Crosslinked Sulfonated Polyphenylsulfone (CSPPSU) Membranes for Elevated-Temperature PEM Water Electrolysis
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Sulfonation of PPSU
2.3. Preparation of CSPPSU Membranes
2.4. Activation Treatment of CSPPSU Membranes
2.5. Molecular Weight (Mw), Ion Exchange Capacity (IEC), Degree of Sulfonation (D.S.), Water Uptake (W.U.)
2.6. Small Angle X-ray Scattering (SAXS) Measurements of CSPPSU Membranes
2.7. Water Stability Measurements on the CSPPSU Membranes
2.8. Conductivity Measurements on the CSPPSU Membranes
2.9. Water Electrolysis Measurements
2.9.1. CSPPSU Membranes for Membrane Electrode Assembly (MEA)
2.9.2. Catalyst Electrodes for MEA
2.9.3. Single Cell and Water Electrolysis System
2.9.4. Water Electrolysis Measurements
3. Results and Discussions
3.1. Properties of the SPPSU Polymer
3.2. Stability of the Sulfone Groups of the CSPPSU Membranes
3.3. Elevated-Temperature Stabilities of the CSPPSU Membranes Using SAXS
3.4. Conductivity Properties of the CSPPSU Membranes Using Water Electrolysis System
3.5. Elevated-Temperature Water Electrolysis
3.6. Time Dependence of Elevated-Temperature Water Electrolysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, B.; Zhao, M.; Liu, Q.; Zhang, X.; Fu, Y.; Zhang, E.; Wang, G.; Zhang, Z.; Zhang, S. Advanced anion exchange membranes with selective swelling-induced ion transport channels for vanadium flow battery application. J. Membr. Sci. 2021, 642, 119985–119992. [Google Scholar] [CrossRef]
- Amici, J.; Torchio, C.; Versaci, D.; Dessantis, D.; Marchisio, A.; Caldera, F.; Bella, F.; Francia, C.; Bodoardo, S. Nanosponge-based composite gel polymer electrolyte for safer Li-O2 batteries. Polymers 2021, 13, 1625. [Google Scholar] [CrossRef]
- Piana, G.; Ricciardi, M.; Bella, F.; Cucciniello, R.; Proto, A.; Gerbaldi, C. Poly(glycidyl ether)s recycling from industrial waste and feasibility study of reuse as electrolytes in sodium-based batteries. Chem. Eng. J. 2020, 382, 122934. [Google Scholar] [CrossRef]
- Haro, J.C.; Tatsi, E.; Fagiolari, L.; Bonomo, M.; Barolo, C.; Turri, S.; Bella, F.; Griffini, G. Lignin-based polymer electrolyte membranes for sustainable aqueous dye-sensitized solar cells. ACS Sustain. Chem. Eng. 2021, 9, 8550–8560. [Google Scholar] [CrossRef] [PubMed]
- Esmaeilli, N.; Gray, E.M.; Webb, C.J. Non-fluorinated polymer composite proton exchange membranes for fuel cell applications. Chem. Phys. Chem. 2019, 20, 2016–2053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babic, U.; Suermann, M.; Buchi, F.N.; Gubler, L.; Schmidt, T.J. Identifying critical gaps for polymer electrolyte water electrolysis development. J. Electrochem. Soc. 2017, 64, F387–F399. [Google Scholar] [CrossRef] [Green Version]
- Hara, D. Toward a hydrogen society—Introduction of representative projects in Japan. ECS Trans. 2019, 91, 3–7. [Google Scholar] [CrossRef]
- Blagojevic, V.A.; Minic, D.G.; Novakovic, J.G.; Minic, D.M. Hydrogen economy: Modern concepts, challenges and perspectives (chapter 1). Hydrog. Energy–Chall. Perspect. 2012, 17, 3–28. [Google Scholar] [CrossRef] [Green Version]
- Holladay, J.D.; Hu, J.; King, L.L.; Wang, Y. An overview of hydrogen production technologies. Catal. Today 2009, 139, 244–260. [Google Scholar] [CrossRef]
- Marini, S.; Salvi, P.; Nelli, P.; Pesenti, R.; Villa, M.; Berrettoni, M.; Zangari, G.; Kiros, Y. Advanced alkaline water electrolysis. Electrochim. Acta 2012, 82, 384–391. [Google Scholar] [CrossRef]
- Ito, H.; Miyazaki, N.; Sugiyama, S.; Ishida, M.; Nakamura, Y.; Iwasaki, S.; Hasegawa, Y.; Nakano, A. Investigations on electrode configurations for anion exchange membrane electrolysis. J. Appl. Electrochem. 2018, 48, 305–316. [Google Scholar] [CrossRef]
- Paidar, M.; Fateev, V.; Bouzek, K. Membrane electrolysis-history, current status and perspective. Electrochim. Acta 2016, 209, 737–756. [Google Scholar] [CrossRef] [Green Version]
- Carmo, M.; Fritz, D.L.; Mergel, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 2013, 38, 4901–4934. [Google Scholar] [CrossRef]
- Ioroi, T.; Yasuda, K.; Siroma, Z.; Fujiwara, N.; Miyazaki, Y. Thin film electrocatalyst layer for unitized regenerative polymer electrolyte fuel cells. J. Power Sources 2002, 112, 583–587. [Google Scholar] [CrossRef]
- Rasten, E.; Hagen, G.; Tunold, R. Electrocatalysis in water electrolysis with solid polymer electrolyte. Electrochim. Acta 2003, 48, 3945–3952. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Zhang, H.; Ma, X.; Shao, Z.; Baker, R.T.; Yi, B. Electrochemical investigation of electrocatalysts for the oxygen evolution reaction in PEM water electrolyzers. Int. J. Hydrogen Energy 2008, 33, 4955–4961. [Google Scholar] [CrossRef]
- Li, G.; Yu, H.; Wang, X.; Sun, S.; Li, Y.; Shao, Z.; Yi, B. Highly effective IrxSn1−xO2 electrocatalysts for oxygen evolution reaction in the solid polymer electrolyte water electrolyser. Phys. Chem. Chem. Phys. 2013, 15, 2858–2866. [Google Scholar] [CrossRef] [PubMed]
- Antolini, E. Iridium as catalyst and cocatalyst for oxygen evolution/reduction in acidic polymer electrolyte membrane electrolyzers and fuel cells. ACS Catal. 2014, 4, 1426–1440. [Google Scholar] [CrossRef]
- Siracusano, S.; van Dijk, N.; Payne-Johnson, E.; Baglio, V.; Arico, A.S. Nanosized IrOx and IrRuOx electrocatalysts for the O2 evolution reaction in PEM water electrolysers. Appl. Catal. B Environ. 2015, 164, 488–495. [Google Scholar] [CrossRef]
- Lee, B.-S.; Ahn, S.H.; Park, H.-Y.; Choi, I.; Yoo, S.J.; Kim, H.-J.; Henkensmeier, D.; Kim, J.Y.; Park, S.; Nam, S.W.; et al. Development of electrodeposited IrO2 electrodes as anodes in polymer electrolyte membrane water electrolysis. Appl. Catal. B Environ. 2015, 179, 285–291. [Google Scholar] [CrossRef]
- Seitz, L.C.; Dickens, C.F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H.W.; Norskov, J.K.; et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011–1014. [Google Scholar] [CrossRef]
- Lettenmeier, P.; Wang, L.; Golla-Schindler, U.; Gazdzicki, P.; Canas, N.A.; Handl, M.; Hiesgen, R.; Hosseiny, S.S.; Gago, A.S.; Friedrich, K.A. Nanosized IrOx−Ir catalyst with relevant activity for anodes of proton exchange membrane electrolysis produced by a cost-effective procedure. Angew. Chem. Int. Ed. 2016, 55, 742–746. [Google Scholar] [CrossRef]
- Bernt, M.; Gasteiger, H.A. Influence of ionomer content in IrO2/TiO2 electrodes on PEM water electrolyzer performance. J. Electrochem. Soc. 2016, 163, F3179–F3189. [Google Scholar] [CrossRef]
- Siracusano, S.; Baglio, V.; Dijk, N.V.; Merlo, L.; Arico, A.S. Enhanced performance and durability of low catalyst loading PEM water electrolyser based on a short-side chain perfluorosulfonic ionomer. Appl. Energy 2017, 192, 477–489. [Google Scholar] [CrossRef]
- Siracusano, S.; Grigoriev, S.A.; Merlo, L.; Fateev, V.N.; Arico, A.S. The influence of iridium chemical oxidation state on the performance and durability of oxygen evolution catalysts in PEM electrolysis. J. Power Sources 2017, 366, 105–114. [Google Scholar] [CrossRef]
- Liu, C.; Carmo, M.; Bender, G.; Everwand, A.; Lickert, T.; Young, J.L.; Smolinka, T.; Stolten, D.; Lehnert, W. Performance enhancement of PEM electrolyzers through iridium-coated titanium porous transport layers. Electrochem. Commu. 2018, 97, 96–99. [Google Scholar] [CrossRef]
- Zhao, S.; Stocks, A.; Rasimick, B.; More, K.; Xu, H. Highly active, durable dispersed Iridium nanocatalysts for PEM water electrolyzers. J. Electrochem. Soc. 2018, 165, F82–F89. [Google Scholar] [CrossRef]
- Mandal, M.; Valls, A.; Gangnus, N.; Secanell, M. Analysis of inkjet printed catalyst coated membranes for polymer electrolyte electrolyzers. J. Electrochem. Soc. 2018, 165, F543–F552. [Google Scholar] [CrossRef] [Green Version]
- Buhler, M.; Holzapfel, P.; McLaughlim, D.; Thiele, S. From catalyst coated membranes to porous transport electrode based configurations in PEM water electrolyzers. J. Electrochem. Soc. 2019, 166, F1070–F1078. [Google Scholar] [CrossRef] [Green Version]
- Holzapfel, P.; Buhler, M.; Pham, C.V.; Hegge, F.; Bohm, T.; McLaughlin, D.; Breitwieser, M.; Thiele, S. Directly coated membrane electrode assemblies for proton exchange membrane water electrolysis. Electrochem. Commu. 2020, 110, 106640–106644. [Google Scholar] [CrossRef]
- Pham, C.V.; Buhler, M.; Knoppel, J.; Bierling, M.; Seeberger, D.; Escalera-Lopez, D.; Mayrhofer, K.J.J.; Cherevko, S.; Thiele, S. IrO2 coated TiO2 core-shell microparticles advance performance of low loading proton exchange membrane water electolyzers. Appl. Catal. B Environ. 2020, 269, 118762–118773. [Google Scholar] [CrossRef]
- Spori, C.; Brand, C.; Kroschel, M.; Strasser, P. Accelerated degradation protocols for iridium-based oxygen evolving catalysts in water splitting devices. J. Electrochem. Soc. 2021, 168, 034508–034513. [Google Scholar] [CrossRef]
- Kim, J.-D.; Ohira, A. Water electrolysis using a porous IrO2/Ti/IrO2 catalyst electrode and Nafion membranes at elevated temperatures. Membranes 2021, 11, 330. [Google Scholar] [CrossRef]
- Lee, B.-S.; Park, H.-Y.; Choi, I.; Cho, M.K.; Kim, H.-J.; Yoo, S.J.; Henkensmeier, D.; Kim, J.Y.; Nam, S.W.; Park, S.; et al. Polarization characteristics of a low catalyst loading PEM water electrolyzer operating at elevated temperature. J. Power Sources 2016, 309, 127–134. [Google Scholar] [CrossRef]
- Choe, S.; Lee, B.-S.; Cho, M.K.; Kim, H.-J.; Henkensmeier, D.; Yoo, S.J.; Kim, J.Y.; Lee, S.Y.; Park, H.S.; Jang, J.H. Electrodeposited IrO2/Ti electrodes as durable and cost-effective anodes in high-temperature polymer-membrane-electrolyte water electrolyzers. Appl. Catal. B Environ. 2018, 226, 289–294. [Google Scholar] [CrossRef]
- Kusoglu, A.; Weber, A.Z. New insights into perfluorinated sulfonic-acid ionomers. Chem. Rev. 2017, 117, 987–1104. [Google Scholar] [CrossRef]
- Ito, H.; Maeda, T.; Nakano, A.; Takenaka, H. Properties of Nafion membranes under PEM water electrolysis conditions. Int. J. Hydrogen Energy 2011, 36, 10527–10540. [Google Scholar] [CrossRef]
- Siracusano, S.; Baglio, V.; Stassi, A.; Merlo, L.; Moukheiber, E.; Arico, A.S. Performance analysis of short-side-chain Aquivion® perfluorosulfonic acid polymer for proton exchange membrane water electrolysis. J. Mem. Sci. 2014, 466, 1–7. [Google Scholar] [CrossRef]
- Albert, A.; Barnett, A.O.; Thomassen, M.S.; Schmidt, T.J. Radiation-grafted polymer electrolyte membranes for water electrolysis cells: Evaluation of key membrane properties. Appl. Mater. Interfaces 2015, 7, 22203–22212. [Google Scholar] [CrossRef] [PubMed]
- Albert, A.; Schmidt, T.J.; Gubler, L. Stability and degradation mechanisms of radiation-grafted polymer electrolyte membranes for water electrolysis. Appl. Mater. Interfaces 2016, 8, 15297–15306. [Google Scholar] [CrossRef]
- Jang, I.-Y.; Kweon, O.-H.; Kim, K.-E.; Hwang, G.-J.; Moon, S.-B.; Kang, A.-S. Covalently cross-linked sulfonated poly(ether ether ketone)/tungstophosphoric acid composite membranes for water electrolysis application. J. Power Sources 2008, 181, 127–134. [Google Scholar] [CrossRef]
- Jang, I.-Y.; Kweon, O.-H.; Kim, K.-E.; Hwang, G.-J.; Moon, S.-B.; Kang, A.-S. Application of polysulfone (PSf)—and polyether ether ketone (PEEK)—tungstophosphoric acid (TPA) composite membranes for water electrolysis. J. Membr. Sci. 2008, 322, 154–161. [Google Scholar] [CrossRef]
- Deimede, V.; Labou, D.; Neophytides, S.G. Polymer electrolyte membranes based on blends of sulfonated polysulfone and PEO-grafted polyehtersulfone for low temperature water electrolysis. J. Appl. Polym. Sci. 2014, 131, 39922–39929. [Google Scholar] [CrossRef]
- Siracusano, S.; Baglio, V.; Lufrano, F.; Staiti, P.; Arcico, A.S. Electrochemical characterization of a PEM water electrolyzer based on a sulfonated polysulfone membrane. J. Membr. Sci. 2008, 448, 209–214. [Google Scholar] [CrossRef]
- Klose, C.; Saatkamp, T.; Munchinger, A.; Bohn, L.; Titvinidze, G.; Breitwieser, M.; Kreuer, K.-D.; Vierrath, S. All-hydrocarbon MEA for PEM water electrolysis combining low hydrogen crossover and high efficiency. Adv. Energy Mater. 2020, 10, 1903995–1904003. [Google Scholar] [CrossRef]
- Park, J.E.; Kim, J.; Han, J.; Kim, K.; Park, S.; Kim, S.; Park, H.S.; Cho, Y.-H.; Lee, J.C.; Sung, Y.-E. High-performance proton-exchange membrane water electrolysis using a sulfonated poly(arylene ether sulfone) membrane and ionomer. J. Membr. Sci. 2021, 620, 11871–118879. [Google Scholar] [CrossRef]
- Antonucci, V.; di Blasi, A.; Baglio, V.; Ornelas, R.; Matteucci, F.; Ledesma-Garcia, J.; Arriaga, L.G.; Arico, A.S. High temperature operation of a composite membrane-based solid polymer electrolyte water electrolyser. Electrochim. Acta 2008, 53, 7350–7356. [Google Scholar] [CrossRef]
- Xu, W.; Scott, K.; Basu, S. Performance of a high temperature polymer electrolyte membrane water electrolyser. J. Power Sources 2011, 196, 8918–8924. [Google Scholar] [CrossRef]
- Li, H.; Fujigaya, T.; Nakajima, H.; Inada, A.; Ito, K. Optimum structural properties for an anode current collector used in a polymer electrolyte membrane water electrolyzer operated at the boiling point of water. J. Power Sources 2016, 332, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Aili, D.; Hansen, M.K.; Pan, C.; Li, Q.; Christensen, E.; Jensen, J.O.; Bjerrum, N.J. Phosphoric acid doped membranes based on Nafion®, PBI and their blends—Membrane preparation, characterization and steam electrolysis testing. Int. J. Hydrogen Energy 2011, 36, 6985–6993. [Google Scholar] [CrossRef]
- Xu, J.; Aili, D.; Li, Q.; Christensen, E.; Jensen, J.O.; Zhang, W.; Hansen, M.K.; Liu, G.; Wang, X.; Bjerrum, N.J. Oxygen evolution catalysts on supports with a 3-D ordered array structure and intrinsic proton conductivity for proton exchange membrane stem electrolysis. Energy Environ. Sci. 2014, 7, 820–830. [Google Scholar] [CrossRef]
- Malis, J.; Mazur, P.; Paidar, M.; Bystron, T.; Bouzek, K. Nafion 117 stability under conditions of PEM water electrolysis at elevated temperature and pressure. Int. J. Hydrogen Energy 2016, 41, 2177–2188. [Google Scholar] [CrossRef]
- Casciola, M.; Alberti, G.; Sganappa, M.; Narducci, R. On the decay of Nafion proton conductivity at high temperature and relative humidity. J. Power Sources 2006, 162, 141–145. [Google Scholar] [CrossRef]
- LaConti, A.B.; Liu, H.; Mittelsteadt, C.; McDonald, R.C. Polymer electrolyte membrane degradation mechanisms in fuel cells-findings over the past 30 years and comparison with electrolyzers. ECS Trans. 2006, 1, 199–219. [Google Scholar] [CrossRef]
- Chandan, A.; Hattenberger, M.; El-kharouf, A.; Du, S.; Dhir, A.; Self, V.; Pollet, B.G.; Ingram, A.; Bujalski, W. High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC). J. Power Sources 2013, 231, 264–278. [Google Scholar] [CrossRef]
- Kim, J.-D.; Donnadio, A.; Jun, M.-S.; di Vona, M.L. Crosslinked SPES-SPPSU membranes for high temperature PEMFCs. Int. J. Hydrogen Energy 2013, 38, 1517–1523. [Google Scholar] [CrossRef]
- Kim, J.-D.; Ghil, L.-J. Annealing effect of highly sulfonated polyphenylsulfone polymer. Int. J. Hydrogen Energy 2016, 41, 11794–11800. [Google Scholar] [CrossRef]
- Zhang, Y.; Kim, J.-D.; Miyatake, K. Effect of thermal crosslinking on the properties of sulfonated poly(phenylene sulfone)s as proton conductive membranes. J. Appl. Polym. Sci. 2016, 133, 44218–44225. [Google Scholar] [CrossRef]
- Matsushita, S.; Kim, J.-D. Organic solvent-free preparation of electrolyte membranes with high proton conductivity using aromatic hydrocarbon polymers and small cross-linker molecules. Solid State Ion. 2018, 316, 102–109. [Google Scholar] [CrossRef]
- Kim, J.-D.; Matsushita, S.; Tamura, K. Crosslinked sulfonated polyhenylsulfone-vinylon (CSPPSU-vinylon) membranes for PEM fuel cells from SPPSU and polyvinyl alcohol (PVA). Polymers 2020, 12, 1354. [Google Scholar] [CrossRef] [PubMed]
- Nor, N.A.M.; Nakao, H.; Jaafar, J.; Kim, J.-D. Crosslinked carbon nanodots with highly sulfonated polyphenylsulfone as proton exchange membrane for fuel cell applications. Int. J. Hydrogen Energy 2020, 45, 9979–9988. [Google Scholar]
- Kim, J.-D.; Ohira, A.; Nakao, H. Chemically crosslinked sulfonated polyphenylsulfone (CSPPSU) membranes for PEM fuel cells. Membranes 2020, 10, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nor, N.A.M.; Tamura, K.; Jaafar, J.; Kim, J.-D.; Ismail, A.F.; Othman, M.H.D.; Rahman, M.A. A novel imogolite-reinforced sulfonated polyphenylsulfone as proton exchange membrane in fuel cell applications. J. Environ. Chem. Eng. 2021, 9, 105641–105648. [Google Scholar] [CrossRef]
- Takagi, H.; Igarashi, N.; Nagatani, Y.; Ohta, H.; Mori, T.; Kosuge, T.; Shimizu, N. New High-Brilliance Small Angle X-ray Scattering Beamline, BL-15A2 at the Photon Factory. In Proceedings of the AIP Conference Proceedings, Taipei, Taiwan, 11–15 June 2018; Volume 2054, pp. 060038-1–060038-6. [Google Scholar]
- Matos, B.R.; Goulart, C.A.; Santiago, E.I.; Muccillo, R.; Fonseca, F.C. Proton conductivity of perfluorosulfonate ionomers at high temperature and high relative humidity. Appl. Phys. Lett. 2014, 104, 091904. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-D.; Ohira, A.; Nakao, H. High-performance Nafion membrane modified using a 1,2,4-triazole derivative. ECSarXiv 2019, 1–15. [Google Scholar] [CrossRef]
CSPPSU Membrane | IEC (meq/g) | W.U. (%) | Conductivity (mS/cm), 80 °C | |
---|---|---|---|---|
40% RH | 90% RH | |||
Before treatment | 1.64 | 32.5 | 1.1 | 12.0 |
85 °C, 3600 h | 1.72 | 43.5 | 1.3 | 14.0 |
150 °C, 2184 h | 1.71 | 41.9 | 1.0 | 12.7 |
80 °C | 100 °C | 120 °C | 150 °C | |
---|---|---|---|---|
R intercept (mohm) | 125 | 120 | 115 | 109 |
Conductivity (mS/cm) | 26 | 27 | 28 | 30 |
Temperature (°C) | Rs (ohm) | Rct (ohm) | CPE-T (F) | CPE-p |
---|---|---|---|---|
80 | 0.052 | 8 | 0.01 | 0.7 |
100 | 0.049 | 4.5 | 0.01 | 0.7 |
120 | 0.049 | 2.8 | 0.009 | 0.75 |
150 | 0.049 | 0.9 | 0.005 | 0.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Ohira, A. Crosslinked Sulfonated Polyphenylsulfone (CSPPSU) Membranes for Elevated-Temperature PEM Water Electrolysis. Membranes 2021, 11, 861. https://doi.org/10.3390/membranes11110861
Kim J, Ohira A. Crosslinked Sulfonated Polyphenylsulfone (CSPPSU) Membranes for Elevated-Temperature PEM Water Electrolysis. Membranes. 2021; 11(11):861. https://doi.org/10.3390/membranes11110861
Chicago/Turabian StyleKim, Jedeok, and Akihiro Ohira. 2021. "Crosslinked Sulfonated Polyphenylsulfone (CSPPSU) Membranes for Elevated-Temperature PEM Water Electrolysis" Membranes 11, no. 11: 861. https://doi.org/10.3390/membranes11110861
APA StyleKim, J., & Ohira, A. (2021). Crosslinked Sulfonated Polyphenylsulfone (CSPPSU) Membranes for Elevated-Temperature PEM Water Electrolysis. Membranes, 11(11), 861. https://doi.org/10.3390/membranes11110861