Post Processing Strategies for the Enhancement of Mechanical Properties of ENMs (Electrospun Nanofibrous Membranes): A Review
Abstract
:1. Introduction
2. Electrospinning Parameters and Their Influence on Mechanical Properties of Nanofibrous Membranes
- Uniform diameter and morphological homogeneity of fibers;
- defect (beads and ribbons) free fiber collection;
- stretching of fibers, thus improving their crystallinity and mechanical properties while reducing their diameters and associated defects; and
- continuous and preferably aligned fiber deposition on the collector.
- Processing parameters;
- solution/melt characteristics;
- environmental factors; and
- collector configuration.
3. Mechanical Characterization of Nanofibrous Membranes
- Single fiber mechanical tests, or
- membrane mechanical tests.
4. Post Fabrication Techniques for the Enhancement of Mechanical Properties of ENMs
4.1. Crosslinking of ENMs
4.2. Post Fabrication Drawing/Stretching of ENMs
4.3. Solvent Welding of ENMs
4.4. Heat Treatment/Annealing of ENMs
4.5. Hot Pressing of ENMs
4.6. Hot Stretching of ENMs
5. Discussion of Key Findings
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Unique Properties. Essentials in Nanoscience and Nanotechnology; Unique Properties: Denver, CO, USA, 2016; pp. 326–360. [Google Scholar] [CrossRef]
- Sudha, P.N.; Sangeetha, K.; Vijayalakshmi, K.; Barhoum, A. Chapter 12—Nanomaterials history, classification, unique properties, production and market. In Emerging Applications of Nanoparticles and Architecture Nanostructures; Barhoum, A., Makhlouf, A.S.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 341–384. [Google Scholar] [CrossRef]
- Adekoya, J.A.; Ogunniran, K.O.; Siyanbola, T.O.; Dare, E.O.; Revaprasadu, N. Band structure, morphology, functionality, and size-dependent properties of metal nanoparticles. In Noble and Precious Metals—Properties, Nanoscale Effects and Applications; Seehra, M., Bristow, A.D., Eds.; Books on Demand: Norderstedt, Germany, 2018; pp. 15–42. [Google Scholar]
- Madkour, L.H. Processing of Nanomaterials (NMs). In Nanoelectronic Materials; Springer: New York, NY, USA, 2019; pp. 309–353. [Google Scholar]
- Rabiee, M.; Rabiee, N.; Salarian, R.; Rabiee, G. Nanomaterials: Concepts. In Introduction to Nanomaterials in Medicine; Morgan & Claypool: San Rafael, CA, USA, 2019. [Google Scholar]
- Behera, A.; Mohapatra, S.S.; Verma, D.K. Nanomaterials: Fundamental Principle and Applications. In Nanotechnology and Nanomaterial Applications in Food, Health, and Biomedical Sciences; Apple Academic Press: Waretown, NJ, USA, 2019; pp. 163–194. [Google Scholar]
- Naz, M.Y.; Shukrullah, S.; Ghaffar, A.; Ali, K.; Sharma, S. Synthesis and Processing of Nanomaterials. In Solar Cells; Springer: New York, NY, USA, 2020; pp. 1–23. [Google Scholar]
- Taylor, G.I. Disintegration of water drops in an electric field. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 1964, 280, 383–397. [Google Scholar]
- Haider, A.; Haider, S.; Kang, I.-K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 2018, 11, 1165–1188. [Google Scholar] [CrossRef]
- Huang, Z.-M.; Zhang, Y.-Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003, 63, 2223–2253. [Google Scholar] [CrossRef]
- Basson, N. Free Volume of Electrospun Organic-Inorganic Copolymers; Stellenbosch University: Stellenbosch, South Africa, 2014. [Google Scholar]
- Nezafati, N.; Faridi-Majidi, R.; Pazouki, M.; Hesaraki, S. Synthesis and characterization of a novel freeze-dried silanated chitosan bone tissue engineering scaffold reinforced with electrospun hydroxyapatite nanofiber. Polym. Int. 2019, 68, 1420–1429. [Google Scholar] [CrossRef]
- Vazquez, J.J.; Martínez, E.S.M. Collagen and elastin scaffold by electrospinning for skin tissue engineering applications. J. Mater. Res. 2019, 34, 2819–2827. [Google Scholar] [CrossRef]
- Heidari, M.; Bahrami, S.H.; Ranjbar-Mohammadi, M.; Milan, P. Smart electrospun nanofibers containing PCL/gelatin/graphene oxide for application in nerve tissue engineering. Mater. Sci. Eng. C 2019, 103, 109768. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yang, Y.; Yu, D.-G.; Zhu, M.-J.; Zhao, M.; Williams, G.R. Tunable zero-order drug delivery systems created by modified triaxial electrospinning. Chem. Eng. J. 2019, 356, 886–894. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Li, W.; Zhang, F.; Liu, Z.; Zanjanizadeh Ezazi, N.; Liu, D.; Santos, H.A. Electrospun fibrous architectures for drug delivery, tissue engineering and cancer therapy. Adv. Funct. Mater. 2019, 29, 1802852. [Google Scholar] [CrossRef]
- Topuz, F.; Uyar, T. Electrospinning of cyclodextrin functional nanofibers for drug delivery applications. Pharmaceutics 2019, 11, 6. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Wang, T. Immobilization of enzymes into nanofiber membranes via electrospinning and its application in natural sweetener production. FASEB J. 2019, 33, lb213. [Google Scholar]
- Cloete, W.J.; Hayward, S.; Swart, P.; Klumperman, B. Degradation of proteins and starch by combined immobilization of protease, α-amylase and β-galactosidase on a single electrospun nanofibrous membrane. Molecules 2019, 24, 508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jun, S.-H.; Yang, J.; Jeon, H.; Kim, H.S.; Pack, S.P.; Jin, E.; Kim, J. Stabilized and Immobilized Carbonic Anhydrase on Electrospun Nanofibers for Enzymatic CO2 Conversion and Utilization in Expedited Microalgal Growth. Environ. Sci. Technol. 2020, 54, 1223–1231. [Google Scholar] [CrossRef] [PubMed]
- Wutticharoenmongkol, P.; Hannirojram, P.; Nuthong, P. Gallic acid-loaded electrospun cellulose acetate nanofibers as potential wound dressing materials. Polym. Adv. Technol. 2019, 30, 1135–1147. [Google Scholar] [CrossRef]
- Adeli, H.; Khorasani, M.T.; Parvazinia, M. Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: Fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay. Int. J. Biol. Macromol. 2019, 122, 238–254. [Google Scholar] [CrossRef]
- Yang, J.; Wang, K.; Yu, D.-G.; Yang, Y.; Bligh, S.W.A.; Williams, G.R. Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. Mater. Sci. Eng. C 2020, 2020, 110805. [Google Scholar] [CrossRef]
- Zhu, M.; Xiong, R.; Huang, C. Bio-based and photocrosslinked electrospun antibacterial nanofibrous membranes for air filtration. Carbohydr. Polym. 2019, 205, 55–62. [Google Scholar] [CrossRef]
- Kang, Y.; Wang, C.; Qiao, Y.; Gu, J.; Zhang, H.; Peijs, T.; Kong, J.; Zhang, G.; Shi, X. Tissue-engineered trachea consisting of electrospun patterned sc-PLA/GO-g-IL fibrous membranes with antibacterial property and 3D-printed skeletons with elasticity. Biomacromolecules 2019, 20, 1765–1776. [Google Scholar] [CrossRef]
- Liang, M.; Wang, F.; Liu, M.; Yu, J.; Si, Y.; Ding, B. N-Halamine Functionalized Electrospun Poly (Vinyl Alcohol-co-Ethylene) Nanofibrous Membranes with Rechargeable Antibacterial Activity for Bioprotective Applications. Adv. Fiber Mater. 2019, 1, 126–136. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Xiao, X.; Fu, J.; Huan, C.; Qi, S.; Zhan, Y.; Zhu, Y.; Xu, G. Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning. Chem. Eng. J. 2019, 355, 532–539. [Google Scholar] [CrossRef]
- Lu, Y.; Xiao, X.; Liu, Y.; Wang, J.; Qi, S.; Huan, C.; Liu, H.; Zhu, Y.; Xu, G. Achieving multifunctional smart textile with long afterglow and thermo-regulation via coaxial electrospinning. J. Alloy. Compd. 2020, 812, 152144. [Google Scholar] [CrossRef]
- Ciera, L.; Beladjal, L.; Van Landuyt, L.; Menger, D.; Holdinga, M.; Mertens, J.; Van Langenhove, L.; De Clerk, K.; Gheysens, T. Electrospinning repellents in polyvinyl alcohol-nanofibres for obtaining mosquito-repelling fabrics. R. Soc. Open Sci. 2019, 6, 182139. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Qiu, L.; Ma, X.; Chu, Z.; Zhuang, Z.; Dong, L.; Du, P.; Xiong, J. Electrospun PMIA and PVDF-HFP composite nanofibrous membranes with two different structures for improved lithium-ion battery separators. Solid State Ion. 2020, 347, 115253. [Google Scholar] [CrossRef]
- Yanilmaz, M. Evaluation of electrospun PVA/SiO2 nanofiber separator membranes for lithium-ion batteries. J. Text. Inst. 2020, 111, 447–452. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, J.-W.; Fang, J.-B.; Li, X.; Yu, M.; Long, Y.-Z. Electrospun High-Thermal-Resistant Inorganic Composite Nonwoven as Lithium-Ion Battery Separator. J. Nanomater. 2020, 2020, 3879040. [Google Scholar] [CrossRef] [Green Version]
- Gattenby, C.; Olarte, S.; Murray, D. Free Surface Electrospun Polyvinylidene Fluoride Membranes for Direct Contact Membrane Distillation. 2019. Available online: http://www.electrostatics.org/images/H5.pdf (accessed on 15 May 2020).
- Khayet, M.; García-Payo, C.; Matsuura, T. Superhydrophobic nanofibers electrospun by surface segregating fluorinated amphiphilic additive for membrane distillation. J. Membr. Sci. 2019, 588, 117215. [Google Scholar] [CrossRef]
- Li, K.; Hou, D.; Fu, C.; Wang, K.; Wang, J. Fabrication of PVDF nanofibrous hydrophobic composite membranes reinforced with fabric substrates via electrospinning for membrane distillation desalination. J. Environ. Sci. 2019, 75, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Lv, D.; Wang, R.; Tang, G.; Mou, Z.; Lei, J.; Han, J.; De Smedt, S.; Xiong, R.; Huang, C. Ecofriendly electrospun membranes loaded with visible-light-responding nanoparticles for multifunctional usages: Highly efficient air filtration, dye scavenging, and bactericidal activity. ACS Appl. Mater. Interfaces 2019, 11, 12880–12889. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; He, W.; Zhao, Y.-B.; Opris, D.M.; Xu, G.; Wang, J. Electret mechanisms and kinetics of electrospun nanofiber membranes and lifetime in filtration applications in comparison with corona-charged membranes. J. Membr. Sci. 2020, 600, 117879. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, Q.; Christodoulatos, C.; Korfiatis, G.; Meng, X. Adsorptive filtration of lead by electrospun PVA/PAA nanofiber membranes in a fixed-bed column. Chem. Eng. J. 2019, 370, 1262–1273. [Google Scholar] [CrossRef]
- Pan, C.-T.; Chang, C.-C.; Yang, Y.-S.; Yen, C.-K.; Kao, Y.-H.; Shiue, Y.-L. Development of MMG sensors using PVDF piezoelectric electrospinning for lower limb rehabilitation exoskeleton. Sens. Actuators A Phys. 2020, 301, 111708. [Google Scholar] [CrossRef]
- Schoolaert, E.; Hoogenboom, R.; De Clerck, K. Going from Polymer to Application: Solvent Electrospinning of Optical Nanofibrous Sensors. In Proceedings of the 19th World Textile Conference (AUTEX-2019): Textiles at the Crossroads, Ghent, Belgium, 11–15 June 2019. [Google Scholar]
- Avossa, J.; Paolesse, R.; Di Natale, C.; Zampetti, E.; Bertoni, G.; De Cesare, F.; Scarascia-Mugnozza, G.; Macagnano, A. Electrospinning of Polystyrene/Polyhydroxybutyrate Nanofibers Doped with Porphyrin and Graphene for Chemiresistor Gas Sensors. Nanomaterials 2019, 9, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pozegic, T.; King, S.; Fotouhi, M.; Stolojan, V.; Silva, S.; Hamerton, I. Delivering interlaminar reinforcement in composites through electrospun nanofibres. Adv. Manuf. Polym. Compos. Sci. 2019, 5, 155–171. [Google Scholar] [CrossRef]
- Deeraj, B.; Saritha, A.; Joseph, K. Electrospun styrene-butadiene copolymer fibers as potential reinforcement in epoxy composites: Modeling of rheological and visco elastic data. Compos. Part B Eng. 2019, 160, 384–393. [Google Scholar] [CrossRef]
- Shakil, U.A.; Hassan, S.B.; Yahya, M.Y.; Nauman, S. Mechanical properties of electrospun nanofiber reinforced/interleaved epoxy matrix composites—A review. Polym. Compos. 2020, 41, 2288–2315. [Google Scholar] [CrossRef]
- Li, P.; Shang, Z.; Cui, K.; Zhang, H.; Qiao, Z.; Zhu, C.; Zhao, N.; Xu, J. Coaxial electrospinning core-shell fibers for self-healing scratch on coatings. Chin. Chem. Lett. 2019, 30, 157–159. [Google Scholar] [CrossRef]
- Li, J.; Hu, Y.; Qiu, H.; Yang, G.; Zheng, S.; Yang, J. Coaxial electrospun fibres with graphene oxide/PAN shells for self-healing waterborne polyurethane coatings. Prog. Org. Coat. 2019, 131, 227–231. [Google Scholar] [CrossRef]
- Xu, S.; Li, J.; Qiu, H.; Xue, Y.; Yang, J. Repeated self-healing of composite coatings with core-shell fibres. Compos. Commun. 2020, 19, 220–225. [Google Scholar] [CrossRef]
- Beachley, V.; Wen, X. Effect of electrospinning parameters on the nanofiber diameter and length. Mater. Sci. Eng. C 2009, 29, 663–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fallahi, D.; Rafizadeh, M.; Mohammadi, N.; Vahidi, B. Effect of applied voltage on jet electric current and flow rate in electrospinning of polyacrylonitrile solutions. Polym. Int. 2008, 57, 1363–1368. [Google Scholar] [CrossRef]
- Yördem, O.S.; Papila, M.; Menceloğlu, Y.Z. Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: An investigation by response surface methodology. Mater. Des. 2008, 29, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Khalf, A.; Singarapu, K.; Madihally, S.V. Influence of solvent characteristics in triaxial electrospun fiber formation. React. Funct. Polym. 2015, 90, 36–46. [Google Scholar] [CrossRef]
- He, J.-H.; Wan, Y.-Q.; Yu, J.-Y. Effect of concentration on electrospun polyacrylonitrile (PAN) nanofibers. Fibers Polym. 2008, 9, 140–142. [Google Scholar] [CrossRef]
- Son, W.K.; Youk, J.H.; Lee, T.S.; Park, W.H. The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer 2004, 45, 2959–2966. [Google Scholar] [CrossRef]
- Nezarati, R.M.; Eifert, M.B.; Cosgriff-Hernandez, E. Effects of humidity and solution viscosity on electrospun fiber morphology. Tissue Eng. Part C Methods 2013, 19, 810–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vrieze, S.; Van Camp, T.; Nelvig, A.; Hagström, B.; Westbroek, P.; De Clerck, K. The effect of temperature and humidity on electrospinning. J. Mater. Sci. 2009, 44, 1357–1362. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, H.; Xu, L. Preparation and formation mechanism of highly aligned electrospun nanofibers using a modified parallel electrode method. Mater. Des. 2016, 90, 1–6. [Google Scholar] [CrossRef]
- Katta, P.; Alessandro, M.; Ramsier, R.D.; Chase, G.G. Continuous Electrospinning of Aligned Polymer Nanofibers onto a Wire Drum Collector. Nano Lett. 2004, 4, 2215–2218. [Google Scholar] [CrossRef]
- Li, D.; Wang, Y.; Xia, Y. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv. Mater. 2004, 16, 361–366. [Google Scholar] [CrossRef]
- Theron, A.; Zussman, E.; Yarin, A. Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology 2001, 12, 384. [Google Scholar] [CrossRef]
- Kameoka, J.; Craighead, H. Fabrication of oriented polymeric nanofibers on planar surfaces by electrospinning. Appl. Phys. Lett. 2003, 83, 371–373. [Google Scholar] [CrossRef]
- Teo, W.; Kotaki, M.; Mo, X.; Ramakrishna, S. Porous tubular structures with controlled fibre orientation using a modified electrospinning method. Nanotechnology 2005, 16, 918. [Google Scholar] [CrossRef]
- Sundaray, B.; Subramanian, V.; Natarajan, T.; Xiang, R.-Z.; Chang, C.-C.; Fann, W.-S. Electrospinning of continuous aligned polymer fibers. Appl. Phys. Lett. 2004, 84, 1222–1224. [Google Scholar] [CrossRef]
- Dalton, P.D.; Klee, D.; Möller, M. Electrospinning with dual collection rings. Polymer 2005, 46, 611–614. [Google Scholar] [CrossRef]
- Dos Santos, A.; Dierck, J.; Troch, M.; Podevijn, M.; Schacht, E. Production of continuous electrospun mats with improved mechanical properties. Macromol. Mater. Eng. 2011, 296, 637–644. [Google Scholar] [CrossRef]
- Tan, E.; Lim, C. Mechanical Characterization of a Single Nanofiber. In Nanomechanics of Materials and Structures; Springer: New York, NY, USA, 2006; pp. 121–137. [Google Scholar]
- Tan, E.; Lim, C. Mechanical characterization of nanofibers–A review. Compos. Sci. Technol. 2006, 66, 1102–1111. [Google Scholar] [CrossRef]
- Hang, F.; Lu, D.; Bailey, R.J.; Jimenez-Palomar, I.; Stachewicz, U.; Cortes-Ballesteros, B.; Davies, M.; Zech, M.; Bödefeld, C.; Barber, A.H. In situ tensile testing of nanofibers by combining atomic force microscopy and scanning electron microscopy. Nanotechnology 2011, 22, 365708. [Google Scholar] [CrossRef]
- Tan, E.; Lim, C. Novel approach to tensile testing of micro-and nanoscale fibers. Rev. Sci. Instrum. 2004, 75, 2581–2585. [Google Scholar] [CrossRef]
- Baker, S.R.; Banerjee, S.; Bonin, K.; Guthold, M. Determining the mechanical properties of electrospun poly-ε-caprolactone (PCL) nanofibers using AFM and a novel fiber anchoring technique. Mater. Sci. Eng. C 2016, 59, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Gestos, A.; Whitten, P.G.; Spinks, G.M.; Wallace, G.G. Tensile testing of individual glassy, rubbery and hydrogel electrospun polymer nanofibres to high strain using the atomic force microscope. Polym. Test. 2013, 32, 655–664. [Google Scholar] [CrossRef]
- Bazbouz, M.B.; Stylios, G.K. The tensile properties of electrospun nylon 6 single nanofibers. J. Polym. Sci. Part B Polym. Phys. 2010, 48, 1719–1731. [Google Scholar] [CrossRef]
- Tan, E.P.; Lim, C. Effects of annealing on the structural and mechanical properties of electrospun polymeric nanofibres. Nanotechnology 2006, 17, 2649. [Google Scholar] [CrossRef]
- Croisier, F.; Duwez, A.S.; Jérôme, C.; Léonard, A.F.; van der Werf, K.O.; Dijkstra, P.J.; Bennink, M.L. Mechanical testing of electrospun PCL fibers. Acta Biomater. 2012, 8, 218–224. [Google Scholar] [CrossRef]
- Tan, E.; Lim, C. Physical properties of a single polymeric nanofiber. Appl. Phys. Lett. 2004, 84, 1603–1605. [Google Scholar] [CrossRef]
- Gu, S.Y.; Wu, Q.L.; Ren, J.; Vancso, G.J. Mechanical properties of a single electrospun fiber and its structures. Macromol. Rapid Commun. 2005, 26, 716–720. [Google Scholar] [CrossRef]
- Ganser, C.; Hirn, U.; Rohm, S.; Schennach, R.; Teichert, C. AFM nanoindentation of pulp fibers and thin cellulose films at varying relative humidity. Holzforschung 2014, 68, 53–60. [Google Scholar] [CrossRef]
- Standard Test Method for Tensile Properties of Thin Plastic Sheeting. Available online: https://www.astm.org/Standards/D882 (accessed on 15 May 2020).
- Marras, S.I.; Kladi, K.P.; Tsivintzelis, I.; Zuburtikudis, I.; Panayiotou, C. Biodegradable polymer nanocomposites: The role of nanoclays on the thermomechanical characteristics and the electrospun fibrous structure. Acta Biomater. 2008, 4, 756–765. [Google Scholar] [CrossRef]
- Roodbar Shojaei, T.; Hajalilou, A.; Tabatabaei, M.; Mobli, H.; Aghbashlo, M. Characterization and Evaluation of Nanofiber Materials. In Handbook of Nanofibers; Barhoum, A., Bechelany, M., Makhlouf, A.S.H., Eds.; Springer: Cham, Switzerland, 2019; pp. 491–522. [Google Scholar] [CrossRef]
- Wee-Eong, T. ElectrospinTech. Available online: http://electrospintech.com/SOP-ES2002.html#.XrP4_mgzYdU (accessed on 15 May 2020).
- Kaur, S.; Sundarrajan, S.; Rana, D.; Sridhar, R.; Gopal, R.; Matsuura, T.; Ramakrishna, S. Review: The characterization of electrospun nanofibrous liquid filtration membranes. J. Mater. Sci. 2014, 49, 6143–6159. [Google Scholar] [CrossRef]
- Lee, H.; Yamaguchi, K.; Nagaishi, T.; Murai, M.; Kim, M.; Wei, K.; Zhang, K.-Q.; Kim, I.S. Enhancement of mechanical properties of polymeric nanofibers by controlling crystallization behavior using a simple freezing/thawing process. RSC Adv. 2017, 7, 43994–44000. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wang, X.; Lou, X.; Yuan, H.; Tu, H.; Li, B.; Zhang, Y. Genipin-crosslinked electrospun chitosan nanofibers: Determination of crosslinking conditions and evaluation of cytocompatibility. Carbohydr. Polym. 2015, 130, 166–174. [Google Scholar] [CrossRef]
- Wang, X.; Fang, D.; Yoon, K.; Hsiao, B.S.; Chu, B. High performance ultrafiltration composite membranes based on poly (vinyl alcohol) hydrogel coating on crosslinked nanofibrous poly (vinyl alcohol) scaffold. J. Membr. Sci. 2006, 278, 261–268. [Google Scholar] [CrossRef]
- Yoon, K.; Hsiao, B.S.; Chu, B. High flux ultrafiltration nanofibrous membranes based on polyacrylonitrile electrospun scaffolds and crosslinked polyvinyl alcohol coating. J. Membr. Sci. 2009, 338, 145–152. [Google Scholar] [CrossRef]
- Tian, M.; Liao, Y.; Wang, R. Engineering a superwetting thin film nanofibrous composite membrane with excellent antifouling and self-cleaning properties to separate surfactant-stabilized oil-in-water emulsions. J. Membr. Sci. 2020, 596, 117721. [Google Scholar] [CrossRef]
- Satilmis, B.; Uyar, T. Fabrication of thermally crosslinked hydrolyzed polymers of intrinsic microporosity (HPIM)/polybenzoxazine electrospun nanofibrous membranes. Macromol. Chem. Phys. 2019, 220, 1800326. [Google Scholar] [CrossRef] [Green Version]
- Jalaja, K.; Kumar, P.A.; Dey, T.; Kundu, S.C.; James, N.R. Modified dextran cross-linked electrospun gelatin nanofibres for biomedical applications. Carbohydr. Polym. 2014, 114, 467–475. [Google Scholar] [CrossRef]
- Malgarim Cordenonsi, L.; Faccendini, A.; Rossi, S.; Bonferoni, M.C.; Malavasi, L.; Raffin, R.; Scherman Schapoval, E.E.; Del Fante, C.; Vigani, B.; Miele, D.; et al. Platelet lysate loaded electrospun scaffolds: Effect of nanofiber types on wound healing. Eur. J. Pharm. Biopharm. 2019, 142, 247–257. [Google Scholar] [CrossRef]
- Liu, J.; Chen, G.; Gao, H.; Zhang, L.; Ma, S.; Liang, J.; Fong, H. Structure and thermo-chemical properties of continuous bundles of aligned and stretched electrospun polyacrylonitrile precursor nanofibers collected in a flowing water bath. Carbon 2012, 50, 1262–1270. [Google Scholar] [CrossRef]
- Ali, U.; Niu, H.; Abbas, A.; Shao, H.; Lin, T. Online stretching of directly electrospun nanofiber yarns. RSC Adv. 2016, 6, 30564–30569. [Google Scholar] [CrossRef]
- Kim, G.H. Electrospun PCL nanofibers with anisotropic mechanical properties as a biomedical scaffold. Biomed. Mater. 2008, 3, 025010. [Google Scholar] [CrossRef]
- Fennessey, S.F.; Farris, R.J. Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns. Polymer 2004, 45, 4217–4225. [Google Scholar] [CrossRef]
- Barton, A.F.M. Solubility parameters. Chem. Rev. 1975, 75, 731–753. [Google Scholar] [CrossRef]
- Halim, N.; Wirzal, M.; Bilad, M.; Yusoff, A.; Nordin, N.; Putra, Z.; Jaafar, J. Effect of Solvent Vapor Treatment on Electrospun Nylon 6, 6 Nanofiber Membrane. In Proceedings of IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; p. 012019. [Google Scholar]
- Halim, A.; Syakinah, N.; Wirzal, M.D.H.; Bilad, M.R.; Nordin, M.; Hadi, N.A.; Adi Putra, Z.; Sambudi, N.S.; Yusoff, M.; Rahim, A. Improving Performance of Electrospun Nylon 6, 6 Nanofiber Membrane for Produced Water Filtration via Solvent Vapor Treatment. Polymers 2019, 11, 2117. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhu, C.; Xue, J.; Ke, Q.; Xia, Y. Enhancing the mechanical properties of electrospun nanofiber mats through controllable welding at the cross points. Macromol. Rapid Commun. 2017, 38, 1600723. [Google Scholar] [CrossRef] [Green Version]
- Su, C.; Lu, C.; Cao, H.; Tang, K.; Chang, J.; Duan, F.; Ma, X.; Li, Y. Fabrication and post-treatment of nanofibers-covered hollow fiber membranes for membrane distillation. J. Membr. Sci. 2018, 562, 38–46. [Google Scholar] [CrossRef]
- Huang, L.; Manickam, S.S.; McCutcheon, J.R. Increasing strength of electrospun nanofiber membranes for water filtration using solvent vapor. J. Membr. Sci. 2013, 436, 213–220. [Google Scholar] [CrossRef]
- Liu, C.; Li, X.; Liu, T.; Liu, Z.; Li, N.; Zhang, Y.; Xiao, C.; Feng, X. Microporous CA/PVDF membranes based on electrospun nanofibers with controlled crosslinking induced by solvent vapor. J. Membr. Sci. 2016, 512, 1–12. [Google Scholar] [CrossRef]
- Yoon, K.; Hsiao, B.S.; Chu, B. Formation of functional polyethersulfone electrospun membrane for water purification by mixed solvent and oxidation processes. Polymer 2009, 50, 2893–2899. [Google Scholar] [CrossRef]
- Cai, J.; Zhang, Q.; Lei, M.; He, J.; Liu, G. The use of solvent-soaking treatment to enhance the anisotropic mechanical properties of electrospun nanofiber membranes for water filtration. RSC Adv. 2016, 6, 66807–66813. [Google Scholar] [CrossRef]
- Ding, Y.; Wu, J.; Wang, J.; Lin, H.; Wang, J.; Liu, G.; Pei, X.; Liu, F.; Tang, C.Y. Superhydrophilic and mechanical robust PVDF nanofibrous membrane through facile interfacial SPAN-80 welding for excellent oil/water separation. Appl. Surf. Sci. 2019, 485, 179–187. [Google Scholar] [CrossRef]
- Su, C.; Lu, C.; Horseman, T.; Cao, H.; Duan, F.; Li, L.; Li, M.; Li, Y. Dilute solvent welding: A quick and scalable approach for enhancing the mechanical properties and narrowing the pore size distribution of electrospun nanofibrous membrane. J. Membr. Sci. 2020, 595, 117548. [Google Scholar] [CrossRef]
- Namsaeng, J.; Punyodom, W.; Worajittiphon, P. Synergistic effect of welding electrospun fibers and MWCNT reinforcement on strength enhancement of PAN–PVC non-woven mats for water filtration. Chem. Eng. Sci. 2019, 193, 230–242. [Google Scholar] [CrossRef]
- Es-Saheb, M.; Elzatahry, A. Post-heat treatment and mechanical assessment of polyvinyl alcohol nanofiber sheet fabricated by electrospinning technique. Int. J. Polym. Sci. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Cai, N.; Dai, Q.; Li, C.; Hou, D.; Luo, X.; Xue, Y.; Yu, F. Effect of thermal annealing on mechanical properties of polyelectrolyte complex nanofiber membranes. Fibers Polym. 2014, 15, 1406–1413. [Google Scholar] [CrossRef]
- Liang, Y.; Cheng, S.; Zhao, J.; Zhang, C.; Sun, S.; Zhou, N.; Qiu, Y.; Zhang, X. Heat treatment of electrospun Polyvinylidene fluoride fibrous membrane separators for rechargeable lithium-ion batteries. J. Power Sources 2013, 240, 204–211. [Google Scholar] [CrossRef]
- Ramaswamy, S.; Clarke, L.I.; Gorga, R.E. Morphological, mechanical, and electrical properties as a function of thermal bonding in electrospun nanocomposites. Polymer 2011, 52, 3183–3189. [Google Scholar] [CrossRef]
- Lee, S.J.; Oh, S.H.; Liu, J.; Soker, S.; Atala, A.; Yoo, J.J. The use of thermal treatments to enhance the mechanical properties of electrospun poly (ɛ-caprolactone) scaffolds. Biomaterials 2008, 29, 1422–1430. [Google Scholar] [CrossRef]
- Sheng, J.; Li, Y.; Wang, X.; Si, Y.; Yu, J.; Ding, B. Thermal inter-fiber adhesion of the polyacrylonitrile/fluorinated polyurethane nanofibrous membranes with enhanced waterproof-breathable performance. Sep. Purif. Technol. 2016, 158, 53–61. [Google Scholar] [CrossRef]
- Kancheva, M.; Toncheva, A.; Manolova, N.; Rashkov, I. Enhancing the mechanical properties of electrospun polyester mats by heat treatment. Express Polym. Lett. 2015, 9, 49–65. [Google Scholar] [CrossRef] [Green Version]
- Kaur, S.; Barhate, R.; Sundarrajan, S.; Matsuura, T.; Ramakrishna, S. Hot pressing of electrospun membrane composite and its influence on separation performance on thin film composite nanofiltration membrane. Desalination 2011, 279, 201–209. [Google Scholar] [CrossRef]
- Gong, W.; Gu, J.; Ruan, S.; Shen, C. A high-strength electrospun PPESK fibrous membrane for lithium-ion battery separator. Polym. Bull. 2019, 76, 5451–5462. [Google Scholar] [CrossRef]
- Na, H.; Li, Q.; Sun, H.; Zhao, C.; Yuan, X. Anisotropic mechanical properties of hot-pressed PVDF membranes with higher fiber alignments via electrospinning. Polym. Eng. Sci. 2009, 49, 1291–1298. [Google Scholar] [CrossRef]
- Na, H.; Zhao, Y.; Zhao, C.; Zhao, C.; Yuan, X. Effect of hot-press on electrospun poly (vinylidene fluoride) membranes. Polym. Eng. Sci. 2008, 48, 934–940. [Google Scholar] [CrossRef]
- Lee, S.W.; Choi, S.W.; Jo, S.M.; Chin, B.D.; Kim, D.Y.; Lee, K.Y. Electrochemical properties and cycle performance of electrospun poly (vinylidene fluoride)-based fibrous membrane electrolytes for Li-ion polymer battery. J. Power Sources 2006, 163, 41–46. [Google Scholar] [CrossRef]
- Lalia, B.S.; Guillen-Burrieza, E.; Arafat, H.A.; Hashaikeh, R. Fabrication and characterization of polyvinylidenefluoride-co-hexafluoropropylene (PVDF-HFP) electrospun membranes for direct contact membrane distillation. J. Membr. Sci. 2013, 428, 104–115. [Google Scholar] [CrossRef]
- He, B.; Tian, L.; Li, J.; Pan, Z. Effect of hot-stretching on morphology and mechanical properties of electrospun PMIA nanofibers. Fibers Polym. 2013, 14, 405–408. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, L.-g.; Pan, F.-L.; Wang, D.-F.; Pan, Z.-J. Effects of heat treatment on the morphology and performance of PSU electrospun nanofibrous membrane. J. Eng. Fibers Fabr. 2012, 7, 155892501200702S155892501200702. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, K.; Zhu, M.; Hsiao, B.S.; Chu, B. Enhanced mechanical performance of self-bundled electrospun fiber yarns via post-treatments. Macromol. Rapid Commun. 2008, 29, 826–831. [Google Scholar] [CrossRef]
- Elkhaldi, R.M.; Guclu, S.; Koyuncu, I. Enhancement of mechanical and physical properties of electrospun PAN nanofiber membranes using PVDF particles. Desalin. Water Treat. 2016, 57, 26003–26013. [Google Scholar] [CrossRef]
- Song, Z.; Hou, X.; Zhang, L.; Wu, S. Enhancing crystallinity and orientation by hot-stretching to improve the mechanical properties of electrospun partially aligned polyacrylonitrile (PAN) nanocomposites. Materials 2011, 4, 621–632. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.; Yang, X.; Zhang, L.; Waclawik, E.; Wu, S. Stretching-induced crystallinity and orientation to improve the mechanical properties of electrospun PAN nanocomposites. Mater. Des. 2010, 31, 1726–1730. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, F.; Yu, Y.; Li, P.; Yang, X.; Lu, J.; Ryu, S. Preparation of PAN-based carbon nanofibers by hot-stretching. Compos. Interfaces 2008, 15, 671–677. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.; Zhong, G.; Yue, Z.; Chen, G.; Zhang, L.; Vakili, A.; Wang, Y.; Zhu, L.; Liu, J.; Fong, H. Investigation of post-spinning stretching process on morphological, structural, and mechanical properties of electrospun polyacrylonitrile copolymer nanofibers. Polymer 2011, 52, 519–528. [Google Scholar] [CrossRef]
- Zhou, Z.; Lai, C.; Zhang, L.; Qian, Y.; Hou, H.; Reneker, D.H.; Fong, H. Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties. Polymer 2009, 50, 2999–3006. [Google Scholar] [CrossRef]
- Fennessey, S.F.; Pedicini, A.; Farris, R.J. Mechanical Behavior of Nonwoven Electrospun Fabrics and Yarns; ACS Publications: Washington, DC, USA, 2004. [Google Scholar]
ENM | Load Cell | Crosshead Speed | Specimen Dim. | Gauge Length | Remarks | Ref. |
---|---|---|---|---|---|---|
Chitosan (CTS) | 50 N | 30 mm/min | 5 cm × 1.0 cm | Not specified | Uniaxial tensile test | [83] |
Poly(vinyl alcohol) (PVA) | Not specified | 2 mm/min | 20 mm × 5 mm × 100µm (length × width × thickness) | 10 mm | Uniaxial tensile test | [84] |
Gelatin | 100 N | 10 mm/min | 6 cm × 0.4 cm × 0.2 mm | Not specified | Uniaxial tensile test | [88] |
Polyacrylonitrile (PAN) and crosslinked polyvinyl alcohol (PVA) | Not specified | 10 mm/min | Dumbbell shaped specimens, Narrow width at center: 4 mm. Specimen thicknesses: 70–90 µm | 40 mm | Uniaxial tensile test (standard: DIN53504-S3A) | [85] |
Polymers of Intrinsic Microporosity (HPIM)/Polybenzoxazine (BA-a) | Not specified | Force ramp rate: 0.05 N/min | 8 mm × 6 mm × 0.1 mm | Not specified | Dynamic mechanical analysis (DMA) | [87] |
Sodium alginate (SA) and pullulan (PUL) | 5 kg | 5 mm/s | 30 × 10 mm | 20 mm | Uniaxial tensile test | [89] |
ENM | Load Cell | Crosshead Speed | Specimen Dim. | Gauge Length | Remarks | Ref. |
---|---|---|---|---|---|---|
Polyacrylonitrile (PCL) | Not specified | 0.1 mm/s | 2 mm × 15 mm | Not specified | Uniaxial tensile test | [92] |
Polyacrylonitrile (PAN) | Not specified | 2 mm/min | Not specified | 20 mm | Uniaxial tensile test | [93] |
Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) | Not specified | 300 mm/min | Not specified | 30 mm | Uniaxial tensile test | [91] |
ENM | Load Cell | Crosshead Speed | Specimen Dim. | Gauge Length | Remarks | Ref. |
---|---|---|---|---|---|---|
Polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) And polyacrylonitrile (PAN) | Not specified | 3 mm/s | Not specified | Not specified | Electronic fabric strength tester was used | [104] |
Polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) | Not specified | 3 mm/s | Not specified | Not specified | Electronic fabric strength tester was used | [98] |
Polyethersulfone (PES) | Not specified | 10 mm/min | Width at the center of the specimen: 4 mm, specimen thickness: ~40 μm | 25 mm | Uniaxial tensile test | [101] |
Polyacylonitrile (PAN) and polysulfone (PSu) | Not specified | Not specified | 40 mm × 5.5 mm | Not specified | Dynamic Mechanical Analysis | [99] |
Polyvinylidene fluoride (PVDF) | Not specified | 10 mm/min | Width: 10 mm Length: 100–140 mm | 50 mm | Uniaxial tensile test | [103] |
Polyacrylonitrile-poly(vinyl chloride) (PAN–PVC) | Not specified | 10 mm/min | 70 mm × 10 mm, Thickness of as-spun mat: ~0.7 mm, Thickness of post-treated mats ~0.2 mm | 50 mm | Uniaxial tensile test | [105] |
Sample No. | Melting Temperature (°C) | Melting Enthalpy (Jg−1) | Crystallinity (%) | |
---|---|---|---|---|
DSC | WAXD | |||
PVDF powder | 159.5 | 23.4 | 22.3 | - |
A (untreated) | 161.4 | 35.7 | 34.1 | 42.1 |
B (Heat-treated at 150 °C) | 161.7 | 45.4 | 43.3 | 53.5 |
C (Heat-treated at 155 °C) | 162.7 | 53.0 | 50.6 | 58.1 |
D (Heat-treated at 160 °C) | 166.3 | 36.1 | 34.6 | 33.00 |
ENM | Load Cell | Crosshead Speed | Specimen Dim. | Gauge Length | Remarks | Ref. |
---|---|---|---|---|---|---|
Poly (L-lactic acid) (PLLA) | Not applicable | Not applicable | Not applicable | Not applicable | Single fiber three-point bend test, AFM cantilever spring constant: 0.15 N/m Loading rate: 5 µm/s Maximum load: 9 nN. Nanofibers were deposited on silicon wafer having micro sized etched grooves | [72] |
Polyvinyl alcohol (PVA) | Not specified | 1, 5, 10, and 100 mm/min | Not specified | Not specified | ASTM D 882-2002 standard Uniaxial tensile test | [106] |
Poly(L-lactic acid) (PLA) and poly(ε-caprolactone) (PCL) | 2 mV/V, Type: Xforce P, Nominal force: 2.5 kN | 20 mm/min | 20 mm × 60 mm, Thickness: ca. 200 µm | Not specified | Uniaxial tensile test | [112] |
Chitosan-gelatin (CG) | 200 N | 20 mm/min | 60 mm × 5 mm | 40 mm | Uniaxial tensile test | [107] |
Polyvinylidene fluoride (PVDF) | Not specified | 5 mm/min | Not specified | 30 mm | Uniaxial tensile test | [108] |
Poly lactic acid (PLA)– Multi-wall carbon nanotubes (MWCNTs) | Not specified | 10 mm/min | width of 1.5 cm Thickness: 50 mm | 3 cm | Uniaxial tensile test | [109] |
Poly (ε-caprolactone) (PCL) | Not specified | 0.5 mm/s | Tubular scaffold: Diameter: 4.75 mm, Thickness: 0.3 mm, Length: 15 mm | Not specified | Uniaxial tensile test | [110] |
Polyacrylonitrile (PAN)/ fluorinated polyurethane (FPU) | 200 N | 20 mm/min | 30 mm × 3 mm | 10 mm | Uniaxial tensile test | [111] |
ENM | Load Cell | Crosshead Speed | Specimen Dim. | Gauge Length | Remarks | Ref. |
---|---|---|---|---|---|---|
Polyacrylonitrile (PAN) | Not specified | Not specified | 8 cm × 2 cm | Not specified | Uniaxial tensile test | [113] |
Poly(phthalazinone ether sulfone ketone) (PPESK) | Not specified | 5 mm/min | 10 mm × 50 mm | 30 mm | Uniaxial tensile test | [114] |
Polyvinylidene fluoride (PVDF) | 100 N | 5 mm/min | 60 mm × 10 mm | 40 mm | Uniaxial tensile test | [115] |
Poly(vinylidene fluoride (PVDF) | Not specified | 5 mm/min | 60 mm × 10 mm | 40 mm | Uniaxial tensile test | [116] |
Polyvinylidenefluoride-co-hexafluoropropylene (PVDF-HFP) | Not applicable | Not applicable | 50 mm × 50 mm | Not applicable | Mullen-burst test | [118] |
ENM | Load Cell | Crosshead Speed | Specimen Dim. | Gauge Length | Remarks | Ref. |
---|---|---|---|---|---|---|
Polyacrylonitrile (PAN) | Not specified | 0.5 mm/min | 1.5 cm × 1.5 cm (Cardboard frame outer dimensions) | 1 cm × 1 cm (Cardboard frame inner dimensions) | Uniaxial tensile test | [127] |
Poly(mphenylene) isophthalamide Nanofibers (PMIA) | Not specified | 20 mm/min | 50 mm × 5 mm | 20 mm | Uniaxial tensile test | [119] |
Polysulfone (PSU) | Measuring accuracy of strength: 0.01 cN, Measuring accuracy of elongation: 0.01 mm | 10 mm/min | 40 mm × 2 mm | 10 mm | Uniaxial tensile test | [120] |
Polyacrylonitrile (PAN) | Not specified | 15 mm/min | Not specified | 30 mm | Uniaxial tensile test | [121] |
Polyacrylonitrile (PAN) | Not specified | 20 mm/min | 20 mm × 5 mm | Not specified | Uniaxial tensile test | [123] |
Polyacrylonitrile (PAN) | Force resolution of 50 μN | 0.05 mm/min | 10 mm | Not specified | Uniaxial tensile test | [126] |
Polyacrylonitrile (PAN) | Not specified | For dried electrospun fibrous mats: 10 mm/min Dried, twisted yarns of electrospun nanofibers: 2 mm/min | Not specified | 20 mm | For electrospun mats: ASTM 1708D Uniaxial tensile test | [128] |
Polyacrylonitrile (PAN) | Not specified | Not specified | 20 mm × 5 mm | Not specified | Uniaxial tensile test | [124] |
Polyacrylonitrile (PAN) | Not specified | Not specified | 20 mm × 5 mm | Not specified | Uniaxial tensile test | [125] |
Nature of Treatment | Primary Control Parameter | Secondary Control Parameter | Remarks |
---|---|---|---|
Crosslinking | Crosslinker concentration | Temperature | Crosslinker compatibility and reactivity are critical factors. |
Annealing | Temperature | Duration | Temperature range should be maintained above crystallization temperature (Tc) and below melting point (Tm), which usually results in increased crystallinity. |
Temperatures maintained between Tg and Tm result in better strength. | |||
Temperatures maintained close to Tg result in improved elastic modulus. | |||
Hot stretching | Temperature and stretching force | Duration | |
Hot pressing | Temperature and applied pressure | Duration | Temperatures should be below Tm. |
Generally, temperatures lower than those used for annealing are employed. | |||
If temperature is too close to the melting point, the duration of treatment should be significantly reduced to preserve fibrous morphology. | |||
Solvent welding | Vapor pressure | Duration | Solubility of polymer in the solvent is an important determinant, the criterion for which is: |
|δs − δp| ≤ 2 *. | |||
Stretching/drawing | Draw ratio | None | In certain cases, an optional twist may also be applied. |
Nature of Treatment | Effect of the Treatment on | Remarks | ||||
---|---|---|---|---|---|---|
Diameter | Crystallinity | Tensile Strength | Young’s Modulus | Failure Strain | ||
Crosslinking | No significant impact | Decreases | Increases | Increases | Usually decreases | Crosslinker concentration has significant impact on the overall properties. |
Annealing | Depends on the type of polymer and annealing temperature selected (if fibers undergo melting as a result of heat treatment, diameter increases) | Usually Increases (when treatment carried out above crystallization temperature) | Increases | Increases | Depends on the type of polymer and annealing temperature selected | A range of temperatures selected between Tg and Tm or Tc and Tm can have diversely different effects on the properties of different polymers. If treatment is carried out at T > Tc, crystallinity increases. |
Hot stretching | Decreases | Increases | Increases | Increases | Depends on the type of polymer and hot pressing conditions | |
Hot pressing | Increases | Increases | Increases | Increases | Depends on the type of polymer and hot pressing conditions | |
Solvent welding | Unaffected | Unaffected | Increases | Increases | Usually increases | Failure strain increases when plasticization effect of the solvent dominates. |
Stretching/ drawing | Decreases | Increases | Increases | Increases | Decreases |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nauman, S.; Lubineau, G.; Alharbi, H.F. Post Processing Strategies for the Enhancement of Mechanical Properties of ENMs (Electrospun Nanofibrous Membranes): A Review. Membranes 2021, 11, 39. https://doi.org/10.3390/membranes11010039
Nauman S, Lubineau G, Alharbi HF. Post Processing Strategies for the Enhancement of Mechanical Properties of ENMs (Electrospun Nanofibrous Membranes): A Review. Membranes. 2021; 11(1):39. https://doi.org/10.3390/membranes11010039
Chicago/Turabian StyleNauman, Saad, Gilles Lubineau, and Hamad F. Alharbi. 2021. "Post Processing Strategies for the Enhancement of Mechanical Properties of ENMs (Electrospun Nanofibrous Membranes): A Review" Membranes 11, no. 1: 39. https://doi.org/10.3390/membranes11010039
APA StyleNauman, S., Lubineau, G., & Alharbi, H. F. (2021). Post Processing Strategies for the Enhancement of Mechanical Properties of ENMs (Electrospun Nanofibrous Membranes): A Review. Membranes, 11(1), 39. https://doi.org/10.3390/membranes11010039