How to Produce an Alternative Carbon Source for Denitrification by Treating and Drastically Reducing Biological Sewage Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. ThAlMBR Pilot Plant
2.2. ThAlMBR Placement in WWTP Sludge Line
2.3. TBSS and DBSS Treated by ThAlMBR
2.4. Operative Conditions
2.5. Analytical Methods
2.6. Respirometric Tests
2.6.1. OUR Tests
- OURIN [mgO2/(gVSS h)] represents the OUR of the BSS fed to ThAlMBR;
- OUROUT [mgO2/(gVSS h)] represents the OUR of ThAlMBR permeate;
- CODIN [mg/L] represents the COD of the BSS fed to ThAlMBR;
- CODOUT [mg/L] represents the COD of ThAlMBR permeate.
2.6.2. NUR Tests
3. Results and Discussion
3.1. Performance and Sludge Minimization
3.2. OUR Tests
3.3. NUR Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BSS | Biological sewage sludge |
CAS | Conventional activated sludge |
DBSS | Digested biological sewage sludge |
HRT | Hydraulic retention time |
NUR | Nitrate uptake rate |
OLR | Organic loading rate |
OUR | Oxygen uptake rate |
ThAlMBR | Thermophilic alternate membrane biological reactor |
TBSS | Thickened biological sewage sludge |
TN | Total nitrogen |
TS | Total solids |
UF | Ultrafiltration |
VS | Volatile solids |
WW | Wastewater |
WWTP | Wastewater treatment plant |
References
- European Commission EUR-Lex Council Directive 91/271/EEC of 21 May 1991 Concerning Urban Wastewater Treatment; Official Journal of the European Communities: Luxembourg, 1991; Volume 135, pp. 40–52.
- European Commission EUR-Lex Commission Directive 98/15/EC of 27 February 1998 Amending Council Directive 91/271/EEC with Respect to Certain Requirements Established in Annex I Thereof; Official Journal of the European Communities: Luxembourg, 1998; Volume 67, pp. 29–30.
- Eurostat Sewage Sludge Production and Disposal. Available online: https://ec.europa.eu/eurostat/web/products-datasets/product?code=env_ww_spd (accessed on 10 December 2021).
- Kelessidis, A.; Stasinakis, A.S. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Manag. 2012, 32, 1186–1195. [Google Scholar] [CrossRef]
- Bertanza, G.; Papa, M.; Canato, M.; Collivignarelli, M.C.; Pedrazzani, R. How can sludge dewatering devices be assessed? Development of a new DSS and its application to real case studies. J. Environ. Manag. 2014, 137, 86–92. [Google Scholar]
- ISPRA. Municipal Waste Report—2020 Edition; ISPRA: Rome, Italy, 2020. (In Italian) [Google Scholar]
- European Commission EU. Circular Economy Action Plan—For a Cleaner and More Competitive Europe. 2020. Available online: https://ec.europa.eu/environment/pdf/circular-economy/new_circular_economy_action_plan.pdf (accessed on 10 December 2021).
- European Commission EUR-Lex Directive EU/2018/851 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2008/98/EC on Waste; Official Journal of the European Communities: Luxembourg, 2018; Volume 150, pp. 109–140.
- Kacprzak, M.; Neczaj, E.; Fijałkowski, K.; Grobelak, A.; Grosser, A.; Worwag, M.; Rorat, A.; Brattebo, H.; Almås, Å.; Singh, B.R. Sewage sludge disposal strategies for sustainable development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef] [PubMed]
- ARERA-Annual Report, Status of Services; ARERA: Milan, Italy, 31 March 2019; Volume 1. (In Italian)
- Zhang, H.; Rigamonti, L.; Visigalli, S.; Turolla, A.; Gronchi, P.; Canziani, R. Environmental and economic assessment of electro-dewatering application to sewage sludge: A case study of an Italian wastewater treatment plant. J. Clean. Prod. 2019, 210, 1180–1192. [Google Scholar] [CrossRef]
- Liu, M.; Wang, C.; Bai, Y.; Xu, G. Effects of sintering temperature on the characteristics of lightweight aggregate made from sewage sludge and river sediment. J. Alloys Compd. 2018, 748, 522–527. [Google Scholar] [CrossRef]
- Sharma, B.; Sarkar, A.; Singh, P.; Singh, R.P. Agricultural utilization of biosolids: A review on potential effects on soil and plant grown. Waste Manag. 2017, 64, 117–132. [Google Scholar] [CrossRef] [PubMed]
- Mininni, G.; Blanch, A.R.; Lucena, F.; Berselli, S. EU policy on sewage sludge utilization and perspectives on new approaches of sludge management. Environ. Sci. Pollut. Res. 2015, 22, 7361–7374. [Google Scholar] [CrossRef] [PubMed]
- Collivignarelli, M.C.; Canato, M.; Abbà, A.; Carnevale Miino, M. Biosolids: What are the different types of reuse? J. Clean. Prod. 2019, 238, 117844. [Google Scholar] [CrossRef] [Green Version]
- Collivignarelli, M.C.; Abbà, A.; Miino, M.C.; Torretta, V. What advanced treatments can be used to minimize the production of sewage sludge in WWTPs? Appl. Sci. 2019, 9, 2650. [Google Scholar] [CrossRef] [Green Version]
- Collivignarelli, M.C.; Abbà, A.; Bertanza, G.; Frattarola, A. The upgrading of conventional activated sludge processes with thermophilic aerobic membrane reactor: Alternative solutions for sludge reduction. J. Environ. Manag. 2020, 264, 110490. [Google Scholar] [CrossRef] [PubMed]
- Collivignarelli, M.C.; Abbà, A.; Bertanza, G.; Setti, M.; Barbieri, G.; Frattarola, A. Integrating novel (thermophilic aerobic membrane reactor-TAMR) and conventional (conventional activated sludge-CAS) biological processes for the treatment of high strength aqueous wastes. Bioresour. Technol. 2018, 255, 213–219. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Bertanza, G.; Barbieri, G. Treatment of high strength aqueous wastes in a thermophilic aerobic membrane reactor (TAMR): Performance and resilience. Water Sci. Technol. 2017, 76, 3236–3245. [Google Scholar] [CrossRef] [PubMed]
- Collivignarelli, M.C.; Abbà, A.; Bertanza, G. Treatment of high strength pharmaceutical wastewaters in a Thermophilic Aerobic Membrane Reactor (TAMR). Water Res. 2014, 63, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Collivignarelli, M.C.; Castagnola, F.; Sordi, M.; Bertanza, G. Treatment of sewage sludge in a thermophilic membrane reactor (TMR) with alternate aeration cycles. J. Environ. Manag. 2015, 162, 132–138. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Castagnola, F.; Bertanza, G. Minimization of municipal sewage sludge by means of a thermophilic membrane bioreactor with intermittent aeration. J. Clean. Prod. 2017, 143, 369–376. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Carnevale Miino, M.; Caccamo, F.M.; Argiolas, S.; Bellazzi, S.; Baldi, M.; Bertanza, G. Strong minimization of biological sludge production and enhancement of phosphorus bioavailability with a thermophilic biological fluidized bed reactor. Process Saf. Environ. Prot. 2021, 155, 262–276. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Frattarola, A.; Manenti, S.; Todeschini, S.; Bertanza, G.; Pedrazzani, R. Treatment of aqueous wastes by means of Thermophilic Aerobic Membrane Reactor (TAMR) and nanofiltration (NF): Process auditing of a full-scale plant. Environ. Monit. Assess. 2019, 191, 708. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Carnevale Miino, M.; Caccamo, F.M.; Baldi, M.; Abbà, A. Performance of full-scale thermophilic membrane bioreactor and assessment of the effect of the aqueous residue on mesophilic biological activity. Water 2021, 13, 1754. [Google Scholar] [CrossRef]
- Poutiainen, H.; Laitinen, S.; Pradhan, S.; Pessi, M.; Heinonen-Tanski, H. Nitrogen reduction in wastewater treatment using different anox-circulation flow rates and ethanol as a carbon source. Environ. Technol. 2010, 31, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Mokhayeri, Y.; Riffat, R.; Murthy, S.; Bailey, W.; Takacs, I.; Bott, C. Balancing yield, kinetics and cost for three external carbon sources used for suspended growth post-denitrification. Water Sci. Technol. 2009, 60, 2485–2491. [Google Scholar] [CrossRef]
- Swinarski, M.; Makinia, J.; Czerwionka, K.; Chrzanowska, M. Industrial wastewater as an external carbon source for optimization of nitrogen removal at the “Wschod” WWTP in Gdansk (Poland). Water Sci. Technol. 2009, 59, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Bertanza, G.; Canato, M.; Laera, G.; Tomei, M.C. Methodology for technical and economic assessment of advanced routes for sludge processing and disposal. Environ. Sci. Pollut. Res. 2015, 22, 7190–7202. [Google Scholar] [CrossRef]
- Zhao, G.; Garrido-Baserba, M.; Reifsnyder, S.; Xu, J.C.; Rosso, D. Comparative energy and carbon footprint analysis of biosolids management strategies in water resource recovery facilities. Sci. Total Environ. 2019, 665, 762–773. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Nava, Y.; Marañón, E.; Soons, J.; Castrillón, L. Denitrification of high nitrate concentration wastewater using alternative carbon sources. J. Hazard. Mater. 2010, 173, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Liwarska-Bizukojć, E.; Chojnacki, J.; Klink, M.; Olejnik, D. Effect of the type of the external carbon source on denitrification kinetics of wastewater. Desalin. Water Treat. 2018, 101, 143–150. [Google Scholar] [CrossRef]
- Cornejo, P.K.; Becker, J.; Pagilla, K.; Mo, W.; Zhang, Q.; Mihelcic, J.R.; Chandran, K.; Sturm, B.; Yeh, D.; Rosso, D. Sustainability metrics for assessing water resource recovery facilities of the future. Water Environ. Res. 2019, 91, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Collivignarelli, M.C.; Abbà, A.; Frattarola, A.; Miino, M.C.; Padovani, S.; Katsoyiannis, I.; Torretta, V. Legislation for the reuse of biosolids on agricultural land in Europe: Overview. Sustainability 2019, 11, 6015. [Google Scholar] [CrossRef] [Green Version]
- ISO 6060 Water Quality—Determination of the Chemical Oxygen Demand; ISO: Geneva, Switzerland, 1989.
- CNR-IRSA 6 Notebook 64, Volume 3, Nitrogen. Analytical Methods for Sludge; CNR-IRSA: Rome, Italy, 1985. (In Italian)
- APAT-IRSA-CNR 4030 Ammoniacal Nitrogen. Non-metallic Inorganic Constituents. METHOD A1—Spectrophotometric Determination of Indophenol; APAT: Rome, Italy, 2003. (In Italian)
- UNI EN 14346 Waste Characterization—Calculation of Dry Matter by Determining the Dry Residue or Moisture Content; UNI: Rome, Italy, 2007.
- UNI EN 15169 Waste Characterization—Determination of Fire Loss in Waste, Sludge and Sediment; UNI: Rome, Italy, 2007.
- Hagman, M.; La Cour Jansen, J. Oxygen uptake rate measurements for application at wastewater treatment plants. Vatten 2007, 63, 131–138. [Google Scholar]
- Kristensen, G.H.; Jorgensen, P.E.; Henze, M. Characterization of functional microorganism groups and substrate in activated sludge and wastewater by AUR, NUR and OUR. Water Sci. Technol. 1992, 25, 43–57. [Google Scholar] [CrossRef]
- Duncan, J.; Bokhary, A.; Fatehi, P.; Kong, F.; Lin, H.; Liao, B. Thermophilic membrane bioreactors: A review. Bioresour. Technol. 2017, 243, 1180–1193. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Bertanza, G. Why use a thermophilic aerobic membrane reactor for the treatment of industrial wastewater/liquid waste? Environ. Technol. 2015, 36, 2115–2124. [Google Scholar] [CrossRef] [PubMed]
- Arun, V.; Mino, T.; Matsuo, T. Metabolic pathway of anaerobic uptake of amino acids in the enhanced biological phosphorus removal process. Proceeding of the Water Pollution Control in Asia, Bangkok, Thailand, 9–11 November 1988; pp. 313–319. [Google Scholar]
- Collivignarelli, M.C.; Abbà, A.; Bertanza, G.; Frattarola, A. Drastic reduction of sludge in wastewater treatment plants: Co-digestion of sewage sludge and aqueous waste in a thermophilic membrane reactor. Environ. Technol. 2019, 41, 2554–2563. [Google Scholar] [CrossRef]
- Simstich, B.; Beimfohr, C.; Horn, H. Lab scale experiments using a submerged MBR under thermophilic aerobic conditions for the treatment of paper mill deinking wastewater. Bioresour. Technol. 2012, 122, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Suvilampi, J.; Rintala, J. Thermophilic aerobic wastewater treatment, process performance, biomass characteristics, and effluent quality. Rev. Environ. Sci. Biotechnol. 2003, 2, 35–51. [Google Scholar] [CrossRef]
- Lee, W.; Kang, S.; Shin, H. Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors. J. Memb. Sci. 2003, 216, 217–227. [Google Scholar] [CrossRef]
- Kurian, R.; Acharya, C.; Nakhla, G.; Bassi, A. Conventional and thermophilic aerobic treatability of high strength oily pet food wastewater using membrane-coupled bioreactors. Water Res. 2005, 39, 4299–4308. [Google Scholar] [CrossRef]
- Collivignarelli, C.; Bertanza, G.; Collivignarelli, M.; Zanaboni, S.; Abbà, A. Optimization of the Urban Waste Water Treatment Service: Maximization of Resource Recovery (Water and Sludge) and Reduction of Energy Consumption; ISPRA: Rome, Italy, 2009. [Google Scholar]
Parameter | TBSS | DBSS |
---|---|---|
Mean Value ± Confidence | Mean Value ± Confidence | |
COD [mg/L] | 32,348 ± 1488 | 35,223 ± 2706 |
TN [mg/L] | 1173 ± 84 | 914 ± 260 |
N-NH4+ [mg/L] | 548 ± 51 | 251 ± 77 |
N-NOx [mg/L] | 3.4 ± 1.2 | n.d. |
TS [g/L] | 20 ± 2 | 24 ± 4 |
VS [g/L] | 14 ± 1 | 14 ± 2 |
VS/TS [%] | 71 ± 2 | 57 ± 4 |
pH [-] | 5.5 ± 0.1 | 6.5 ± 0.3 |
Electrical conductivity [µS/cm] | 2586 ± 182 | 3345 ± 439 |
Operative Parameter | TBSS | DBSS |
---|---|---|
Mean Value ± Confidence | Mean Value ± Confidence | |
TS [kg/m3] | 62 ± 2 | 77 ± 6 |
VS [kg/m3] | 28 ± 1 | 30 ± 2 |
VS/TS [%] | 45 ± 1 | 41 ± 3 |
HRT [day] | 10 ± 1 | 10 ± 1 |
OLR [kgCOD/(m3 d)] | 3.2 ± 1.7 | 3.4 ± 0.2 |
T [°C] | 50 ± 2 | 48 ± 2 |
pH [-] | 6.7 ± 0.1 | 7.1 ± 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collivignarelli, M.C.; Abbà, A.; Caccamo, F.M.; Carnevale Miino, M.; Durante, A.; Bellazzi, S.; Baldi, M.; Bertanza, G. How to Produce an Alternative Carbon Source for Denitrification by Treating and Drastically Reducing Biological Sewage Sludge. Membranes 2021, 11, 977. https://doi.org/10.3390/membranes11120977
Collivignarelli MC, Abbà A, Caccamo FM, Carnevale Miino M, Durante A, Bellazzi S, Baldi M, Bertanza G. How to Produce an Alternative Carbon Source for Denitrification by Treating and Drastically Reducing Biological Sewage Sludge. Membranes. 2021; 11(12):977. https://doi.org/10.3390/membranes11120977
Chicago/Turabian StyleCollivignarelli, Maria Cristina, Alessandro Abbà, Francesca Maria Caccamo, Marco Carnevale Miino, Angela Durante, Stefano Bellazzi, Marco Baldi, and Giorgio Bertanza. 2021. "How to Produce an Alternative Carbon Source for Denitrification by Treating and Drastically Reducing Biological Sewage Sludge" Membranes 11, no. 12: 977. https://doi.org/10.3390/membranes11120977
APA StyleCollivignarelli, M. C., Abbà, A., Caccamo, F. M., Carnevale Miino, M., Durante, A., Bellazzi, S., Baldi, M., & Bertanza, G. (2021). How to Produce an Alternative Carbon Source for Denitrification by Treating and Drastically Reducing Biological Sewage Sludge. Membranes, 11(12), 977. https://doi.org/10.3390/membranes11120977