2 |
0.005PFOTES-SiO2 | 330.9 | 0.24 | 3.3 |
0.005OTES-SiO2 | 303.9 | 0.22 | 3.7 |
0.005TFPTES-SiO2 | 269.1 | 0.19 | 3.2 |
0.005PTES-SiO2 | 464.0 | 0.31 | 3.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Hao, L.; Yang, F.; Wei, Q. Mesoporous Silica Membranes Silylated by Fluorinated and Non-Fluorinated Alkylsilanes for the Separation of Methyl Tert-Butyl Ether from Water. Membranes 2020, 10, 70. https://doi.org/10.3390/membranes10040070
Wang Z, Hao L, Yang F, Wei Q. Mesoporous Silica Membranes Silylated by Fluorinated and Non-Fluorinated Alkylsilanes for the Separation of Methyl Tert-Butyl Ether from Water. Membranes. 2020; 10(4):70. https://doi.org/10.3390/membranes10040070
Chicago/Turabian StyleWang, Zhaojia, Liwei Hao, Feihua Yang, and Qi Wei. 2020. "Mesoporous Silica Membranes Silylated by Fluorinated and Non-Fluorinated Alkylsilanes for the Separation of Methyl Tert-Butyl Ether from Water" Membranes 10, no. 4: 70. https://doi.org/10.3390/membranes10040070
APA StyleWang, Z., Hao, L., Yang, F., & Wei, Q. (2020). Mesoporous Silica Membranes Silylated by Fluorinated and Non-Fluorinated Alkylsilanes for the Separation of Methyl Tert-Butyl Ether from Water. Membranes, 10(4), 70. https://doi.org/10.3390/membranes10040070