Recent Advances in Catalysts and Membranes for MCH Dehydrogenation: A Mini Review
Abstract
:1. Introduction
2. Catalysts for MCH Dehydrogenation
3. Membranes for MCH Dehydrogenation
4. Catalytic Membrane Reactor
5. Commercial Development
6. Challenges and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bruce, S.T.M.; Hayward, J.; Schmidt, E.; Munnings, C.P.D.; Hartley, P. National Hydrogen Roadmap: Pathways to an Economically Sustainable Hydrogen Industry in Australia. Available online: https://www.csiro.au/en/work-with-us/services/consultancy-strategic-advice-services/csiro-futures/futures-reports/hydrogen-roadmap (accessed on 10 September 2021).
- Hydrogen Council Study Report “Path to Hydrogen Competitiveness—A Cost Perspective”. Available online: https://hydrogencouncil.com/wp-content/uploads/2020/01/Path-to-Hydrogen-Competitiveness_Full-Study-1.pdf (accessed on 20 January 2020).
- Mohan, M.; Sharma, V.K.; Kumar, E.A.; Gayathri, V. Hydrogen storage in carbon materials-A review. Energy Storage 2019, 1, 26. [Google Scholar] [CrossRef]
- Hassan, I.A.; Ramadan, H.S.; Saleh, M.A.; Hissel, D. Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives. Renew. Sustain. Energy Rev. 2021, 149, 27. [Google Scholar] [CrossRef]
- Dundar-Tekkaya, E.; Yurum, Y. Mesoporous MCM-41 material for hydrogen storage: A short review. Int. J. Hydrogen Energy 2016, 41, 9789–9795. [Google Scholar] [CrossRef]
- Marques, F.; Balcerzak, M.; Winkelmann, F.; Zepon, G.; Felderhoff, M. Review and outlook on high-entropy alloys for hydrogen storage. Energy Environ. Sci. 2021, 14, 5191–5227. [Google Scholar] [CrossRef]
- Ren, X.L.; Shi, P.H.; Yao, B.D.; Wu, L.; Wu, X.Y.; Wang, Y.X. Hydrogen solution in high-entropy alloys. Phys. Chem. Chem. Phys. 2021. [Google Scholar] [CrossRef]
- Ren, J.W.; Musyoka, N.M.; Langmi, H.W.; Mathe, M.; Liao, S.J. Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review. Int. J. Hydrogen Energy 2017, 42, 289–311. [Google Scholar] [CrossRef]
- Sinigaglia, T.; Lewiski, F.; Martins, M.E.S.; Siluk, J.C.M. Production, storage, fuel stations of hydrogen and its utilization in automotive applications-a review. Int. J. Hydrogen Energy 2017, 42, 24597–24611. [Google Scholar] [CrossRef]
- Shet, S.P.; Priya, S.S.; Sudhakar, K.; Tahir, M. A review on current trends in potential use of metal-organic framework for hydrogen storage. Int. J. Hydrogen Energy 2021, 46, 11782–11803. [Google Scholar] [CrossRef]
- Hou, Q.H.; Yang, X.L.; Zhang, J.Q. Review on Hydrogen Storage Performance of MgH2: Development and Trends. ChemistrySelect 2021, 6, 1589–1606. [Google Scholar] [CrossRef]
- Schneemann, A.; White, J.L.; Kang, S.; Jeong, S.; Wan, L.W.F.; Cho, E.S.; Heo, T.W.; Prendergast, D.; Urban, J.J.; Wood, B.C.; et al. Nanostructured Metal Hydrides for Hydrogen Storage. Chem. Rev. 2018, 118, 10775–10839. [Google Scholar] [CrossRef]
- von Colbe, J.B.; Ares, J.R.; Barale, J.; Baricco, M.; Buckley, C.; Capurso, G.; Gallandat, N.; Grant, D.M.; Guzik, M.N.; Jacob, I.; et al. Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives. Int. J. Hydrogen Energy 2019, 44, 7780–7808. [Google Scholar] [CrossRef]
- Tarasov, B.P.; Fursikov, P.V.; Volodin, A.A.; Bocharnikov, M.S.; Shimkus, Y.Y.; Kashin, A.M.; Yartys, V.A.; Chidziva, S.; Pasupathi, S.; Lototskyy, M.V. Metal hydride hydrogen storage and compression systems for energy storage technologies. Int. J. Hydrogen Energy 2021, 46, 13647–13657. [Google Scholar] [CrossRef]
- Rao, P.C.; Yoon, M. Potential Liquid-Organic Hydrogen Carrier (LOHC) Systems: A Review on Recent Progress. Energies 2020, 13, 6040. [Google Scholar] [CrossRef]
- Makaryan, I.A.; Sedov, I.V.; Maksimov, A.L. Hydrogen Storage Using Liquid Organic Carriers. Russ. J. Appl. Chem. 2020, 93, 1815–1830. [Google Scholar] [CrossRef]
- Modisha, P.M.; Ouma, C.N.M.; Garidzirai, R.; Wasserscheid, P.; Bessarabov, D. The Prospect of Hydrogen Storage Using Liquid Organic Hydrogen Carriers. Energy Fuels 2019, 33, 2778–2796. [Google Scholar] [CrossRef]
- Bourane, A.; Elanany, M.; Pham, T.V.; Katikaneni, S.P. An overview of organic liquid phase hydrogen carriers. Int. J. Hydrogen Energy 2016, 41, 23075–23091. [Google Scholar] [CrossRef]
- Aaldto-Saksa, P.T.; Cook, C.; Kiviaho, J.; Repo, T. Liquid organic hydrogen carriers for transportation and storing of renewable energy—Review and discussion. J. Power Sources 2018, 396, 803–823. [Google Scholar] [CrossRef]
- He, T.; Pei, Q.J.; Chen, P. Liquid organic hydrogen carriers. J. Energy Chem. 2015, 24, 587–594. [Google Scholar] [CrossRef] [Green Version]
- Preuster, P.; Papp, C.; Wasserscheid, P. Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen -free Hydrogen Economy. Acc. Chem. Res. 2017, 50, 74–85. [Google Scholar] [CrossRef]
- Niermann, M.; Timmerberg, S.; Drunert, S.; Kaltschmitt, M. Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen. Renew. Sustain. Energy Rev. 2021, 135, 110171. [Google Scholar] [CrossRef]
- Niermann, M.; Beckendorff, A.; Kaltschmitt, M.; Bonhoff, K. Liquid Organic Hydrogen Carrier (LOHC)—Assessment based on chemical and economic properties. Int. J. Hydrogen Energy 2019, 44, 6631–6654. [Google Scholar] [CrossRef]
- Gianotti, E.; Taillades-Jacquin, M.; Roziere, J.; Jones, D.J. High-Purity Hydrogen Generation via Dehydrogenation of Organic Carriers: A Review on the Catalytic Process. ACS Catal. 2018, 8, 4660–4680. [Google Scholar] [CrossRef]
- Zhu, Q.L.; Xu, Q. Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage. Energy Environ. Sci. 2015, 8, 478–512. [Google Scholar] [CrossRef]
- Dong, Y.; Yang, M.; Mei, P.; Li, C.G.; Li, L.L. Dehydrogenation kinetics study of perhydro-N-ethylcarbazole over a supported Pd catalyst for hydrogen storage application. Int. J. Hydrogen Energy 2016, 41, 8498–8505. [Google Scholar] [CrossRef]
- Brayton, D.F.; Jensen, C.M. Dehydrogenation of pyrrolidine based liquid organic hydrogen carriers by an iridium pincer catalyst, an isothermal kinetic study. Int. J. Hydrogen Energy 2015, 40, 16266–16270. [Google Scholar] [CrossRef]
- Nakayama, J.; Aoki, H.; Homma, T.; Yamaki, N.; Miyake, A. Thermal hazard analysis of a dehydrogenation system involving methylcyclohexane and toluene. J. Therm. Anal. Calorim. 2018, 133, 805–812. [Google Scholar] [CrossRef] [Green Version]
- Markiewicz, M.; Zhang, Y.Q.; Empl, M.T.; Lykaki, M.; Thoming, J.; Steinberg, P.; Stolte, S. Hazard assessment of quinaldine-, alkylcarbazole-, benzene- and toluene-based liquid organic hydrogen carrier (LOHCs) systems. Energy Environ. Sci. 2019, 12, 366–383. [Google Scholar] [CrossRef]
- Alhumaidan, F.; Cresswell, D.; Garforth, A. Hydrogen Storage in Liquid Organic Hydride: Producing Hydrogen Catalytically from Methylcyclohexane. Energy Fuels 2011, 25, 4217–4234. [Google Scholar] [CrossRef]
- The World’s First Global Hydrogen Supply Chain Demonstration Project. Available online: https://www.chiyodacorp.com/en/service/spera-hydrogen/ (accessed on 18 August 2021).
- Hirota, Y.; Ishikado, A.; Uchida, Y.; Egashira, Y.; Nishiyama, N. Pore size control of microporous carbon membranes by post-synthesis activation and their use in a membrane reactor for dehydrogenation of methylcyclohexane. J. Membr. Sci. 2013, 440, 134–139. [Google Scholar] [CrossRef]
- Li, G.; Yada, K.; Kanezashi, M.; Yoshioka, T.; Tsuru, T. Methylcyclohexane Dehydrogenation in Catalytic Membrane Reactors for Efficient Hydrogen Production. Ind. Eng. Chem. Res. 2013, 52, 13325–13332. [Google Scholar] [CrossRef]
- Byun, M.; Kim, H.; Choe, C.; Lim, H. Conceptual feasibility studies for cost-efficient and bi-functional methylcyclohexane dehydrogenation in a membrane reactor for H2 storage and production. Energy Convers. Manag. 2021, 227, 113576. [Google Scholar] [CrossRef]
- Meng, J.C.; Zhou, F.; Ma, H.X.; Yuan, X.Z.; Wang, Y.J.; Zhang, J. A Review of Catalysts for Methylcyclohexane Dehydrogenation. Top. Catal. 2021, 64, 509–520. [Google Scholar] [CrossRef]
- Sekine, Y.; Higo, T. Recent Trends on the Dehydrogenation Catalysis of Liquid Organic Hydrogen Carrier (LOHC): A Review. Top. Catal. 2021, 64, 470–480. [Google Scholar] [CrossRef]
- Alique, D.; Martinez-Diaz, D.; Sanz, R.; Calles, J.A. Review of Supported Pd-Based Membranes Preparation by Electroless Plating for Ultra-Pure Hydrogen Production. Membranes 2018, 8, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardoso, S.P.; Azenha, I.S.; Lin, Z.; Portugal, I.; Rodrigues, A.E.; Silva, C.M. Inorganic Membranes for Hydrogen Separation. Sep. Purif. Rev. 2018, 47, 229–266. [Google Scholar] [CrossRef]
- Usman, M.R.; Alotaibi, F.M.; Aslam, R. Dehydrogenation-hydrogenation of methylcyclohexane-toluene system on 1.0 wt% Pt/zeolite beta catalyst. Prog. React. Kinet. Mec. 2015, 40, 353–366. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, A.W.; Nixon, A.C. Dehydrogenation of Methylcyclohexane over a Platinum-Alumina Catalyst in Absence of Added Hydrogen. Ind. Eng. Chem. Prod. Rd. 1966, 5, 59–64. [Google Scholar] [CrossRef]
- Wolf, E.E.; Petersen, E.E. Kinetics of Deactivation of a Reforming Catalyst during Methylcyclohexane Dehydrogenation in a Diffusion Reactor. J. Catal. 1977, 46, 190–203. [Google Scholar] [CrossRef]
- Zhang, C.; Liang, X.; Liu, S. Hydrogen production by catalytic dehydrogenation of methylcyclohexane over Pt catalysts supported on pyrolytic waste tire char. Int. J. Hydrogen Energy 2011, 36, 8902–8907. [Google Scholar] [CrossRef]
- Shukla, A.; Pande, J.V.; Biniwale, R.B. Dehydrogenation of methylcyclohexane over Pt/V2O5 and Pt/Y2O3 for hydrogen delivery applications. Int. J. Hydrogen Energy 2012, 37, 3350–3357. [Google Scholar] [CrossRef]
- Hatim, M.D.I.; Fazara, M.A.U.; Syarhabil, A.M.; Riduwan, F. Catalytic Dehydrogenation of Methylcyclohexane (MCH) to Toluene in a Palladium/Alumina Hollow Fibre Membrane Reactor. Procedia Eng. 2013, 53, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Nagatake, S.; Higo, T.; Ogo, S.; Sugiura, Y.; Watanabe, R.; Fukuhara, C.; Sekine, Y. Dehydrogenation of Methylcyclohexane over Pt/TiO2 Catalyst. Catal. Lett. 2016, 146, 54–60. [Google Scholar] [CrossRef]
- Nakano, A.; Manabe, S.; Higo, T.; Seki, H.; Nagatake, S.; Yabe, T.; Ogo, S.; Nagatsuka, T.; Sugiura, Y.; Iki, H.; et al. Effects of Mn addition on dehydrogenation of methylcyclohexane over Pt/Al2O3 catalyst. Appl. Catal. A-Gen 2017, 543, 75–81. [Google Scholar] [CrossRef]
- Mori, K.; Kanda, Y.; Uemichi, Y. Dehydrogenation of Methylcyclohexane over Zinc-containing Platinum/Alumina Catalysts. J. Jpn. Pet. Inst. 2018, 61, 350–356. [Google Scholar] [CrossRef]
- Yang, X.; Song, Y.; Cao, T.T.; Wang, L.; Song, H.T.; Lin, W. The double tuning effect of TiO2 on Pt catalyzed dehydrogenation of methylcyclohexane. Mol. Catal. 2020, 492, 110971. [Google Scholar] [CrossRef]
- Horikoshi, S.; Kamata, M.; Sumi, T.; Serpone, N. Selective heating of Pd/AC catalyst in heterogeneous systems for the microwave-assisted continuous hydrogen evolution from organic hydrides: Temperature distribution in the fixed-bed reactor. Int. J. Hydrogen Energy 2016, 41, 12029–12037. [Google Scholar] [CrossRef]
- Cromwell, D.K.; Vasudevan, P.T.; Pawelec, B.; Fierro, J.L.G. Enhanced methylcyclohexane dehydrogenation to toluene over Ir/USY catalyst. Catal. Today 2016, 259, 119–129. [Google Scholar] [CrossRef]
- Boufaden, N.; Akkari, R.; Pawelec, B.; Fierro, J.L.G.; Said Zina, M.; Ghorbel, A. Dehydrogenation of methylcyclohexane to toluene over partially reduced Mo–SiO2 catalysts. Appl. Catal. A Gen. 2015, 502, 329–339. [Google Scholar] [CrossRef]
- Nakaya, Y.; Miyazaki, M.; Yamazoe, S.; Shimizu, K.; Furukawa, S. Active, Selective, and Durable Catalyst for Alkane Dehydrogenation Based on a Well-Designed Trimetallic Alloy. ACS Catal. 2020, 10, 5163–5172. [Google Scholar] [CrossRef]
- Zhang, X.T.; He, N.; Lin, L.; Zhu, Q.R.; Wang, G.; Guo, H.C. Study of the carbon cycle of a hydrogen supply system over a supported Pt catalyst: Methylcyclohexane-toluene-hydrogen cycle. Catal Sci. Technol. 2020, 10, 1171–1181. [Google Scholar] [CrossRef]
- Sebastian, O.; Nair, S.; Taccardi, N.; Wolf, M.; Sogaard, A.; Haumann, M.; Wasserscheid, P. Stable and Selective Dehydrogenation of Methylcyclohexane using Supported Catalytically Active Liquid Metal Solutions-Ga52Pt/SiO2 SCALMS. Chemcatchem 2020, 12, 4533–4537. [Google Scholar] [CrossRef]
- Yan, J.; Wang, W.Y.; Miao, L.; Wu, K.; Chen, G.L.; Huang, Y.P.; Yang, Y.Q. Dehydrogenation of methylcyclohexane over Pt-Sn supported on Mg-Al mixed metal oxides derived from layered double hydroxides. Int. J. Hydrogen Energy 2018, 43, 9343–9352. [Google Scholar] [CrossRef]
- Wang, W.Y.; Miao, L.; Wu, K.; Chen, G.L.; Huang, Y.P.; Yang, Y.Q. Hydrogen evolution in the dehydrogenation of methylcyclohexane over Pt/Ce-Mg-Al-O catalysts derived from their layered double hydroxides. Int. J. Hydrogen Energy 2019, 44, 2918–2925. [Google Scholar] [CrossRef]
- Takise, K.; Sato, A.; Murakami, K.; Ogo, S.; Seo, J.G.; Imagawa, K.; Kado, S.; Sekine, Y. Irreversible catalytic methylcyclohexane dehydrogenation by surface protonics at low temperature. RSC Adv. 2019, 9, 5918–5924. [Google Scholar] [CrossRef] [Green Version]
- Takise, K.; Sato, A.; Ogo, S.; Seo, J.G.; Imagawa, K.; Kado, S.; Sekine, Y. Low-temperature selective catalytic dehydrogenation of methylcyclohexane by surface protonics. RSC Adv. 2019, 9, 27743–27748. [Google Scholar] [CrossRef] [Green Version]
- Miao, L.; Yan, J.; Wang, W.; Huang, Y.; Li, W.; Yang, Y. Dehydrogenation of methylcyclohexane over Pt supported on Mg–Al mixed oxides catalyst: The effect of promoter Ir. Chin. J. Chem. Eng. 2020, 28, 2337–2342. [Google Scholar] [CrossRef]
- Kosaka, M.; Higo, T.; Ogo, S.; Seo, J.G.; Kado, S.; Imagawa, K.; Sekine, Y. Low-temperature selective dehydrogenation of methylcyclohexane by surface protonics over Pt/anatase-TiO2 catalyst. Int. J. Hydrogen Energy 2020, 45, 738–743. [Google Scholar] [CrossRef]
- Iulianelli, A.; Ghasemzadeh, K.; Marelli, M.; Evangelisti, C. A supported Pd-Cu/Al2O3 membrane from solvated metal atoms for hydrogen separation/purification. Fuel Process. Technol. 2019, 195, 8. [Google Scholar] [CrossRef]
- Li, H.; Caravella, A.; Xu, H.Y. Recent progress in Pd-based composite membranes. J. Mater. Chem. A 2016, 4, 14069–14094. [Google Scholar] [CrossRef]
- Ockwig, N.W.; Nenoff, T.M. Membranes for hydrogen separation. Chem. Rev. 2007, 107, 4078–4110. [Google Scholar] [CrossRef]
- Habib, M.A.; Harale, A.; Paglieri, S.; Alrashed, F.S.; Al-Sayoud, A.; Rao, M.V.; Nemitallah, M.A.; Hossain, S.; Hussien, M.; Ali, A.; et al. Palladium-Alloy Membrane Reactors for Fuel Reforming and Hydrogen Production: A Review. Energy Fuels 2021, 35, 5558–5593. [Google Scholar] [CrossRef]
- Ren, D.; Ren, S.P.; Lin, Y.K.; Xu, J.H.; Wang, X.L. Recent developments of organic solvent resistant materials for membrane separations. Chemosphere 2021, 271, 34. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.F.; Khulbe, K.C.; Matsuura, T. Gas Separation Membrane Materials and Structures. In Gas Separation Membranes; Springer International Publishing: Cham, Switzerland, 2015; pp. 37–192. [Google Scholar]
- Iulianelli, A.; Drioli, E. Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications. Fuel Process. Technol. 2020, 206, 34. [Google Scholar] [CrossRef]
- Lu, H.T.; Li, W.; Miandoab, E.S.; Kanehashi, S.; Hu, G.P. The opportunity of membrane technology for hydrogen purification in the power to hydrogen (P2H) roadmap: A review. Front. Chem. Sci. Eng. 2021, 15, 464–482. [Google Scholar] [CrossRef]
- Nomura, M.; Basile, A.; Ghasemzadeh, K. Chapter 2—Preparation of Silica Membranes by CVD Method. In Current Trends and Future Developments on (Bio-) Membranes; Basile, A., Ghasemzadeh, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 25–43. [Google Scholar]
- Sun, L.; Yuan, G.; Gao, L.; Yang, J.; Chhowalla, M.; Gharahcheshmeh, M.H.; Gleason, K.K.; Choi, Y.S.; Hong, B.H.; Liu, Z. Chemical vapour deposition. Nat. Rev. Methods Primers 2021, 1, 5. [Google Scholar] [CrossRef]
- Zhang, X.L.; Akamatsu, K.; Nakao, S. Hydrogen Separation in Hydrogen-Methylcyclohexane-Toluene Gaseous Mixtures through Triphenylmethoxysilane-Derived Silica Membranes Prepared by Chemical Vapor Deposition. Ind. Eng. Chem. Res. 2016, 55, 5395–5402. [Google Scholar] [CrossRef]
- Khatib, S.J.; Oyama, S.T.; de Souza, K.R.; Noronha, F.B. Review of Silica Membranes for Hydrogen Separation Prepared by Chemical Vapor Deposition. In Inorganic, Polymeric and Composite Membranes: Structure, Function and Other Correlations; Oyama, S.T., StaggWilliams, S.M., Eds.; Membrane Science and Technology Series; Elsevier Science Bv: Amsterdam, The Netherlands, 2011; Volume 14, pp. 25–60. [Google Scholar]
- Khatib, S.J.; Oyama, S.T. Silica membranes for hydrogen separation prepared by chemical vapor deposition (CVD). Sep. Purif. Technol. 2013, 111, 20–42. [Google Scholar] [CrossRef]
- Comite, A.; Basile, A.; Ghasemzadeh, K. Preparation of Silica Membranes by Sol-Gel Method; Elsevier Science Bv: Amsterdam, The Netherlands, 2017; pp. 3–23. [Google Scholar]
- Kanezashi, M.; Yada, K.; Yoshioka, T.; Tsuru, T. Design of Silica Networks for Development of Highly Permeable Hydrogen Separation Membranes with Hydrothermal Stability. J. Am. Chem. Soc. 2009, 131, 414–415. [Google Scholar] [CrossRef]
- Kanezashi, M.; Sasaki, T.; Tawarayama, H.; Yoshioka, T.; Tsuru, T. Hydrogen Permeation Properties and Hydrothermal Stability of Sol-Gel-Derived Amorphous Silica Membranes Fabricated at High Temperatures. J. Am. Ceram. Soc. 2013, 96, 2950–2957. [Google Scholar] [CrossRef]
- Van Gestel, T.; Hauler, F.; Bram, M.; Meulenberg, W.A.; Buchkremer, H.P. Synthesis and characterization of hydrogen-selective sol-gel SiO2 membranes supported on ceramic and stainless steel. supports. Sep. Purif. Technol. 2014, 121, 20–29. [Google Scholar] [CrossRef]
- Meng, L.; Kanezashi, M.; Wang, J.H.; Tsuru, T. Permeation properties of BTESE-TEOS organosilica membranes and application to O-2/SO2 gas separation. J. Membr. Sci. 2015, 496, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Niimi, T.; Nagasawa, H.; Kanezashi, M.; Yoshioka, T.; Ito, K.; Tsuru, T. Preparation of BTESE-derived organosilica membranes for catalytic membrane reactors of methylcyclohexane dehydrogenation. J Membr. Sci 2014, 455, 375–383. [Google Scholar] [CrossRef]
- Kanezashi, M.; Miyauchi, S.; Nagasawa, H.; Yoshioka, T.; Tsuru, T. Gas permeation properties through Al-doped organosilica membranes with controlled network size. J. Membr. Sci. 2014, 466, 246–252. [Google Scholar] [CrossRef]
- Nagasawa, H.; Niimi, T.; Kanezashi, M.; Yoshioka, T.; Tsuru, T. Modified Gas-Translation Model for Prediction of Gas Permeation Through Microporous Organosilica Membranes. Aiche J. 2014, 60, 4199–4210. [Google Scholar] [CrossRef]
- Yu, X.; Meng, L.; Niimi, T.; Nagasawa, H.; Kanezashi, M.; Yoshioka, T.; Tsuru, T. Network engineering of a BTESE membrane for improved gas performance via a novel pH-swing method. J. Membr. Sci. 2016, 511, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Moriyama, N.; Nagasawa, H.; Kanezashi, M.; Ito, K.; Tsuru, T. Bis(triethoxysilyl)ethane (BTESE)-derived silica membranes: Pore formation mechanism and gas permeation properties. J. Sol-Gel Sci. Technol. 2018, 86, 63–72. [Google Scholar] [CrossRef]
- Kanezashi, M.; Yoneda, Y.; Nagasawa, H.; Tsuru, T.; Yamamoto, K.; Ohshita, J. Gas permeation properties for organosilica membranes with different Si/C ratios and evaluation of microporous structures. Aiche J. 2017, 63, 4491–4498. [Google Scholar] [CrossRef]
- Yu, X.; Nagasawa, H.; Kanezashi, M.; Tsuru, T. Improved thermal and oxidation stability of bis( triethoxysilyl) ethane ( BTESE)- derived membranes, and their gas- permeation properties. J. Mater. Chem. A 2018, 6, 23378–23387. [Google Scholar] [CrossRef]
- Lee, H.R.; Kanezashi, M.; Yoshioka, T.; Tsuru, T. Preparation of hydrogen separation membranes using disiloxane compounds. Desalin. Water Treat. 2010, 17, 120–126. [Google Scholar] [CrossRef]
- Kanezashi, M.; Matsugasako, R.; Tawarayama, H.; Nagasawa, H.; Tsuru, T. Pore size tuning of sol-gel-derived triethoxysilane (TRIES) membranes for gas separation. J. Membr. Sci. 2017, 524, 64–72. [Google Scholar] [CrossRef]
- Meng, L.; Yu, X.; Niimi, T.; Nagasawa, H.; Kanezashi, M.; Yoshioka, T.; Tsuru, T. Methylcyclohexane dehydrogenation for hydrogen production via a bimodal catalytic membrane reactor. Aiche J. 2015, 61, 1628–1638. [Google Scholar] [CrossRef]
- Kanezashi, M.; Kawano, M.; Yoshioka, T.; Tsuru, T. Organic-Inorganic Hybrid Silica Membranes with Controlled Silica Network Size for Propylene/Propane Separation. Ind. Eng. Chem. Res. 2012, 51, 944–953. [Google Scholar] [CrossRef]
- Oda, K.; Akamatsu, K.; Sugawara, T.; Kikuchi, R.; Segawa, A.; Nakao, S. Dehydrogenation of Methylcyclohexane To Produce High-Purity Hydrogen Using Membrane Reactors with Amorphous Silica Membranes. Ind. Eng. Chem. Res. 2010, 49, 11287–11293. [Google Scholar] [CrossRef]
- Akamatsu, K.; Tago, T.; Seshimo, M.; Nakao, S. Long-Term Stable H-2 Production from Methylcyclohexane Using a Membrane Reactor with a Dimethoxydiphenylsilane-Derived Silica Membrane Prepared via Chemical Vapor Deposition. Ind. Eng. Chem. Res. 2015, 54, 3996–4000. [Google Scholar] [CrossRef]
- Kanezashi, M.; Matsutani, T.; Wakihara, T.; Nagasawa, H.; Okubo, T.; Tsuru, T. Preparation and Gas Permeation Properties of Fluorine-Silica Membranes with Controlled Amorphous Silica Structures: Effect of Fluorine Source and Calcination Temperature on Network Size. ACS Appl. Mater. Interfaces 2017, 9, 24625–24633. [Google Scholar] [CrossRef]
- Li, G.; Niimi, T.; Kanezashi, M.; Yoshioka, T.; Tsuru, T. Equilibrium shift of methylcyclohexane dehydrogenation in a thermally stable organosilica membrane reactor for high-purity hydrogen production. Int. J. Hydrogen Energy 2013, 38, 15302–15306. [Google Scholar] [CrossRef]
- Daglar, H.; Erucar, I.; Keskin, S. Recent advances in simulating gas permeation through MOF membranes. Mater. Adv. 2021, 2, 5300–5317. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.K.; Rippin, D.W.T.; Baiker, A. Improving methylcyclohexane dehydrogenation with ex-situ hydrogen separation in a reactor-interstaged membrane system. Ind. Eng. Chem. Res. 1995, 34, 2940–2948. [Google Scholar] [CrossRef]
- Itoh, N.; Watanabe, S.; Kawasoe, K.; Sato, T.; Tsuji, T. A membrane reactor for hydrogen storage and transport system using cyclohexane-methylcyclohexane mixtures. Desalination 2008, 234, 261–269. [Google Scholar] [CrossRef]
- Sanchez Marcano, J.G.; Tsotsis, T.T. Catalytic Membranes and Membrane Reactors; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2002. [Google Scholar]
- Kreuder, H.; Müller, C.; Meier, J.; Gerhards, U.; Dittmeyer, R.; Pfeifer, P. Catalyst development for the dehydrogenation of MCH in a microstructured membrane reactor—For heat storage by a Liquid Organic Reaction Cycle. Catal. Today 2015, 242, 211–220. [Google Scholar] [CrossRef]
- Kreuder, H.; Boeltken, T.; Cholewa, M.; Meier, J.; Pfeifer, P.; Dittmeyer, R. Heat storage by the dehydrogenation of methylcyclohexane—Experimental studies for the design of a microstructured membrane reactor. Int. J. Hydrogen Energy 2016, 41, 12082–12092. [Google Scholar] [CrossRef]
- ‘World’s First International Hydrogen Supply Chain’ Realised between Brunei and Japan. Available online: https://www.rechargenews.com/transition/-world-s-first-international-hydrogen-supply-chain-realised-between-brunei-and-japan/2-1-798398 (accessed on 18 August 2021).
- Kurosaki, D. Introduction of Liquid Organic Hydrogen Carrier and the Global Hydrogen Suppky Chain Project. Available online: https://www.energy.gov/sites/prod/files/2018/10/f56/fcto-infrastructure-workshop-2018-32-kurosaki.pdf (accessed on 24 August 2021).
- Niermann, M.; Drunert, S.; Kaltschmitt, M.; Bonhoff, K. Liquid organic hydrogen carriers (LOHCs)—Techno-economic analysis of LOHCs in a defined process chain. Energy Environ. Sci. 2019, 12, 290–307. [Google Scholar] [CrossRef]
- Siemens and HI ERN to Jointly Explore LOHC Technology in Rail Sector. Available online: https://www.railway-technology.com/news/siemens-hi-ern-lohc-technology/ (accessed on 25 August 2021).
- Teichmann, D.; Arlt, W.; Wasserscheid, P.; Freymann, R. A future energy supply based on Liquid Organic Hydrogen Carriers (LOHC). Energy Environ. Sci. 2011, 4, 2767–2773. [Google Scholar] [CrossRef]
- Dennis, J.; Bexten, T.; Petersen, N.; Wirsum, M.; Preuster, P. Model-Based Analysis of a Liquid Organic Hydrogen Carrier (LOHC) System for the Operation of a Hydrogen-Fired Gas Turbine. J. Eng. Gas. Turbines Power-Trans. ASME 2021, 143, 12. [Google Scholar] [CrossRef]
- Hampel, B.; Bauer, S.; Heublein, N.; Hirsch, C.; Sattelmayer, T. Feasibility Study on Dehydrogenation of LOHC Using Excess Exhaust Heat From a Hydrogen Fueled Micro Gas Turbine. In Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Montreal, QC, Canada, 15–19 June 2015. [Google Scholar]
LOHC Pair | Dehydrogenation Enthalpy, ΔH (kJ/mol H2) | H-Rich, m.p./b.p. 1 (°C) | H-Lean, m.p./b.p. 1 (°C) | H2 Content, wt%/kgH2·m−3 |
---|---|---|---|---|
MCH-TOL | 68.3 | −126.6/101 | −95/111 | 6.2/47.3 |
CH-BEN | 68.6 | 6.5/81 | 5.5/80 | 7.2/55.5 |
DEC-NAP | 64.0 (cis) 66.7 (trans) | −43/196 (cis) −30/187 (trans) | 80/218 | 7.3/64.9 |
Catalyst and Support | Temp./Pressure | MCH Conversion | Reactor System + | Refs., Year |
---|---|---|---|---|
0.4–1.0 wt% Pt/C | 300 °C/1 bar | >95% | FB | [42], 2011 |
3 wt%: Pt/Y2O5, Pt/V2O5 | 350 °C/1 bar | 98% | Spray pulse | [43], 2012 |
0.5 wt% Pt/Al2O3 | 250 °C/1 bar | 60% | FB | [44], 2013 |
50 wt% Ni/Al2O3 | 500 °C/1 bar | 80% | FB, HFMR | [44], 2013 |
10% Mo/SiO2 | 400 °C/22 bar | 90% ~ | FB | [51], 2015 |
Pt, Pd, Ir, or Ni/USY zeolite | 250 °C/30 bar | <10% | FB | [50], 2015 |
Pt/TiO2, Pt/γ-Al2O3 | 350 °C/1 bar | >80% | FB | [45], 2016 |
Pd/C | 180 °C/1 bar | 94% | FB | [49], 2016 |
Pt-Mn/Al2O3 | ||||
Pt/Mn/Al2O3 | ||||
Mn/Pt/Al2O3 | 350 °C/1 bar | 90% | FB | [46], 2017 |
0.2 wt% Pt/Snx-Mg-Al-O | 350 °C/1 bar | 95% | FB | [55], 2018 |
1 wt% Pt /Al2O3 or | ||||
1 wt% Pt/TiO2 or | ||||
1 wt% Pt/SiO2 | ||||
Zn, Sn, Ce, Ga, Mn added on Pt | 350 °C/1 bar | >65% | FB | [47], 2018 |
0.4 wt% Pt/Cex-Mg-Al-O | 350 °C/1 bar | 98.5% | FB | [56], 2019 |
3 wt% Pt/CeO2 | 250 °C/1 bar | 51.8% * | FB electric | [57,58], 2019 |
3 wt% Pt in Pt3Fe0.75Zn0.25 | 400 °C/1 bar | >95% | FB | [52], 2020 |
Cu-Pt /Silicalite-1 (Pt: 0.44 wt%) (Pt: 0.44 wt%) | ||||
Cu-Pt/SiO2 (Pt: 1.41 wt%) | 400 °C/1 bar | 92% | FB | [53], 2020 |
2 wt% Pt/Mg-Al | ||||
2 wt% Pt-Ir/Mg-Al | 350 °C/1 bar | 99.9% | FB | [59], 2020 |
3 wt% Pt/anatase-TiO2 | 175 °C/1 bar | 37% | FB electric | [60], 2020 |
0.5 wt% Pt/Al2O3-TiO2 | 400 °C/1 bar | 95% | FB | [48], 2020 |
Ga52Pt/SiO2 | ||||
Pt: 0.33 wt%, Ga: 6.1 wt% | 450 °C/1 bar | 16.5% | FB | [54], 2020 |
Precursor | Deposition | Condition | H2 Permeance mol·m−2 s−1 Pa−1 | Selectivity | Refs. |
---|---|---|---|---|---|
Dimethoxydiphenylsilane (DMDPS) | CVD | 573 K | 1.2 × 10−6 | H2/N2: 3.2 × 101 H2/SF6: 9.6 × 103 # | [91] |
DMDPS | CVD | 473–573 K | 6.9 × 10−7–1.3 × 10−6 | H2/N2: 28–84 H2/SF6: 6900–37,000 # | [90] |
TPMS Triphenylmethoxysilane (TPMS) | CVD | 573 K ΔP = 0.5 MPa 25 days running | ~10−6 | H2/hydrocarbon: 30,000 | [71] |
Triethoxyfluorosilane (TEFS), tetraethyl orthosilicate (TEOS), TEOS-NH4F | Sol coating | 323–773 K | TEFS: 2 × 10−6 TEOS: 1.3 × 10−6 TEOS-NH4F: 2.3 × 10−6 | H2/N2: TEFS: 8.9 TEOS: 136 TEOS-NH4F: 10 | [92] |
bis(triethoxysilyl)ethane (BTESE) | Sol-gel | 473 K | (1.51−2.83) × 10−6 | H2/SF6: 290–1000 | [33] |
BTESE | Sol-gel | 473 K | 8.2 × 10−7 | H2/Toluene: 16,000 | [79,88] |
BTESE | Sol-gel | 473 K | 1.3 × 10−6 | H2/N2: 34 H2/C3H8: 6680 H2/SF6: 48,900 | [93] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acharya, D.; Ng, D.; Xie, Z. Recent Advances in Catalysts and Membranes for MCH Dehydrogenation: A Mini Review. Membranes 2021, 11, 955. https://doi.org/10.3390/membranes11120955
Acharya D, Ng D, Xie Z. Recent Advances in Catalysts and Membranes for MCH Dehydrogenation: A Mini Review. Membranes. 2021; 11(12):955. https://doi.org/10.3390/membranes11120955
Chicago/Turabian StyleAcharya, Durga, Derrick Ng, and Zongli Xie. 2021. "Recent Advances in Catalysts and Membranes for MCH Dehydrogenation: A Mini Review" Membranes 11, no. 12: 955. https://doi.org/10.3390/membranes11120955
APA StyleAcharya, D., Ng, D., & Xie, Z. (2021). Recent Advances in Catalysts and Membranes for MCH Dehydrogenation: A Mini Review. Membranes, 11(12), 955. https://doi.org/10.3390/membranes11120955