Recent Progress on Nanomaterial-Based Membranes for Water Treatment
Abstract
:1. Introduction
2. Traditional Membrane Materials
3. Nanomaterial-Based Membranes
3.1. Nanoparticle Composed Membranes
3.1.1. Freestanding Nanoparticle Membrane
3.1.2. Nanoparticles as Filler for Composite Membrane
3.1.3. Applications of Nanoparticle Membranes in Water Treatment
3.2. Nanofiber-Composed Membrane
3.2.1. Freestanding Nanofiber Membrane
3.2.2. Nanofibers as Filler for Composite Membranes
3.2.3. Applications of Nanofiber Membranes in Water Treatment
3.3. Two-Dimensional Layer Materials Composed Membrane
Application of Two-Dimensional Layer Materials Composed Membrane in Water Treatment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, Z.; Liu, X.; Sun, S.; Tang, Y.; Yuan, X.; Tang, Q. Global assessment of future sectoral water scarcity under adaptive inner-basin water allocation measures. Sci. Total Environ. 2021, 783, 146973. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.B.; Avellán, T.; Schanze, J. Risk and sustainability assessment framework for decision support in ’water scarcity—Water reuse’ situations. J. Hydrol. 2020, 591, 125424. [Google Scholar] [CrossRef]
- Swain, S.S.; Mishra, A.; Sahoo, B.; Chatterjee, C. Water scarcity-risk assessment in data-scarce river basins under decadal climate change using a hydrological modelling approach. J. Hydrol. 2020, 590, 125260. [Google Scholar] [CrossRef]
- Navarro-Ortega, A.; Acuña, V.; Bellin, A.; Burek, P.; Cassiani, G.; Choukr-Allah, R.; Dolédec, S.; Elosegi, A.; Ferrari, F.; Ginebreda, A.; et al. Managing the effects of multiple stressors on aquatic ecosystems under water scarcity. The GLOBAQUA project. Sci. Total Environ. 2015, 503, 3–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saïdi, S.; Macedonio, F.; Russo, F.; Hannachi, C.; Hamrouni, B.; Drioli, E.; Figoli, A. Preparation and characterization of hydrophobic P(VDF-HFP) flat sheet membranes using Tamisolve® NxG solvent for the treatment of saline water by direct contact membrane distillation and membrane crystallization. Sep. Purif. Technol. 2021, 275, 119144. [Google Scholar] [CrossRef]
- Santos, P.G.; Scherer, C.M.; Fisch, A.G.; Rodrigues, M.A.S. Petrochemical wastewater treatment: Water recovery using membrane distillation. J. Clean. Prod. 2020, 267, 121985. [Google Scholar] [CrossRef]
- Nawaz, M.S.; Son, H.S.; Jin, Y.; Kim, Y.; Soukane, S.; Al-Hajji, M.A.; Abu-Ghdaib, M.; Ghaffour, N. Investigation of flux stability and fouling mechanism during simultaneous treatment of different produced water streams using forward osmosis and membrane distillation. Water Res. 2021, 198, 117157. [Google Scholar] [CrossRef]
- Yao, Q.-S.; Huang, C.; Wang, M.-K.; Xiong, L.; Chen, X.-D. Treatment of water hyacinth anaerobic fermentation wastewater by combining Fe-C micro-electrolysis with Fenton reaction. J. Environ. Chem. Eng. 2020, 8, 104157. [Google Scholar] [CrossRef]
- Chen, L.; Xue, Y.; Luo, T.; Wu, F.; Alshawabkeh, A.N. Electrolysis-assisted UV/sulfite oxidation for water treatment with automatic adjustments of solution pH and dissolved oxygen. Chem. Eng. J. 2021, 403, 126278. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, T.; Chen, W. Enhanced removal of organic matter and typical disinfection byproduct precursors in combined iron–carbon micro electrolysis-UBAF process for drinking water pre-treatment. J. Environ. Sci. 2019, 78, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Jamil, S.; Loganathan, P.; Khan, S.J.; McDonald, J.A.; Kandasamy, J.; Vigneswaran, S. Enhanced nanofiltration rejection of inorganic and organic compounds from a wastewater-reclamation plant’s micro-filtered water using adsorption pre-treatment. Sep. Purif. Technol. 2021, 260, 118207. [Google Scholar] [CrossRef]
- Wang, B.; Xiong, M.; Shi, B.; Li, Z.; Zhang, H. Treatment of shale gas flowback water by adsorption on carbon- nanotube-nested diatomite adsorbent. J. Water Process Eng. 2021, 42, 102074. [Google Scholar] [CrossRef]
- Shinde, P.A.; Ukarde, T.M.; Gogate, P.R.; Pawar, H.S. An integrated approach of adsorption and membrane separation for treatment of sewage water and resource recovery. J. Water Process Eng. 2021, 40, 101795. [Google Scholar] [CrossRef]
- Xu, H.; Wang, S.; Wang, M.; Ge, B.; Ren, G.; Li, W.; Zhao, L. Application of superhydrophobic ZnO rod composites with environmentally-friendly and photodegradation properties in water environment treatment. Colloids Surf. A Physicochem. Eng. Asp. 2021, 618, 126437. [Google Scholar] [CrossRef]
- Chenab, K.K.; Sohrabi, B.; Jafari, A.; Ramakrishna, S. Water treatment: Functional nanomaterials and applications from adsorption to photodegradation. Mater. Today Chem. 2020, 16, 100262. [Google Scholar] [CrossRef]
- Telegang Chekem, C.; Goetz, V.; Richardson, Y.; Plantard, G.; Blin, J. Modelling of adsorption/photodegradation phenomena on AC-TiO2 composite catalysts for water treatment detoxification. Catal. Today 2019, 328, 183–188. [Google Scholar] [CrossRef]
- Yadav, S.; Saleem, H.; Ibrar, I.; Naji, O.; Hawari, A.A.; Alanezi, A.A.; Zaidi, S.J.; Altaee, A.; Zhou, J. Recent developments in forward osmosis membranes using carbon-based nanomaterials. Desalination 2020, 482, 114375. [Google Scholar] [CrossRef]
- Mamah, S.C.; Goh, P.S.; Ismail, A.F.; Suzaimi, N.D.; Yogarathinam, L.T.; Raji, Y.O.; El-badawy, T.H. Recent development in modification of polysulfone membrane for water treatment application. J. Water Process Eng. 2021, 40, 101835. [Google Scholar] [CrossRef]
- Eray, E.; Candelario, V.M.; Boffa, V.; Safafar, H.; Østedgaard-Munck, D.N.; Zahrtmann, N.; Kadrispahic, H.; Jørgensen, M.K. A roadmap for the development and applications of silicon carbide membranes for liquid filtration: Recent advancements, challenges, and perspectives. Chem. Eng. J. 2021, 414, 128826. [Google Scholar] [CrossRef]
- Li, C.; Huang, Y.; Feng, X.; Zhang, Z.; Gao, H.; Huang, J. Silica-assisted cross-linked polymer electrolyte membrane with high electrochemical stability for lithium-ion batteries. J. Colloid Interface Sci. 2021, 594, 1–8. [Google Scholar] [CrossRef]
- Valappil, R.S.K.; Ghasem, N.; Al-Marzouqi, M. Current and future trends in polymer membrane-based gas separation technology: A comprehensive review. J. Ind. Eng. Chem. 2021, 98, 103–129. [Google Scholar] [CrossRef]
- Han, Y.; Ho, W.S.W. Polymeric membranes for CO2 separation and capture. J. Membr. Sci. 2021, 628, 119244. [Google Scholar] [CrossRef]
- Kianfar, E.; Cao, V. Polymeric membranes on base of PolyMethyl methacrylate for air separation: A review. J. Mater. Res. Technol. 2021, 10, 1437–1461. [Google Scholar] [CrossRef]
- Masmoudi, S.; Ben Amar, R.; Larbot, A.; El Feki, H.; Salah, A.B.; Cot, L. Elaboration of inorganic microfiltration membranes with hydroxyapatite applied to the treatment of wastewater from sea product industry. J. Membr. Sci. 2005, 247, 1–9. [Google Scholar] [CrossRef]
- Asif, M.B.; Zhang, Z. Ceramic membrane technology for water and wastewater treatment: A critical review of performance, full-scale applications, membrane fouling and prospects. Chem. Eng. J. 2021, 418, 129481. [Google Scholar] [CrossRef]
- Gu, Q.; Ng, T.C.A.; Bao, Y.; Ng, H.Y.; Tan, S.C.; Wang, J. Developing Better Ceramic Membranes for Water and Wastewater Treatment: Where Microstructure Integrates with Chemistry and Functionalities. Chem. Eng. J. 2021, 428, 130456. [Google Scholar] [CrossRef]
- Arumugham, T.; Kaleekkal, N.J.; Gopal, S.; Nambikkattu, J.; Rambabu, K.; Aboulella, A.M.; Ranil Wickramasinghe, S.; Banat, F. Recent developments in porous ceramic membranes for wastewater treatment and desalination: A review. J. Environ. Manag. 2021, 293, 112925. [Google Scholar] [CrossRef]
- Ravi, J.; Othman, M.H.D.; Matsuura, T.; Ro’il Bilad, M.; El-badawy, T.H.; Aziz, F.; Ismail, A.F.; Rahman, M.A.; Jaafar, J. Polymeric membranes for desalination using membrane distillation: A review. Desalination 2020, 490, 114530. [Google Scholar] [CrossRef]
- Keskin, B.; Zeytuncu-Gökoğlu, B.; Koyuncu, I. Polymer inclusion membrane applications for transport of metal ions: A critical review. Chemosphere 2021, 279, 130604. [Google Scholar] [CrossRef] [PubMed]
- Mollahosseini, A.; Abdelrasoul, A. Recent advances in thin film composites membranes for brackish groundwater treatment with critical focus on Saskatchewan water sources. J. Environ. Sci. 2019, 81, 181–194. [Google Scholar] [CrossRef]
- Goh, P.S.; Ismail, A.F. Chemically functionalized polyamide thin film composite membranes: The art of chemistry. Desalination 2020, 495, 114655. [Google Scholar] [CrossRef]
- Karami, P.; Khorshidi, B.; McGregor, M.; Peichel, J.T.; Soares, J.B.P.; Sadrzadeh, M. Thermally stable thin film composite polymeric membranes for water treatment: A review. J. Clean. Prod. 2020, 250, 119447. [Google Scholar] [CrossRef]
- Alihemati, Z.; Hashemifard, S.A.; Matsuura, T.; Ismail, A.F.; Hilal, N. Current status and challenges of fabricating thin film composite forward osmosis membrane: A comprehensive roadmap. Desalination 2020, 491, 114557. [Google Scholar] [CrossRef]
- Cheng, W.; Campolongo, M.J.; Tan, S.J.; Luo, D. Freestanding ultrathin nano-membranes via self-assembly. Nano Today 2009, 4, 482–493. [Google Scholar] [CrossRef]
- Zhang, Q.; Ghosh, S.; Samitsu, S.; Peng, X.; Ichinose, I. Ultrathin freestanding nanoporous membranes prepared from polystyrene nanoparticles. J. Mater. Chem. 2011, 21, 1684–1688. [Google Scholar] [CrossRef]
- Ye, J.; Wang, Y.; Li, Z.; Yang, D.; Li, C.; Yan, Y.; Dai, J. 2D confinement freestanding graphene oxide composite membranes with enriched oxygen vacancies for enhanced organic contaminants removal via peroxymonosulfate activation. J. Hazard. Mater. 2021, 417, 126028. [Google Scholar] [CrossRef] [PubMed]
- Ghaemi, N. A new approach to copper ion removal from water by polymeric nanocomposite membrane embedded with γ-alumina nanoparticles. Appl. Surf. Sci. 2016, 364, 221–228. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Nemati, M.; Jeddi, F.; Salehi, E.; Khodabakhshi, A.R.; Madaeni, S.S. Fabrication of mixed matrix heterogeneous cation exchange membrane modified by titanium dioxide nanoparticles: Mono/bivalent ionic transport property in desalination. Desalination 2015, 359, 167–175. [Google Scholar] [CrossRef]
- Mobarakabad, P.; Moghadassi, A.R.; Hosseini, S.M. Fabrication and characterization of poly(phenylene ether-ether sulfone) based nanofiltration membranes modified by titanium dioxide nanoparticles for water desalination. Desalination 2015, 365, 227–233. [Google Scholar] [CrossRef]
- Ayyaru, S.; Dinh, T.T.L.; Ahn, Y.-H. Enhanced antifouling performance of PVDF ultrafiltration membrane by blending zinc oxide with support of graphene oxide nanoparticle. Chemosphere 2020, 241, 125068. [Google Scholar] [CrossRef]
- Borjigin, B.; Liu, L.; Yu, L.; Xu, L.; Zhao, C.; Wang, J. Influence of incorporating beta zeolite nanoparticles on water permeability and ion selectivity of polyamide nanofiltration membranes. J. Environ. Sci. 2020, 98, 77–84. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, J.; Chu, H.; Zhou, X.; Wei, Y. Effect of modified attapulgite addition on the performance of a PVDF ultrafiltration membrane. Desalination 2014, 344, 71–78. [Google Scholar] [CrossRef]
- Kim, S.H.; Kwak, S.-Y.; Sohn, B.-H.; Park, T.H. Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. J. Membr. Sci. 2003, 211, 157–165. [Google Scholar] [CrossRef]
- Bae, T.-H.; Tak, T.-M. Preparation of TiO2 self-assembled polymeric nanocomposite membranes and examination of their fouling mitigation effects in a membrane bioreactor system. J. Membr. Sci. 2005, 266, 1–5. [Google Scholar] [CrossRef]
- Bae, T.-H.; Tak, T.-M. Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J. Membr. Sci. 2005, 249, 1–8. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, H.; Wang, P.; Zheng, Q.; Li, J. The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane. J. Membr. Sci. 2007, 288, 231–238. [Google Scholar] [CrossRef]
- Mansourpanah, Y.; Madaeni, S.S.; Rahimpour, A.; Farhadian, A.; Taheri, A.H. Formation of appropriate sites on nanofiltration membrane surface for binding TiO2 photo-catalyst: Performance, characterization and fouling-resistant capability. J. Membr. Sci. 2009, 330, 297–306. [Google Scholar] [CrossRef]
- Cao, X.; Ma, J.; Shi, X.; Ren, Z. Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Appl. Surf. Sci. 2006, 253, 2003–2010. [Google Scholar] [CrossRef]
- Hong, H.-J.; Sarkar, S.K.; Lee, B.-T. Formation of TiO2 nano fibers on a micro-channeled Al2O3–ZrO2/TiO2 porous composite membrane for photocatalytic filtration. J. Eur. Ceram. Soc. 2012, 32, 657–663. [Google Scholar] [CrossRef]
- Nonjola, P.T.; Mathe, M.K.; Modibedi, R.M. Chemical modification of polysulfone: Composite anionic exchange membrane with TiO2 nano-particles. Int. J. Hydrog. Energy 2013, 38, 5115–5121. [Google Scholar] [CrossRef]
- Li, J.-B.; Zhu, J.-W.; Zheng, M.-S. Morphologies and properties of poly(phthalazinone ether sulfone ketone) matrix ultrafiltration membranes with entrapped TiO2 nanoparticles. J. Appl. Polym. Sci. 2007, 103, 3623–3629. [Google Scholar] [CrossRef]
- Soroko, I.; Livingston, A. Impact of TiO2 nanoparticles on morphology and performance of crosslinked polyimide organic solvent nanofiltration (OSN) membranes. J. Membr. Sci. 2009, 343, 189–198. [Google Scholar] [CrossRef]
- Rahimpour, A.; Jahanshahi, M.; Mollahosseini, A.; Rajaeian, B. Structural and performance properties of UV-assisted TiO2 deposited nano-composite PVDF/SPES membranes. Desalination 2012, 285, 31–38. [Google Scholar] [CrossRef]
- Rahimpour, A.; Madaeni, S.S.; Taheri, A.H.; Mansourpanah, Y. Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes. J. Membr. Sci. 2008, 313, 158–169. [Google Scholar] [CrossRef]
- Wu, G.; Gan, S.; Cui, L.; Xu, Y. Preparation and characterization of PES/TiO2 composite membranes. Appl. Surf. Sci. 2008, 254, 7080–7086. [Google Scholar] [CrossRef]
- Xin, B.J.; Chen, Z.M.; Wu, X.J.; Wang, X.F.; Chen, W.J. Preparation and characterization of PSA/nano-TiO2 composites and fibers. J. Text. Inst. 2013, 104, 164–169. [Google Scholar] [CrossRef]
- Li, J.; Zuo, Y.; Man, Y.; Mo, A.; Huang, C.; Liu, M.; Jansen, J.A.; Li, Y. Fabrication and Biocompatibility of an Antimicrobial Composite Membrane with an Asymmetric Porous Structure. J. Biomater. Sci. Polym. Ed. 2012, 23, 81–96. [Google Scholar] [CrossRef]
- Rahimpour, A.; Jahanshahi, M.; Rajaeian, B.; Rahimnejad, M. TiO2 entrapped nano-composite PVDF/SPES membranes: Preparation, characterization, antifouling and antibacterial properties. Desalination 2011, 278, 343–353. [Google Scholar] [CrossRef]
- Razmjou, A.; Mansouri, J.; Chen, V.; Lim, M.; Amal, R. Titania nanocomposite polyethersulfone ultrafiltration membranes fabricated using a low temperature hydrothermal coating process. J. Membr. Sci. 2011, 380, 98–113. [Google Scholar] [CrossRef]
- Linh, N.T.B.; Lee, K.-H.; Lee, B.-T. A Novel Photoactive Nano-Filtration Module Composed of a TiO2 Loaded PVA Nano-Fibrous Membrane on Sponge Al2O3 Scaffolds and Al2O3-(m-ZrO2)/t-ZrO2 Composites. Mater. Trans. 2011, 52, 1452–1456. [Google Scholar] [CrossRef]
- Li, J.-H.; Xu, Y.-Y.; Zhu, L.-P.; Wang, J.-H.; Du, C.-H. Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance. J. Membr. Sci. 2009, 326, 659–666. [Google Scholar] [CrossRef]
- Luo, M.; Wen, Q.; Liu, J.; Liu, H.; Jia, Z. Fabrication of SPES/Nano-TiO2 Composite Ultrafiltration Membrane and Its Anti-fouling Mechanism. Chin. J. Chem. Eng. 2011, 19, 45–51. [Google Scholar] [CrossRef]
- Rajaeian, B.; Rahimpour, A.; Tade, M.O.; Liu, S. Fabrication and characterization of polyamide thin film nanocomposite (TFN) nanofiltration membrane impregnated with TiO2 nanoparticles. Desalination 2013, 313, 176–188. [Google Scholar] [CrossRef]
- Linh, N.T.B.; Lee, K.-H.; Lee, B.-T. Fabrication of photocatalytic PVA–TiO2 nano-fibrous hybrid membrane using the electro-spinning method. J. Mater. Sci. 2011, 46, 5615–5620. [Google Scholar] [CrossRef]
- Madaeni, S.S.; Zinadini, S.; Vatanpour, V. A new approach to improve antifouling property of PVDF membrane using in situ polymerization of PAA functionalized TiO2 nanoparticles. J. Membr. Sci. 2011, 380, 155–162. [Google Scholar] [CrossRef]
- Li, J.-F.; Xu, Z.-L.; Yang, H.; Yu, L.-Y.; Liu, M. Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Appl. Surf. Sci. 2009, 255, 4725–4732. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, K.; Wang, K.; Xie, Z.; Ladewig, B.; Wang, H. Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties. J. Membr. Sci. 2012, 423, 362–370. [Google Scholar] [CrossRef]
- Ahn, J.; Chung, W.-J.; Pinnau, I.; Guiver, M.D. Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. J. Membr. Sci. 2008, 314, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Shan, L.; Tu, Z.; Zhang, Y. Preparation and characterization of novel Ce-doped nonstoichiometric nanosilica/polysulfone composite membranes. Sep. Purif. Technol. 2008, 63, 207–212. [Google Scholar] [CrossRef]
- Yu, S.; Zuo, X.; Bao, R.; Xu, X.; Wang, J.; Xu, J. Effect of SiO2 nanoparticle addition on the characteristics of a new organic–inorganic hybrid membrane. Polymer 2009, 50, 553–559. [Google Scholar] [CrossRef]
- Pu, H.; Liu, L.; Chang, Z.; Yuan, J. Organic/inorganic composite membranes based on polybenzimidazole and nano-SiO2. Electrochim. Acta 2009, 54, 7536–7541. [Google Scholar] [CrossRef]
- Farno, E.; Ghadimi, A.; Kasiri, N.; Mohammadi, T. Separation of heavy gases from light gases using synthesized PDMS nano-composite membranes: Experimental and neural network modeling. Sep. Purif. Technol. 2011, 81, 400–410. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Majid, M.A.; Ooi, B.S. Functionalized PSf/SiO2 nanocomposite membrane for oil-in-water emulsion separation. Desalination 2011, 268, 266–269. [Google Scholar] [CrossRef]
- Lue, S.J.; Lee, D.-T.; Chen, J.-Y.; Chiu, C.-H.; Hu, C.-C.; Jean, Y.C.; Lai, J.-Y. Diffusivity enhancement of water vapor in poly(vinyl alcohol)–fumed silica nano-composite membranes: Correlation with polymer crystallinity and free-volume properties. J. Membr. Sci. 2008, 325, 831–839. [Google Scholar] [CrossRef]
- Kim, S.; Marand, E. High permeability nano-composite membranes based on mesoporous MCM-41 nanoparticles in a polysulfone matrix. Microporous Mesoporous Mater. 2008, 114, 129–136. [Google Scholar] [CrossRef]
- Wang, K.; McDermid, S.; Li, J.; Kremliakova, N.; Kozak, P.; Song, C.; Tang, Y.; Zhang, J.; Zhang, J. Preparation and performance of nano silica/Nafion composite membrane for proton exchange membrane fuel cells. J. Power Sources 2008, 184, 99–103. [Google Scholar] [CrossRef]
- Jeddi, K.; Zhao, Y.; Zhang, Y.; Konarov, A.; Chen, P. Fabrication and Characterization of an Effective Polymer Nanocomposite Electrolyte Membrane for High Performance Lithium/Sulfur Batteries. J. Electrochem. Soc. 2013, 160, A1052–A1060. [Google Scholar] [CrossRef]
- Shi, G.M.; Chen, H.; Jean, Y.C.; Chung, T.S. Sorption, swelling, and free volume of polybenzimidazole (PBI) and PBI/zeolitic imidazolate framework (ZIF-8) nano-composite membranes for pervaporation. Polymer 2013, 54, 774–783. [Google Scholar] [CrossRef]
- Lin, W.; Zhu, T.; Li, Q.; Yi, S.; Li, Y. Study of pervaporation for dehydration of caprolactam through PVA/nano silica composite membranes. Desalination 2012, 285, 39–45. [Google Scholar] [CrossRef]
- Karkhanechi, H.; Kazemian, H.; Nazockdast, H.; Mozdianfard, M.R.; Bidoki, S.M. Fabrication of Homogenous Polymer-Zeolite Nanocomposites as Mixed-Matrix Membranes for Gas Separation. Chem. Eng. Technol. 2012, 35, 885–892. [Google Scholar] [CrossRef]
- Li, L.-H.; Deng, J.-C.; Deng, H.-R.; Liu, Z.-L.; Xin, L. Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes. Carbohydr. Res. 2010, 345, 994–998. [Google Scholar] [CrossRef]
- Maximous, N.; Nakhla, G.; Wan, W.; Wong, K. Preparation, characterization and performance of Al2O3/PES membrane for wastewater filtration. J. Membr. Sci. 2009, 341, 67–75. [Google Scholar] [CrossRef]
- Amanipour, M.; Ganji Babakhani, E.; Safekordi, A.; Zamaniyan, A.; Heidari, M. Effect of CVD parameters on hydrogen permeation properties in a nano-composite SiO2–Al2O3 membrane. J. Membr. Sci. 2012, 423, 530–535. [Google Scholar] [CrossRef]
- Li, X.; Yu, Y.; Meng, Y. Novel Quaternized Poly(arylene ether sulfone)/Nano-ZrO2 Composite Anion Exchange Membranes for Alkaline Fuel Cells. ACS Appl. Mater. Interfaces 2013, 5, 1414–1422. [Google Scholar] [CrossRef] [PubMed]
- Van Gestel, T.; Sebold, D.; Meulenberg, W.A.; Bram, M.; Buchkremer, H.-P. Manufacturing of new nano-structured ceramic–metallic composite microporous membranes consisting of ZrO2, Al2O3, TiO2 and stainless steel. Solid State Ion. 2008, 179, 1360–1366. [Google Scholar] [CrossRef]
- Shin, W.-K.; Lee, Y.-S.; Kim, D.-W. Hybrid Composite Membranes Based on Polyethylene Separator and Al2O3 Nanoparticles for Lithium-Ion Batteries. J. Nanosci. Nanotechnol. 2013, 13, 3705–3710. [Google Scholar] [CrossRef]
- Xu, J.; Bhattacharyya, D. Fe/Pd Nanoparticle Immobilization in Microfiltration Membrane Pores: Synthesis, Characterization, and Application in the Dechlorination of Polychlorinated Biphenyls. Ind. Eng. Chem. Res. 2007, 46, 2348–2359. [Google Scholar] [CrossRef]
- Hong, J.; He, Y. Effects of nano sized zinc oxide on the performance of PVDF microfiltration membranes. Desalination 2012, 302, 71–79. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhao, D.L.; Chung, T.-S. Thin-film nanocomposite membranes incorporated with defective ZIF-8 nanoparticles for brackish water and seawater desalination. J. Membr. Sci. 2021, 625, 119158. [Google Scholar] [CrossRef]
- Bose, J.; Dasgupta, J.; Adhikari, U.; Sikder, J. Tuning permeation characteristics of cellulose acetate membrane embedded with raw and amine-functionalized silicon carbide nanoparticle for oil-water separation. J. Water Process Eng. 2021, 41, 102019. [Google Scholar] [CrossRef]
- Wen, M.; Chen, M.; Chen, K.; Li, P.-L.; Lv, C.; Zhang, X.; Yao, Y.; Yang, W.; Huang, G.; Ren, G.-K.; et al. Superhydrophobic composite graphene oxide membrane coated with fluorinated silica nanoparticles for hydrogen isotopic water separation in membrane distillation. J. Membr. Sci. 2021, 626, 119136. [Google Scholar] [CrossRef]
- Kazemi, F.; Jafarzadeh, Y.; Masoumi, S.; Rostamizadeh, M. Oil-in-water emulsion separation by PVC membranes embedded with GO-ZnO nanoparticles. J. Environ. Chem. Eng. 2021, 9, 104992. [Google Scholar] [CrossRef]
- De Guzman, M.R.; Andra, C.K.A.; Ang, M.B.M.Y.; Dizon, G.V.C.; Caparanga, A.R.; Huang, S.-H.; Lee, K.-R. Increased performance and antifouling of mixed-matrix membranes of cellulose acetate with hydrophilic nanoparticles of polydopamine-sulfobetaine methacrylate for oil-water separation. J. Membr. Sci. 2021, 620, 118881. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Li, D.; Wang, Q.; Ran, F. Water-soluble MOF nanoparticles modified polyethersulfone membrane for improving flux and molecular retention. Appl. Surf. Sci. 2020, 505, 144553. [Google Scholar] [CrossRef]
- Zhao, D.L.; Yeung, W.S.; Zhao, Q.; Chung, T.-S. Thin-film nanocomposite membranes incorporated with UiO-66-NH2 nanoparticles for brackish water and seawater desalination. J. Membr. Sci. 2020, 604, 118039. [Google Scholar] [CrossRef]
- Kotp, Y.H. High-flux TFN nanofiltration membranes incorporated with Camphor-Al2O3 nanoparticles for brackish water desalination. Chemosphere 2021, 265, 128999. [Google Scholar] [CrossRef] [PubMed]
- Matindi, C.N.; Hu, M.; Kadanyo, S.; Ly, Q.V.; Gumbi, N.N.; Dlamini, D.S.; Li, J.; Hu, Y.; Cui, Z.; Li, J. Tailoring the morphology of polyethersulfone/sulfonated polysulfone ultrafiltration membranes for highly efficient separation of oil-in-water emulsions using TiO2 nanoparticles. J. Membr. Sci. 2021, 620, 118868. [Google Scholar] [CrossRef]
- Barati, N.; Husein, M.M.; Azaiez, J. Modifying ceramic membranes with in situ grown iron oxide nanoparticles and their use for oily water treatment. J. Membr. Sci. 2021, 617, 118641. [Google Scholar] [CrossRef]
- He, J.; Xiong, D.; Zhou, P.; Xiao, X.; Ni, F.; Deng, S.; Shen, F.; Tian, D.; Long, L.; Luo, L. A novel homogenous in-situ generated ferrihydrite nanoparticles/polyethersulfone composite membrane for removal of lead from water: Development, characterization, performance and mechanism. Chem. Eng. J. 2020, 393, 124696. [Google Scholar] [CrossRef]
- Liu, R.; Raman, A.K.Y.; Shaik, I.; Aichele, C.; Kim, S.-J. Inorganic microfiltration membranes incorporated with hydrophilic silica nanoparticles for oil-in-water emulsion separation. J. Water Process Eng. 2018, 26, 124–130. [Google Scholar] [CrossRef]
- Zhang, D.-S.; Abadikhah, H.; Wang, J.-W.; Hao, L.-Y.; Xu, X.; Agathopoulos, S. β-SiAlON ceramic membranes modified with SiO2 nanoparticles with high rejection rate in oil-water emulsion separation. Ceram. Int. 2019, 45, 4237–4242. [Google Scholar] [CrossRef]
- Rowley, J.; Abu-Zahra, N.H. Synthesis and characterization of polyethersulfone membranes impregnated with (3-aminopropyltriethoxysilane) APTES-Fe3O4 nanoparticles for As(V) removal from water. J. Environ. Chem. Eng. 2019, 7, 102875. [Google Scholar] [CrossRef]
- Hokkanen, S.; Repo, E.; Lou, S.; Sillanpää, M. Removal of arsenic(V) by magnetic nanoparticle activated microfibrillated cellulose. Chem. Eng. J. 2015, 260, 886–894. [Google Scholar] [CrossRef]
- Islam, M.S.; McCutcheon, J.R.; Rahaman, M.S. A high flux polyvinyl acetate-coated electrospun nylon 6/SiO2 composite microfiltration membrane for the separation of oil-in-water emulsion with improved antifouling performance. J. Membr. Sci. 2017, 537, 297–309. [Google Scholar] [CrossRef]
- Sani, H.A.; Ahmad, M.B.; Hussein, M.Z.; Ibrahim, N.A.; Musa, A.; Saleh, T.A. Nanocomposite of ZnO with montmorillonite for removal of lead and copper ions from aqueous solutions. Process Saf. Environ. Prot. 2017, 109, 97–105. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Y.; Yang, Z.; Guo, H.; Cao, B.; Tang, C.Y. A novel gravity-driven nanofibrous membrane for point-of-use water disinfection: Polydopamine-induced in situ silver incorporation. Sci. Rep. 2017, 7, 2334. [Google Scholar] [CrossRef] [PubMed]
- Dickson, D.; Liu, G.; Cai, Y. Adsorption kinetics and isotherms of arsenite and arsenate on hematite nanoparticles and aggregates. J. Environ. Manag. 2017, 186, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Fazlzadeh, M.; Rahmani, K.; Zarei, A.; Abdoallahzadeh, H.; Nasiri, F.; Khosravi, R. A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr (VI) from aqueous solutions. Adv. Powder Technol. 2017, 28, 122–130. [Google Scholar] [CrossRef]
- Mousakhani, M.; Sarlak, N. Electrospun composite nanofibre adsorbents for effective removal of Cd2+ from polluted water. Mater. Chem. Phys. 2020, 256, 123578. [Google Scholar] [CrossRef]
- Fan, H.-L.; Zhou, S.-F.; Jiao, W.-Z.; Qi, G.-S.; Liu, Y.-Z. Removal of heavy metal ions by magnetic chitosan nanoparticles prepared continuously via high-gravity reactive precipitation method. Carbohydr. Polym. 2017, 174, 1192–1200. [Google Scholar] [CrossRef]
- Xiong, C.; Wang, W.; Tan, F.; Luo, F.; Chen, J.; Qiao, X. Investigation on the efficiency and mechanism of Cd (II) and Pb (II) removal from aqueous solutions using MgO nanoparticles. J. Hazard. Mater. 2015, 299, 664–674. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, C.; Zhu, K.; Wang, X. Nanoscale zero-valent iron particles modified on reduced graphene oxides using a plasma technique for Cd (II) removal. J. Taiwan Inst. Chem. Eng. 2016, 59, 389–394. [Google Scholar] [CrossRef]
- Du, L.; Quan, X.; Fan, X.; Wei, G.; Chen, S. Conductive CNT/nanofiber composite hollow fiber membranes with electrospun support layer for water purification. J. Membr. Sci. 2020, 596, 117613. [Google Scholar] [CrossRef]
- Savasari, M.; Emadi, M.; Bahmanyar, M.A.; Biparva, P. Optimization of Cd (II) removal from aqueous solution by ascorbic acid-stabilized zero valent iron nanoparticles using response surface methodology. J. Ind. Eng. Chem. 2015, 21, 1403–1409. [Google Scholar] [CrossRef]
- Gupta, V.K.; Chandra, R.; Tyagi, I.; Verma, M. Removal of hexavalent chromium ions using CuO nanoparticles for water purification applications. J. Colloid Interface Sci. 2016, 478, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Bhadra, J.; Parangusan, H.; Popelka, A.; Lehocky, M.; Humpolicek, P.; Al-Thani, N. Electrospun Polystyrene/PANI-Ag fibers for organic dye removal and antibacterial application. J. Environ. Chem. Eng. 2020, 8, 103746. [Google Scholar] [CrossRef]
- Al Nafiey, A.; Addad, A.; Sieber, B.; Chastanet, G.; Barras, A.; Szunerits, S.; Boukherroub, R. Reduced graphene oxide decorated with Co3O4 nanoparticles (rGO-Co3O4) nanocomposite: A reusable catalyst for highly efficient reduction of 4-nitrophenol, and Cr(VI) and dye removal from aqueous solutions. Chem. Eng. J. 2017, 322, 375–384. [Google Scholar] [CrossRef]
- Tabesh, S.; Davar, F.; Loghman-Estarki, M.R. Preparation of γ-Al2O3 nanoparticles using modified sol-gel method and its use for the adsorption of lead and cadmium ions. J. Alloy. Compd. 2018, 730, 441–449. [Google Scholar] [CrossRef]
- Martinez-Vargas, S.; Martínez, A.I.; Hernández-Beteta, E.E.; Mijangos-Ricardez, O.F.; Vázquez-Hipólito, V.; Patiño-Carachure, C.; Hernandez-Flores, H.; López-Luna, J. Arsenic adsorption on cobalt and manganese ferrite nanoparticles. J. Mater. Sci. 2017, 52, 6205–6215. [Google Scholar] [CrossRef]
- Wang, Z.; Sahadevan, R.; Crandall, C.; Menkhaus, T.J.; Fong, H. Hot-pressed PAN/PVDF hybrid electrospun nanofiber membranes for ultrafiltration. J. Membr. Sci. 2020, 611, 118327. [Google Scholar] [CrossRef]
- Chen, K.; He, J.; Li, Y.; Cai, X.; Zhang, K.; Liu, T.; Hu, Y.; Lin, D.; Kong, L.; Liu, J. Removal of cadmium and lead ions from water by sulfonated magnetic nanoparticle adsorbents. J. Colloid Interface Sci. 2017, 494, 307–316. [Google Scholar] [CrossRef]
- Agarwal, S.; Tyagi, I.; Gupta, V.K.; Dehghani, M.H.; Jaafari, J.; Balarak, D.; Asif, M. Rapid removal of noxious nickel (II) using novel γ-alumina nanoparticles and multiwalled carbon nanotubes: Kinetic and isotherm studies. J. Mol. Liq. 2016, 224, 618–623. [Google Scholar] [CrossRef]
- Depault, F.; Cojocaru, M.; Fortin, F.; Chakrabarti, S.; Lemieux, N. Genotoxic effects of chromium (VI) and cadmium (II) in human blood lymphocytes using the electron microscopy in situ end-labeling (EM-ISEL) assay. Toxicol. Vitr. 2006, 20, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Li, X.; Teng, K.; Zhou, B.; Ma, M.; Shan, M.; Jiao, K.; Qian, X.; Fan, J. High flux and rejection of hierarchical composite membranes based on carbon nanotube network and ultrathin electrospun nanofibrous layer for dye removal. J. Membr. Sci. 2017, 535, 94–102. [Google Scholar] [CrossRef]
- Davarnejad, R.; Panahi, P. Cu (II) removal from aqueous wastewaters by adsorption on the modified Henna with Fe3O4 nanoparticles using response surface methodology. Sep. Purif. Technol. 2016, 158, 286–292. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Cao, L.; Wang, Y.; Li, L.; Li, W. Electrospun PVDF-SiO2 nanofibrous membranes with enhanced surface roughness for oil-water coalescence separation. Sep. Purif. Technol. 2021, 269, 118726. [Google Scholar] [CrossRef]
- Fouladgar, M.; Beheshti, M.; Sabzyan, H. Single and binary adsorption of nickel and copper from aqueous solutions by γ-alumina nanoparticles: Equilibrium and kinetic modeling. J. Mol. Liq. 2015, 211, 1060–1073. [Google Scholar] [CrossRef]
- Sundaran, S.P.; Reshmi, C.R.; Sagitha, P.; Manaf, O.; Sujith, A. Multifunctional graphene oxide loaded nanofibrous membrane for removal of dyes and coliform from water. J. Environ. Manag. 2019, 240, 494–503. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, P.; Borthwick, A.G.L.; Chen, H.; Ni, J. Adsorption mechanisms of thallium (I) and thallium (III) by titanate nanotubes: Ion-exchange and co-precipitation. J. Colloid Interface Sci. 2014, 423, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Zdraveva, E.; Fang, J.; Mijovic, B.; Lin, T. 11—Electrospun nanofibers. In Structure and Properties of High-Performance Fibers; Bhat, G., Ed.; Woodhead Publishing: Oxford, UK, 2017; pp. 267–300. [Google Scholar] [CrossRef]
- Zhang, Q.G.; Deng, C.; Soyekwo, F.; Liu, Q.L.; Zhu, A.M. Sub-10 nm Wide Cellulose Nanofibers for Ultrathin Nanoporous Membranes with High Organic Permeation. Adv. Funct. Mater. 2016, 26, 792–800. [Google Scholar] [CrossRef]
- Ling, S.; Jin, K.; Kaplan, D.L.; Buehler, M.J. Ultrathin Free-Standing Bombyx mori Silk Nanofibril Membranes. Nano Lett. 2016, 16, 3795–3800. [Google Scholar] [CrossRef]
- Du, C.; Wang, Z.; Liu, G.; Wang, W.; Yu, D. One-step electrospinning PVDF/PVP-TiO2 hydrophilic nanofiber membrane with strong oil-water separation and anti-fouling property. Colloids Surf. A Physicochem. Eng. Asp. 2021, 624, 126790. [Google Scholar] [CrossRef]
- Liu, F.; Wang, L.; Li, D.; Liu, Q.; Deng, B. Preparation and characterization of novel thin film composite nanofiltration membrane with PVDF tree-like nanofiber membrane as composite scaffold. Mater. Des. 2020, 196, 109101. [Google Scholar] [CrossRef]
- Lv, Y.; Xia, J.; Yang, Y.; Chen, Y.; Liu, T. Thin-film composite membranes with mineralized nanofiber supports for highly efficient nanofiltration. Compos. Commun. 2021, 24, 100695. [Google Scholar] [CrossRef]
- Abd Halim, N.S.; Wirzal, M.D.H.; Hizam, S.M.; Bilad, M.R.; Nordin, N.A.H.M.; Sambudi, N.S.; Putra, Z.A.; Yusoff, A.R.M. Recent Development on Electrospun Nanofiber Membrane for Produced Water Treatment: A review. J. Environ. Chem. Eng. 2021, 9, 104613. [Google Scholar] [CrossRef]
- Xu, H.; Liu, H.; Huang, Y.; Xiao, C. Three-dimensional structure design of tubular polyvinyl chloride hybrid nanofiber membranes for water-in-oil emulsion separation. J. Membr. Sci. 2021, 620, 118905. [Google Scholar] [CrossRef]
- Su, Y.; Fan, T.; Bai, H.; Guan, H.; Ning, X.; Yu, M.; Long, Y. Bioinspired Superhydrophobic and Superlipophilic Nanofiber Membrane with Pine Needle-like Structure for Efficient Gravity-driven Oil/Water Separation. Sep. Purif. Technol. 2021, 274, 119098. [Google Scholar] [CrossRef]
- Zhang, T.; Xiao, C.; Zhao, J.; Liu, X.; Ji, D.; Xu, H. One-step preparation of tubular nanofibers and micro/nanospheres covered membrane with 3D micro/nano structure for highly efficient emulsified oil/water separation. J. Taiwan Inst. Chem. Eng. 2021, 122, 210–221. [Google Scholar] [CrossRef]
- Obaid, M.; Mohamed, H.O.; Alayande, A.B.; Kang, Y.; Ghaffour, N.; Kim, I.S. Facile fabrication of superhydrophilic and underwater superoleophobic nanofiber membranes for highly efficient separation of oil-in-water emulsion. Sep. Purif. Technol. 2021, 272, 118954. [Google Scholar] [CrossRef]
- Yin, H.; Zhao, J.; Li, Y.; Liao, Y.; Huang, L.; Zhang, H.; Chen, L. Electrospun SiNPs/ZnNPs-SiO2/TiO2 nanofiber membrane with asymmetric wetting: Ultra-efficient separation of oil-in-water and water-in-oil emulsions in multiple extreme environments. Sep. Purif. Technol. 2021, 255, 117687. [Google Scholar] [CrossRef]
- Venkatesh, K.; Arthanareeswaran, G.; Chandra Bose, A.; Suresh Kumar, P.; Kweon, J. Diethylenetriaminepentaacetic acid-functionalized multi-walled carbon nanotubes/titanium oxide-PVDF nanofiber membrane for effective separation of oil/water emulsion. Sep. Purif. Technol. 2021, 257, 117926. [Google Scholar] [CrossRef]
- Wang, W.; Lin, J.; Cheng, J.; Cui, Z.; Si, J.; Wang, Q.; Peng, X.; Turng, L.-S. Dual super-amphiphilic modified cellulose acetate nanofiber membranes with highly efficient oil/water separation and excellent antifouling properties. J. Hazard. Mater. 2020, 385, 121582. [Google Scholar] [CrossRef]
- Li, N.; Wang, W.; Zhu, L.; Cui, W.; Chen, X.; Zhang, B.; Zhang, Z. A novel electro-cleanable PAN-ZnO nanofiber membrane with superior water flux and electrocatalytic properties for organic pollutant degradation. Chem. Eng. J. 2020, 421, 127857. [Google Scholar] [CrossRef]
- Ozbey-Unal, B.; Gezmis-Yavuz, E.; Eryildiz, B.; Koseoglu-Imer, D.Y.; Keskinler, B.; Koyuncu, I. Boron removal from geothermal water by nanofiber-based membrane distillation membranes with significantly improved surface hydrophobicity. J. Environ. Chem. Eng. 2020, 8, 104113. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, C.; Liu, H.; Chen, M.; Xu, H.; Luo, W.; Zhang, F. Robust functionalization of underwater superoleophobic PVDF-HFP tubular nanofiber membranes and applications for continuous dye degradation and oil/water separation. J. Membr. Sci. 2020, 596, 117583. [Google Scholar] [CrossRef]
- Moatmed, S.M.; Khedr, M.H.; El-dek, S.I.; Kim, H.-Y.; El-Deen, A.G. Highly efficient and reusable superhydrophobic/superoleophilic polystyrene@ Fe3O4 nanofiber membrane for high-performance oil/water separation. J. Environ. Chem. Eng. 2019, 7, 103508. [Google Scholar] [CrossRef]
- Choi, H.Y.; Bae, J.H.; Hasegawa, Y.; An, S.; Kim, I.S.; Lee, H.; Kim, M. Thiol-functionalized cellulose nanofiber membranes for the effective adsorption of heavy metal ions in water. Carbohydr. Polym. 2020, 234, 115881. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, P.; Li, X.; Zhu, Z.; Chen, M.; Zhou, X. Electrospun lignin-based composite nanofiber membrane as high-performance absorbent for water purification. Int. J. Biol. Macromol. 2019, 141, 747–755. [Google Scholar] [CrossRef]
- Gao, J.; Li, B.; Wang, L.; Huang, X.; Xue, H. Flexible membranes with a hierarchical nanofiber/microsphere structure for oil adsorption and oil/water separation. J. Ind. Eng. Chem. 2018, 68, 416–424. [Google Scholar] [CrossRef]
- Cao, J.; Cheng, Z.; Kang, L.; Chu, M.; Wu, D.; Li, M.; Xie, S.; Wen, R. Novel stellate poly(vinylidene fluoride)/polyethersulfone microsphere-nanofiber electrospun membrane with special wettability for oil/water separation. Mater. Lett. 2017, 207, 190–194. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, H.; Fan, X.; Lv, F.; Chen, S.; Quan, X. Fabrication of TiO2 nanofiber membranes by a simple dip-coating technique for water treatment. Surf. Coat. Technol. 2016, 298, 45–52. [Google Scholar] [CrossRef]
- Wang, R.; Guan, S.; Sato, A.; Wang, X.; Wang, Z.; Yang, R.; Hsiao, B.S.; Chu, B. Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions. J. Membr. Sci. 2013, 446, 376–382. [Google Scholar] [CrossRef]
- Karim, Z.; Hakalahti, M.; Tammelin, T.; Mathew, A.P. In situ TEMPO surface functionalization of nanocellulose membranes for enhanced adsorption of metal ions from aqueous medium. RSC Adv. 2017, 7, 5232–5241. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Wang, Y.; Li, M.; Liu, K.; Hu, C.; Yan, K.; Sun, G.; Wang, D. Activable carboxylic acid functionalized crystalline nanocellulose/PVA-co-PE composite nanofibrous membrane with enhanced adsorption for heavy metal ions. Sep. Purif. Technol. 2017, 186, 70–77. [Google Scholar] [CrossRef]
- Halim, A.; Xu, Y.; Lin, K.-H.; Kobayashi, M.; Kajiyama, M.; Enomae, T. Fabrication of cellulose nanofiber-deposited cellulose sponge as an oil-water separation membrane. Sep. Purif. Technol. 2019, 224, 322–331. [Google Scholar] [CrossRef]
- Gopakumar, D.A.; Pasquini, D.; Henrique, M.A.; de Morais, L.C.; Grohens, Y.; Thomas, S. Meldrum’s Acid Modified Cellulose Nanofiber-Based Polyvinylidene Fluoride Microfiltration Membrane for Dye Water Treatment and Nanoparticle Removal. ACS Sustain. Chem. Eng. 2017, 5, 2026–2033. [Google Scholar] [CrossRef]
- Zhan, H.; Peng, N.; Lei, X.; Huang, Y.; Li, D.; Tao, R.; Chang, C. UV-induced self-cleanable TiO2/nanocellulose membrane for selective separation of oil/water emulsion. Carbohydr. Polym. 2018, 201, 464–470. [Google Scholar] [CrossRef]
- Cruz-Tato, P.; Ortiz-Quiles, E.O.; Vega-Figueroa, K.; Santiago-Martoral, L.; Flynn, M.; Díaz-Vázquez, L.M.; Nicolau, E. Metalized Nanocellulose Composites as a Feasible Material for Membrane Supports: Design and Applications for Water Treatment. Environ. Sci. Technol. 2017, 51, 4585–4595. [Google Scholar] [CrossRef]
- Leitch, M.E.; Li, C.; Ikkala, O.; Mauter, M.S.; Lowry, G.V. Bacterial Nanocellulose Aerogel Membranes: Novel High-Porosity Materials for Membrane Distillation. Environ. Sci. Technol. Lett. 2016, 3, 85–91. [Google Scholar] [CrossRef]
- Yang, R.; Aubrecht, K.B.; Ma, H.; Wang, R.; Grubbs, R.B.; Hsiao, B.S.; Chu, B. Thiol-modified cellulose nanofibrous composite membranes for chromium (VI) and lead (II) adsorption. Polymer 2014, 55, 1167–1176. [Google Scholar] [CrossRef]
- Hou, Y.; Duan, C.; Zhu, G.; Luo, H.; Liang, S.; Jin, Y.; Zhao, N.; Xu, J. Functional bacterial cellulose membranes with 3D porous architectures: Conventional drying, tunable wettability and water/oil separation. J. Membr. Sci. 2019, 591, 117312. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Zhang, Y.; van Bochove, B.; Mäkilä, E.; Seppälä, J.; Xu, W.; Willför, S.; Xu, C. Robust shape-retaining nanocellulose-based aerogels decorated with silver nanoparticles for fast continuous catalytic discoloration of organic dyes. Sep. Purif. Technol. 2020, 242, 116523. [Google Scholar] [CrossRef]
- Cheng, R.; Kang, M.; Zhuang, S.; Shi, L.; Zheng, X.; Wang, J. Adsorption of Sr (II) from water by mercerized bacterial cellulose membrane modified with EDTA. J. Hazard. Mater. 2019, 364, 645–653. [Google Scholar] [CrossRef]
- Amiralian, N.; Mustapic, M.; Hossain, M.S.A.; Wang, C.; Konarova, M.; Tang, J.; Na, J.; Khan, A.; Rowan, A. Magnetic nanocellulose: A potential material for removal of dye from water. J. Hazard. Mater. 2020, 394, 122571. [Google Scholar] [CrossRef]
- Min, L.-L.; Zhong, L.-B.; Zheng, Y.-M.; Liu, Q.; Yuan, Z.-H.; Yang, L.-M. Functionalized chitosan electrospun nanofiber for effective removal of trace arsenate from water. Sci. Rep. 2016, 6, 32480. [Google Scholar] [CrossRef]
- Deng, S.; Liu, X.; Liao, J.; Lin, H.; Liu, F. PEI modified multiwalled carbon nanotube as a novel additive in PAN nanofiber membrane for enhanced removal of heavy metal ions. Chem. Eng. J. 2019, 375, 122086. [Google Scholar] [CrossRef]
- Cai, Z.J.; Yang, H.Z.; Xu, Y.; Wang, C.K. Preparation of Polyindole Nanofibers and Their Cadium Ion Adsorption Performance. Acta Polym. Sin. 2015, 5, 581–588. [Google Scholar]
- Wu, S.; Li, F.; Wang, H.; Fu, L.; Zhang, B.; Li, G. Effects of poly (vinyl alcohol) (PVA) content on preparation of novel thiol-functionalized mesoporous PVA/SiO2 composite nanofiber membranes and their application for adsorption of heavy metal ions from aqueous solution. Polymer 2010, 51, 6203–6211. [Google Scholar] [CrossRef]
- Zhou, W.T.; He, J.X.; Cui, S.Z.; Gao, W.D. Nanofibrous Membrane of Silk Fibroin/Cellulose Acetate Blend for Heavy Metal Ion Adsorption. Adv. Mater. Res. 2011, 148–149, 1431–1435. [Google Scholar] [CrossRef]
- Alipour, D.; Keshtkar, A.R.; Moosavian, M.A. Adsorption of thorium(IV) from simulated radioactive solutions using a novel electrospun PVA/TiO2/ZnO nanofiber adsorbent functionalized with mercapto groups: Study in single and multi-component systems. Appl. Surf. Sci. 2016, 366, 19–29. [Google Scholar] [CrossRef]
- Min, L.-L.; Yuan, Z.-H.; Zhong, L.-B.; Liu, Q.; Wu, R.-X.; Zheng, Y.-M. Preparation of chitosan based electrospun nanofiber membrane and its adsorptive removal of arsenate from aqueous solution. Chem. Eng. J. 2015, 267, 132–141. [Google Scholar] [CrossRef]
- Haddad, M.Y.; Alharbi, H.F.; Karim, M.R.; Aijaz, M.O.; Alharthi, N.H. Preparation of TiO2 incorporated polyacrylonitrile electrospun nanofibers for adsorption of heavy metal ions. J. Polym. Res. 2018, 25, 218. [Google Scholar] [CrossRef]
- Aquino, R.R.; Tolentino, M.S.; Amen, S.C.S.; Arceo, M.A.V.; Dolojan, M.E.S.; Basilia, B.A. Preparation of cellulose acetate blended with chitosan nanostructured membrane via electrospinning for Cd2+ adsorption in artificial wastewater. IOP Conf. Ser. Earth Environ. Sci. 2018, 191, 012137. [Google Scholar] [CrossRef]
- Keshtkar, A.R.; Tabatabaeefar, A.; Vaneghi, A.S.; Moosavian, M.A. Electrospun polyvinylpyrrolidone/silica/3-aminopropyltriethoxysilane composite nanofiber adsorbent: Preparation, characterization and its application for heavy metal ions removal from aqueous solution. J. Environ. Chem. Eng. 2016, 4, 1248–1258. [Google Scholar] [CrossRef]
- Li, L.; Zhang, J.; Li, Y.; Yang, C. Removal of Cr (VI) with a spiral wound chitosan nanofiber membrane module via dead-end filtration. J. Membr. Sci. 2017, 544, 333–341. [Google Scholar] [CrossRef]
- Bassyouni, D.; Mohamed, M.; El-Ashtoukhy, E.-S.; El-Latif, M.A.; Zaatout, A.; Hamad, H. Fabrication and characterization of electrospun Fe3O4/o-MWCNTs/polyamide 6 hybrid nanofibrous membrane composite as an efficient and recoverable adsorbent for removal of Pb (II). Microchem. J. 2019, 149, 103998. [Google Scholar] [CrossRef]
- Ki, C.S.; Gang, E.; Um, I.; Park, Y.W. Nanofibrous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption. J. Membr. Sci. 2007, 302, 20–26. [Google Scholar] [CrossRef]
- Taha, A.A.; Qiao, J.; Li, F.; Zhang, B. Preparation and application of amino functionalized mesoporous nanofiber membrane via electrospinning for adsorption of Cr3+ from aqueous solution. J. Environ. Sci. 2012, 24, 610–616. [Google Scholar] [CrossRef]
- Zia, Q.; Tabassum, M.; Lu, Z.; Khawar, M.T.; Song, J.; Gong, H.; Meng, J.; Li, Z.; Li, J. Porous poly(L–lactic acid)/chitosan nanofibres for copper ion adsorption. Carbohydr. Polym. 2020, 227, 115343. [Google Scholar] [CrossRef]
- Abbasizadeh, S.; Keshtkar, A.R.; Mousavian, M.A. Preparation of a novel electrospun polyvinyl alcohol/titanium oxide nanofiber adsorbent modified with mercapto groups for uranium (VI) and thorium (IV) removal from aqueous solution. Chem. Eng. J. 2013, 220, 161–171. [Google Scholar] [CrossRef]
- Bornillo, K.A.S.; Kim, S.; Choi, H. Cu (II) removal using electrospun dual-responsive polyethersulfone-poly (dimethyl amino) ethyl methacrylate (PES-PDMAEMA) blend nanofibers. Chemosphere 2020, 242, 125287. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.-X.; Zheng, G.-F.; Li, W.-W.; Zhong, L.-B.; Zheng, Y.-M. Electrospun Chitosan Nanofiber Membrane for Adsorption of Cu (II) from Aqueous Solution: Fabrication, Characterization and Performance. J. Nanosci. Nanotechnol. 2018, 18, 5624–5635. [Google Scholar] [CrossRef] [PubMed]
- Peter, K.T.; Myung, N.V.; Cwiertny, D.M. Surfactant-assisted fabrication of porous polymeric nanofibers with surface-enriched iron oxide nanoparticles: Composite filtration materials for removal of metal cations. Environ. Sci. Nano 2018, 5, 669–681. [Google Scholar] [CrossRef]
- Wang, P.; Wang, L.; Dong, S.; Zhang, G.; Shi, X.; Xiang, C.; Li, L. Adsorption of hexavalent chromium by novel chitosan/poly(ethylene oxide)/permutit electrospun nanofibers. New J. Chem. 2018, 42, 17740–17749. [Google Scholar] [CrossRef]
- Sun, B.; Li, X.; Zhao, R.; Yin, M.; Wang, Z.; Jiang, Z.; Wang, C. Hierarchical aminated PAN/γ–AlOOH electrospun composite nanofibers and their heavy metal ion adsorption performance. J. Taiwan Inst. Chem. Eng. 2016, 62, 219–227. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, Q.; Korfiatis, G.; Christodoulatos, C.; Wang, H.; Meng, X. Chromate removal by electrospun PVA/PEI nanofibers: Adsorption, reduction, and effects of co-existing ions. Chem. Eng. J. 2020, 387, 124179. [Google Scholar] [CrossRef]
- Xiao, S.; Ma, H.; Shen, M.; Wang, S.; Huang, Q.; Shi, X. Excellent copper (II) removal using zero-valent iron nanoparticle-immobilized hybrid electrospun polymer nanofibrous mats. Colloids Surf. A Physicochem. Eng. Asp. 2011, 381, 48–54. [Google Scholar] [CrossRef]
- Hadi Najafabadi, H.; Irani, M.; Roshanfekr Rad, L.; Heydari Haratameh, A.; Haririan, I. Removal of Cu2+, Pb2+ and Cr6+ from aqueous solutions using a chitosan/graphene oxide composite nanofibrous adsorbent. RSC Adv. 2015, 5, 16532–16539. [Google Scholar] [CrossRef]
- Wu, C.; Wang, H.; Wei, Z.; Li, C.; Luo, Z. Polydopamine-mediated surface functionalization of electrospun nanofibrous membranes: Preparation, characterization and their adsorption properties towards heavy metal ions. Appl. Surf. Sci. 2015, 346, 207–215. [Google Scholar] [CrossRef]
- Zhao, R.; Li, X.; Li, Y.; Li, Y.; Sun, B.; Zhang, N.; Chao, S.; Wang, C. Functionalized magnetic iron oxide/polyacrylonitrile composite electrospun fibers as effective chromium (VI) adsorbents for water purification. J. Colloid Interface Sci. 2017, 505, 1018–1030. [Google Scholar] [CrossRef]
- Jiang, M.; Han, T.; Wang, J.; Shao, L.; Qi, C.; Zhang, X.M.; Liu, C.; Liu, X. Removal of heavy metal chromium using cross-linked chitosan composite nanofiber mats. Int. J. Biol. Macromol. 2018, 120, 213–221. [Google Scholar] [CrossRef]
- Bozorgi, M.; Abbasizadeh, S.; Samani, F.; Mousavi, S.E. Performance of synthesized cast and electrospun PVA/chitosan/ZnO-NH2 nano-adsorbents in single and simultaneous adsorption of cadmium and nickel ions from wastewater. Environ. Sci. Pollut. Res. 2018, 25, 17457–17472. [Google Scholar] [CrossRef]
- Cai, Z.; Song, X.; Zhang, Q.; Zhai, T. Electrospun polyindole nanofibers as a nano-adsorbent for heavy metal ions adsorption for wastewater treatment. Fibers Polym. 2017, 18, 502–513. [Google Scholar] [CrossRef]
- Ma, F.-f.; Zhang, N.; Wei, X.; Yang, J.-h.; Wang, Y.; Zhou, Z.-w. Blend-electrospun poly(vinylidene fluoride)/polydopamine membranes: Self-polymerization of dopamine and the excellent adsorption/separation abilities. J. Mater. Chem. A 2017, 5, 14430–14443. [Google Scholar] [CrossRef]
- Aluigi, A.; Tonetti, C.; Vineis, C.; Tonin, C.; Mazzuchetti, G. Adsorption of copper (II) ions by keratin/PA6 blend nanofibres. Eur. Polym. J. 2011, 47, 1756–1764. [Google Scholar] [CrossRef]
- Hou, X.; Zhou, H.; Zhang, J.; Cai, Y.; Huang, F.; Wei, Q. High Adsorption Pearl-Necklace-Like Composite Membrane Based on Metal–Organic Framework for Heavy Metal Ion Removal. Part. Part. Syst. Charact. 2018, 35, 1700438. [Google Scholar] [CrossRef]
- Lakhdhar, I.; Belosinschi, D.; Mangin, P.; Chabot, B. Development of a bio-based sorbent media for the removal of nickel ions from aqueous solutions. J. Environ. Chem. Eng. 2016, 4, 3159–3169. [Google Scholar] [CrossRef]
- Rad, L.R.; Momeni, A.; Ghazani, B.F.; Irani, M.; Mahmoudi, M.; Noghreh, B. Removal of Ni2+ and Cd2+ ions from aqueous solutions using electrospun PVA/zeolite nanofibrous adsorbent. Chem. Eng. J. 2014, 256, 119–127. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, Q.; Christodoulatos, C.; Korfiatis, G.; Meng, X. Adsorptive filtration of lead by electrospun PVA/PAA nanofiber membranes in a fixed-bed column. Chem. Eng. J. 2019, 370, 1262–1273. [Google Scholar] [CrossRef]
- Shooto, N.D.; Dikio, C.W.; Wankasi, D.; Sikhwivhilu, L.M.; Mtunzi, F.M.; Dikio, E.D. Novel PVA/MOF Nanofibres: Fabrication, Evaluation and Adsorption of Lead Ions from Aqueous Solution. Nanoscale Res. Lett. 2016, 11, 414. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Pan, K.; He, Q.; Cao, B. Polyacrylonitrile/polypyrrole core/shell nanofiber mat for the removal of hexavalent chromium from aqueous solution. J. Hazard. Mater. 2013, 244–245, 121–129. [Google Scholar] [CrossRef]
- Zang, L.; Lin, R.; Dou, T.; Lu, W.; Ma, J.; Sun, L. Electrospun superhydrophilic membranes for effective removal of Pb (II) from water. Nanoscale Adv. 2019, 1, 389–394. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Li, X.; Zhang, T.; Deng, L.; Li, P.; Wang, X.; Hsiao, B.S. Eco-friendly poly(acrylic acid)-sodium alginate nanofibrous hydrogel: A multifunctional platform for superior removal of Cu(II) and sustainable catalytic applications. Colloids Surf. A Physicochem. Eng. Asp. 2018, 558, 228–241. [Google Scholar] [CrossRef]
- Wanjale, S.; Birajdar, M.; Jog, J.; Neppalli, R.; Causin, V.; Karger-Kocsis, J.; Lee, J.; Panzade, P. Surface tailored PS/TiO2 composite nanofiber membrane for copper removal from water. J. Colloid Interface Sci. 2016, 469, 31–37. [Google Scholar] [CrossRef]
- Razzaz, A.; Ghorban, S.; Hosayni, L.; Irani, M.; Aliabadi, M. Chitosan nanofibers functionalized by TiO2 nanoparticles for the removal of heavy metal ions. J. Taiwan Inst. Chem. Eng. 2016, 58, 333–343. [Google Scholar] [CrossRef]
- Haddad, M.Y.; Alharbi, H.F. Enhancement of heavy metal ion adsorption using electrospun polyacrylonitrile nanofibers loaded with ZnO nanoparticles. J. Appl. Polym. Sci. 2019, 136, 47209. [Google Scholar] [CrossRef]
- Lin, Y.; Cai, W.; He, H.; Wang, X.; Wang, G. Three-dimensional hierarchically structured PAN@γ–AlOOH fiber films based on a fiber templated hydrothermal route and their recyclable strong Cr(vi)-removal performance. RSC Adv. 2012, 2, 1769–1773. [Google Scholar] [CrossRef]
- Pouya, E.S.; Fatoorehchi, H.; Foroughi-Dahr, M. Batch removal of Pb (ΙΙ) ions from aqueous medium using gamma-AlO nanoparticles/ethyl cellulose adsorbent fabricated via electrospinning method: An equilibrium isotherm and characterization study. Pol. J. Chem. Technol. 2018, 20, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Pi, H.; Wang, R.; Ren, B.; Zhang, X.; Wu, J. Facile Fabrication of Multi-Structured SiO2@PVDF-HFP Nanofibrous Membranes for Enhanced Copper Ions Adsorption. Polymers 2018, 10, 1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makaremi, M.; Lim, C.X.; Pasbakhsh, P.; Lee, S.M.; Goh, K.L.; Chang, H.; Chan, E.S. Electrospun functionalized polyacrylonitrile–chitosan Bi-layer membranes for water filtration applications. RSC Adv. 2016, 6, 53882–53893. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Lin, J.; Zhang, N.; Chen, L.; Zhong, S.; Wang, Y.; Zhang, W.; Ling, Q. Preparation of MgAl-EDTA-LDH based electrospun nanofiber membrane and its adsorption properties of copper (II) from wastewater. J. Hazard. Mater. 2018, 345, 1–9. [Google Scholar] [CrossRef]
- Islam, M.S.; Rahaman, M.S.; Yeum, J.H. Phosphine-functionalized electrospun poly(vinyl alcohol)/silica nanofibers as highly effective adsorbent for removal of aqueous manganese and nickel ions. Colloids Surf. A Physicochem. Eng. Asp. 2015, 484, 9–18. [Google Scholar] [CrossRef]
- Teng, M.; Wang, H.; Li, F.; Zhang, B. Thioether-functionalized mesoporous fiber membranes: Sol–gel combined electrospun fabrication and their applications for Hg2+ removal. J. Colloid Interface Sci. 2011, 355, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Shariful, M.I.; Sepehr, T.; Mehrali, M.; Ang, B.C.; Amalina, M.A. Adsorption capability of heavy metals by chitosan/poly(ethylene oxide)/activated carbon electrospun nanofibrous membrane. J. Appl. Polym. Sci. 2018, 135, 45851. [Google Scholar] [CrossRef]
- Tan, P.; Wen, J.; Hu, Y.; Tan, X. Adsorption of Cu2+ and Cd2+ from aqueous solution by novel electrospun poly(vinyl alcohol)/graphene oxide nanofibers. RSC Adv. 2016, 6, 79641–79650. [Google Scholar] [CrossRef]
- Bhalara, P.D.; Balasubramanian, K.; Banerjee, B.S. Spider–Web Textured Electrospun Composite of Graphene for Sorption of Hg (II) Ions. Mater. Focus 2015, 4, 154–163. [Google Scholar] [CrossRef]
- Efome, J.E.; Rana, D.; Matsuura, T.; Lan, C.Q. Metal–organic frameworks supported on nanofibers to remove heavy metals. J. Mater. Chem. A 2018, 6, 4550–4555. [Google Scholar] [CrossRef]
- Efome, J.E.; Rana, D.; Matsuura, T.; Lan, C.Q. Insight Studies on Metal-Organic Framework Nanofibrous Membrane Adsorption and Activation for Heavy Metal Ions Removal from Aqueous Solution. ACS Appl. Mater. Interfaces 2018, 10, 18619–18629. [Google Scholar] [CrossRef] [PubMed]
- Habiba, U.; Siddique, T.A.; Joo, T.C.; Salleh, A.; Ang, B.C.; Afifi, A.M. Synthesis of chitosan/polyvinyl alcohol/zeolite composite for removal of methyl orange, Congo red and chromium(VI) by flocculation/adsorption. Carbohydr. Polym. 2017, 157, 1568–1576. [Google Scholar] [CrossRef]
- Min, L.-L.; Yang, L.-M.; Wu, R.-X.; Zhong, L.-B.; Yuan, Z.-H.; Zheng, Y.-M. Enhanced adsorption of arsenite from aqueous solution by an iron-doped electrospun chitosan nanofiber mat: Preparation, characterization and performance. J. Colloid Interface Sci. 2019, 535, 255–264. [Google Scholar] [CrossRef]
- Beheshti, H.; Irani, M.; Hosseini, L.; Rahimi, A.; Aliabadi, M. Removal of Cr (VI) from aqueous solutions using chitosan/MWCNT/Fe3O4 composite nanofibers-batch and column studies. Chem. Eng. J. 2016, 284, 557–564. [Google Scholar] [CrossRef]
- Gerstner, E. Nobel Prize 2010: Andre Geim & Konstantin Novoselov. Nat. Phys. 2010, 6, 836. [Google Scholar] [CrossRef]
- Whitby, R.L.D. Chemical Control of Graphene Architecture: Tailoring Shape and Properties. ACS Nano 2014, 8, 9733–9754. [Google Scholar] [CrossRef]
- Safaei, S.; Tavakoli, R. On the design of graphene oxide nanosheets membranes for water desalination. Desalination 2017, 422, 83–90. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, Y.-B.; Yu, H.; Liu, J.Z.; Easton, C.D.; Wang, Z.; Hu, Y.; Xie, Z.; Wu, H.-A.; Zhang, X.; et al. Ultrafast water evaporation through graphene membranes with subnanometer pores for desalination. J. Membr. Sci. 2021, 621, 118934. [Google Scholar] [CrossRef]
- Modi, A.; Bellare, J. Zeolitic imidazolate framework-67/carboxylated graphene oxide nanosheets incorporated polyethersulfone hollow fiber membranes for removal of toxic heavy metals from contaminated water. Sep. Purif. Technol. 2020, 249, 117160. [Google Scholar] [CrossRef]
- Amid, M.; Nabian, N.; Delavar, M. Fabrication of polycarbonate ultrafiltration mixed matrix membranes including modified halloysite nanotubes and graphene oxide nanosheets for olive oil/water emulsion separation. Sep. Purif. Technol. 2020, 251, 117332. [Google Scholar] [CrossRef]
- Li, W.; Zhang, L.; Zhang, X.; Zhang, M.; Liu, T.; Chen, S. Atomic insight into water and ion transport in 2D interlayer nanochannels of graphene oxide membranes: Implication for desalination. J. Membr. Sci. 2020, 596, 117744. [Google Scholar] [CrossRef]
- Zeng, G.; Wei, K.; Zhang, H.; Zhang, J.; Lin, Q.; Cheng, X.; Sengupta, A.; Chiao, Y.-H. Ultra-high oil-water separation membrane based on two-dimensional MXene(Ti3C2Tx) by co-incorporation of halloysite nanotubes and polydopamine. Appl. Clay Sci. 2021, 211, 106177. [Google Scholar] [CrossRef]
- Feng, X.; Yu, Z.; Long, R.; Sun, Y.; Wang, M.; Li, X.; Zeng, G. Polydopamine intimate contacted two-dimensional/two-dimensional ultrathin nylon basement membrane supported RGO/PDA/MXene composite material for oil-water separation and dye removal. Sep. Purif. Technol. 2020, 247, 116945. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, S.; Quan, X.; Yu, H.; Zhao, H. Integration of microfiltration and visible-light-driven photocatalysis on g-C3N4 nanosheet/reduced graphene oxide membrane for enhanced water treatment. Appl. Catal. B Environ. 2016, 194, 134–140. [Google Scholar] [CrossRef]
- Yang, J.; Shen, Z.; He, J.; Li, Y. Efficient separation of small organic contaminants in water using functionalized nanoporous graphene membranes: Insights from molecular dynamics simulations. J. Membr. Sci. 2021, 630, 119331. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Zeng, Z.; Du, S.; Liu, E. Superoleophobic graphene oxide/halloysite nanotube composite membranes for oil-water separation. Mater. Chem. Phys. 2021, 263, 124347. [Google Scholar] [CrossRef]
- Pytlakowska, K.; Kocot, K.; Hachuła, B.; Pilch, M.; Wrzalik, R.; Zubko, M. Determination of heavy metal ions by energy dispersive X-ray fluorescence spectrometry using reduced graphene oxide decorated with molybdenum disulfide as solid adsorbent. Spectrochim. Acta Part B At. Spectrosc. 2020, 167, 105846. [Google Scholar] [CrossRef]
- Sirajudheen, P.; Karthikeyan, P.; Ramkumar, K.; Meenakshi, S. Effective removal of organic pollutants by adsorption onto chitosan supported graphene oxide-hydroxyapatite composite: A novel reusable adsorbent. J. Mol. Liq. 2020, 318, 114200. [Google Scholar] [CrossRef]
- Liu, J.; Liu, G.; Liu, W. Preparation of water-soluble β-cyclodextrin/poly(acrylic acid)/graphene oxide nanocomposites as new adsorbents to remove cationic dyes from aqueous solutions. Chem. Eng. J. 2014, 257, 299–308. [Google Scholar] [CrossRef]
- Zeng, T.; Yu, Y.; Li, Z.; Zuo, J.; Kuai, Z.; Jin, Y.; Wang, Y.; Wu, A.; Peng, C. 3D MnO2 nanotubes@ reduced graphene oxide hydrogel as reusable adsorbent for the removal of heavy metal ions. Mater. Chem. Phys. 2019, 231, 105–108. [Google Scholar] [CrossRef]
- Arshad, F.; Selvaraj, M.; Zain, J.; Banat, F.; Haija, M.A. Polyethylenimine modified graphene oxide hydrogel composite as an efficient adsorbent for heavy metal ions. Sep. Purif. Technol. 2019, 209, 870–880. [Google Scholar] [CrossRef]
- Mahmoudi, E.; Azizkhani, S.; Mohammad, A.W.; Ng, L.Y.; Benamor, A.; Ang, W.L.; Ba-Abbad, M. Simultaneous removal of Congo red and cadmium (II) from aqueous solutions using graphene oxide–silica composite as a multifunctional adsorbent. J. Environ. Sci. 2020, 98, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Bu, J.; Yuan, L.; Zhang, N.; Liu, D.; Meng, Y.; Peng, X. High-efficiency adsorption of methylene blue dye from wastewater by a thiosemicarbazide functionalized graphene oxide composite. Diam. Relat. Mater. 2020, 101, 107604. [Google Scholar] [CrossRef]
- Bao, S.; Yang, W.; Wang, Y.; Yu, Y.; Sun, Y. One-pot synthesis of magnetic graphene oxide composites as an efficient and recoverable adsorbent for Cd (II) and Pb (II) removal from aqueous solution. J. Hazard. Mater. 2020, 381, 120914. [Google Scholar] [CrossRef]
- Wang, W.; Cai, K.; Wu, X.; Shao, X.; Yang, X. A novel poly(m-phenylenediamine)/reduced graphene oxide/nickel ferrite magnetic adsorbent with excellent removal ability of dyes and Cr (VI). J. Alloy. Compd. 2017, 722, 532–543. [Google Scholar] [CrossRef]
- Abd-Elhamid, A.I.; Kamoun, E.A.; El-Shanshory, A.A.; Soliman, H.M.A.; Aly, H.F. Evaluation of graphene oxide-activated carbon as effective composite adsorbent toward the removal of cationic dyes: Composite preparation, characterization and adsorption parameters. J. Mol. Liq. 2019, 279, 530–539. [Google Scholar] [CrossRef]
- Chen, H.; Meng, Y.; Jia, S.; Hua, W.; Cheng, Y.; Lu, J.; Wang, H. Graphene oxide modified waste newspaper for removal of heavy metal ions and its application in industrial wastewater. Mater. Chem. Phys. 2020, 244, 122692. [Google Scholar] [CrossRef]
- Gupta, K.; Khatri, O.P. Reduced graphene oxide as an effective adsorbent for removal of malachite green dye: Plausible adsorption pathways. J. Colloid Interface Sci. 2017, 501, 11–21. [Google Scholar] [CrossRef]
- Hassan, A.M.; Wan Ibrahim, W.A.; Bakar, M.B.; Sanagi, M.M.; Sutirman, Z.A.; Nodeh, H.R.; Mokhter, M.A. New effective 3-aminopropyltrimethoxysilane functionalized magnetic sporopollenin-based silica coated graphene oxide adsorbent for removal of Pb (II) from aqueous environment. J. Environ. Manag. 2020, 253, 109658. [Google Scholar] [CrossRef] [PubMed]
- Alrobei, H.; Prashanth, M.K.; Manjunatha, C.R.; Kumar, C.B.P.; Chitrabanu, C.P.; Shivaramu, P.D.; Kumar, K.Y.; Raghu, M.S. Adsorption of anionic dye on eco-friendly synthesised reduced graphene oxide anchored with lanthanum aluminate: Isotherms, kinetics and statistical error analysis. Ceram. Int. 2020, 47, 10322–10331. [Google Scholar] [CrossRef]
- Wei, M.-P.; Chai, H.; Cao, Y.-L.; Jia, D.-Z. Sulfonated graphene oxide as an adsorbent for removal of Pb2+ and methylene blue. J. Colloid Interface Sci. 2018, 524, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Adel, M.; Ahmed, M.A.; Mohamed, A.A. Effective removal of cationic dyes from aqueous solutions using reduced graphene oxide functionalized with manganese ferrite nanoparticles. Compos. Commun. 2020, 22, 100450. [Google Scholar] [CrossRef]
- Anush, S.M.; Chandan, H.R.; Gayathri, B.H.; Asma; Manju, N.; Vishalakshi, B.; Kalluraya, B. Graphene oxide functionalized chitosan-magnetite nanocomposite for removal of Cu (II) and Cr (VI) from waste water. Int. J. Biol. Macromol. 2020, 164, 4391–4402. [Google Scholar] [CrossRef]
- Wang, X.; Lu, J.; Cao, B.; Liu, X.; Lin, Z.; Yang, C.; Wu, R.; Su, X.; Wang, X. Facile synthesis of recycling Fe3O4/graphene adsorbents with potassium humate for Cr (VI) removal. Colloids Surf. A Physicochem. Eng. Asp. 2019, 560, 384–392. [Google Scholar] [CrossRef]
- Chang, S.; Zhang, Q.; Lu, Y.; Wu, S.; Wang, W. High-efficiency and selective adsorption of organic pollutants by magnetic CoFe2O4/graphene oxide adsorbents: Experimental and molecular dynamics simulation study. Sep. Purif. Technol. 2020, 238, 116400. [Google Scholar] [CrossRef]
- Jun, B.-M.; Kim, S.; Kim, Y.; Her, N.; Heo, J.; Han, J.; Jang, M.; Park, C.M.; Yoon, Y. Comprehensive evaluation on removal of lead by graphene oxide and metal organic framework. Chemosphere 2019, 231, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Das, T.R.; Sharma, P.K. Bimetal oxide decorated graphene oxide (Gd2O3/Bi2O3@GO) nanocomposite as an excellent adsorbent in the removal of methyl orange dye. Mater. Sci. Semicond. Process. 2020, 105, 104721. [Google Scholar] [CrossRef]
- Sitko, R.; Musielak, M.; Serda, M.; Talik, E.; Zawisza, B.; Gagor, A.; Malecka, M. Thiosemicarbazide-grafted graphene oxide as superior adsorbent for highly efficient and selective removal of mercury ions from water. Sep. Purif. Technol. 2021, 254, 117606. [Google Scholar] [CrossRef]
- Labiadh, L.; Kamali, A.R. 3D graphene nanoedges as efficient dye adsorbents with ultra-high thermal regeneration performance. Appl. Surf. Sci. 2019, 490, 383–394. [Google Scholar] [CrossRef]
- Barik, B.; Kumar, A.; Nayak, P.S.; Achary, L.S.K.; Rout, L.; Dash, P. Ionic liquid assisted mesoporous silica-graphene oxide nanocomposite synthesis and its application for removal of heavy metal ions from water. Mater. Chem. Phys. 2020, 239, 122028. [Google Scholar] [CrossRef]
- Gupta, A.; Viltres, H.; Gupta, N.K. Sono-adsorption of organic dyes onto CoFe2O4/Graphene oxide nanocomposite. Surf. Interfaces 2020, 20, 100563. [Google Scholar] [CrossRef]
- Yusuf, M.; Song, K. Removal of Co (II) and Cr (III) from aqueous solution by graphene nanosheet/δ-MnO2: Batch and column studies. Chem. Eng. Res. Des. 2020, 159, 477–490. [Google Scholar] [CrossRef]
- Kumar Sahoo, S.; Kumar Sahoo, J.; Kumar Panigrahi, G.; Kumar Pattanayak, D.; Sundar Rout, A.; Lenka, A. Preparation of graphene oxide from Bio-soot wastes: As an efficient adsorbent for highly noxious Congo red dye. FlatChem 2020, 24, 100198. [Google Scholar] [CrossRef]
- Dai, K.; Liu, G.; Xu, W.; Deng, Z.; Wu, Y.; Zhao, C.; Zhang, Z. Judicious fabrication of bifunctionalized graphene oxide/MnFe2O4 magnetic nanohybrids for enhanced removal of Pb (II) from water. J. Colloid Interface Sci. 2020, 579, 815–822. [Google Scholar] [CrossRef] [PubMed]
Nanoparticle | Three-Dimensional Structure (3-D) | Enhancements in Membrane after the Addition of the Nanoparticle |
---|---|---|
Zeolites | Hydrophilicity, filtration, tunable chemistry molecular sieve, and high permeability | |
Magnetite | Superparamagnetic and tunable chemistry | |
Silver | Anti-biofouling and antimicrobial | |
TiO2 | Chemical stability, reactivity, photocatalysis, and hydrophilicity | |
Carbon nanotubes (CNTs) | Chemical stability, tunable chemistry, antimicrobial, high mechanical strength, and anti-biofouling |
Membrane Application | Modification Technique | Membrane Modification Enhancement | Reference |
---|---|---|---|
Study of Escherichia coli | Dipped coating | Anti-bio-fouling property was improved. | [43] |
membrane bioreactor system | Dipped coating | Higher anti-fouling properties | [44] |
activated sludge filtration | Dipped coating and Phase inversion | Increase in composite membrane porosity, and a higher anti-fouling properties. | [45] |
Treatment of emulsified oil wastewater | Phase inversion method | Higher water permeability, hydrophilicity, mechanical strength and anti- fouling ability | [46] |
Enhancement of PES/PI nanofiltration membranes | Dipped coating under UV | High flux recovery | [47] |
Study of the performance of PVDF membrane | Phase inversion method | Enhanced antifouling properties of PVDF (polyvinylidene fluoride) membrane | [48] |
The synthesized membrane can be used as an advanced filtration system | Sol-gel method/Deep coating method | Higher mechanical strength and structural stability. | [49] |
Alkaline fuel cells (AFC) | Phase inversion method | Greater thermal properties, thermal resistance and enhanced water take. | [50] |
Study of the morphology and properties of poly(phthalazine ether sulfone ketone) (PPESK) | Phase inversion method | Enhanced antifouling properties, increase in tensile mechanical properties, higher membrane hydrophilicity and wettability. | [51] |
Removal of harsh organic solvents | Phase inversion method | Higher antifouling property, thermal stability, and flux recovery. | [52] |
Study of poly (vinylidene fluoride) (PVDF)/sulfonated polyethersulfone (SPES) blend membrane | Dipped coating | Higher long-term flux stability and antifouling property. | [53] |
Study of Polyethersulfone ultrafiltration membranes | Surface deposition in presence and absence of UV | Reduction in membrane fouling. | [54] |
Study of PES/TiO2 composite membranes | Phase inversion method | Improvement in thermal stability, hydrophilicity, mechanical strength and anti-fouling property. | [55] |
Study of the polysulfonamide/nano titanium dioxide (PSA/nano-TiO2) composite | Phase inversion using a spinning technique | Better thermal stability and greater ultraviolet resistance | [56] |
Membrane can be used in guided bone regeneration (GBR) | Casting method | Greater mechanical strength, and higher antimicrobial activity | [57] |
Study the photo-bactericidal effect on Escherichia coli (E. coli) | Phase inversion method | Better antibacterial property, higher hydrophilicity, greater flux recovery and enhanced antifouling property. | [58] |
Study of titania nanocomposite polyethersulfone ultrafiltration membranes | The sol-gel surface coating method | Higher stability, durability, hydrophilicity, and antifouling property | [59] |
Degradation of dyes | Phase inversion using electro-spinning | Greater photocatalytic activity | [60] |
Improving fouling resistance | Phase inversion method | Greater permeability, higher antifouling property and improved hydrophilicity | [61] |
Study of sulfonated-polyethersulfone (SPES)/nano-TiO2 composite UF membrane | Casting method | Greater antifouling property, improved photocatalytic activity and binding strength | [62] |
Study of polyamide thin film nanocomposite (TFN) nanofiltration membrane | Surface coating | Higher salt rejection, permeability, thermal stability, and selectivity. | [63] |
Study of photocatalytic polyvinyl alcohol (PVA)/TiO2 composite polymer membrane | Phase inversion method using electro-spinning | Higher photocatalytic activity, and enhanced tensile strength | [64] |
Study of PVDF membrane | Dipped coating | Higher antifouling property | [65] |
Study of microporous PES membrane | Phase inversion method | Greater thermal stability, and permeation. In addition, the pore size of the membrane surface layer and the breaking strength was increased. | [66] |
Membrane Application | Modification Technique | Membrane Modification Enhancement | Reference |
---|---|---|---|
Polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes | Phase inversion casting method | Greater hydrophilicity, thermal stability, porosity, water uptake and antifouling properties. | [67] |
Polysulfone/silica nanoparticle mixed-matrix membranes used for gas separation | Phase inversion method | Enhanced gas permeability of the PS (polysulfone) membrane | [68] |
Ce-doped nonstoichiometric nanosilica/polysulfone composite membranes used in wastewater treatment | Phase inversion method | Greater tensile strength, antifouling property, and hydrophilicity. | [69] |
Poly(vinylidene fluoride) composite membranes applied in the electro-driven separation processes | Phase inversion method | Higher conductivity, selectivity, and physical stability. | [70] |
Organic/inorganic composite membranes | Solution casting method | Higher chemically stability and tensile strength. In addition, the membrane proton conductivity was also improved | [71] |
PDMS nanocomposite membranes used for gas separation | Casting method | Greater permeability | [72] |
PSf/SiO2 nanocomposite membrane applied in oil-in-water emulsion separation | Phase inversion method | Higher permeability and antifouling property. | [73] |
Silica nanocomposite membranes | Phase inversion method | Increase in water diffusivity and fractional free-volume. | [74] |
Nanocomposite membranes for gas separation | Phase inversion method | Higher diffusivity, gas permeability, solubility, and selectivity. | [75] |
Nano silica/Nafion composite membrane applied in proton exchange membrane fuel cells | Phase inversion method | Higher proton conductivity. | [76] |
Polymer Nanocomposite Electrolyte Membrane used for High Performance Lithium/Sulfur Batteries | Casting method | Higher electrochemical stability, and ionic conductivity. | [77] |
PBI and PBI/ZIF-8 nanocomposite membranes | Phase inversion method | Improved solubility, degree of swelling, and selectivity | [78] |
PVA/nano silica composite membranes | Phase inversion method | Higher hydrophilicity and flux. | [79] |
Nanoparticle | Membrane Application | Modification Technique | Membrane Modification Enhancement | Reference |
---|---|---|---|---|
Zeolite | Polymer-Zeolite Nanocomposites as Mixed-Matrix Membranes used for Gas Separation | Casting method | Greater permeability for CH4, N2, and CO2. | [80] |
ZIF-8 | Polybenzimidazole (PBI) and PBI/zeolitic imidazolate framework (ZIF-8) nanocomposite membranes | Phase inversion method | Increase in permeability, sorption diffusion coefficient, pervaporation, and swelling characteristics. | [78] |
ZnO | Chitosan/ZnO nanoparticle composite membranes | Phase inversion | Higher antibacterial property and mechanical stability. | [81] |
Al2O3 | Al2O3/PES membrane applied in wastewater filtration | Phase inversion | The composite membrane had a decline in the fouling effect and a decrease in flux. | [82] |
SiO2-Al2O3 | Nanocomposite SiO2-Al2O3 membrane | Surface coating | Higher structural stability and hydrogen selectivity. | [83] |
Zirconia | Poly(arylene ether sulfone)/Nano-ZrO2 Composite Anion Exchange Membranes applied in Alkaline Fuel Cells | Phase inversion | Improved water uptake, hydroxide ion conductivity, dimension stability, mechanical properties, thermal stability and chemical stability. | [84] |
ZrO2, Al2O3, and TiO2 | Nano-structured ceramic–metallic composite microporous membranes for gas separation application | Spray assisted surface coating | Enhanced thermal and chemical stability. | [85] |
Al2O3 | Hybrid Composite Membranes used for Lithium-Ion Batteries | Dipped Coating | Greater thermal stability and enhanced wettability. | [86] |
Fe/Pd | Microfiltration Membrane | Ion-exchange pore diffusion technique | Higher reactivity. | [87] |
ZnO | PVDF microfiltration membranes used for water treatment | Phase inversion | The composite membrane had greater water flux, breaking strength, and pore size distribution. | [88] |
Nanomaterial | Application in Water/Waste Treatment | Process Applied | Enhancement in Membrane after the Incorporation of the Nanomaterial |
---|---|---|---|
CNTs, zeolites, metal-oxides and chitosan | Pollutant removal | Adsorption | High surface area, high accessible adsorption sites, fine-tuning of compound to pollutant, easy to reuse |
nZVI, Au, and TiO2 | Pollutant degradation | Photocatalysis or chemical reduction | Catalytic reduction and photocatalysis not seen in bulk materials, unique quantum effects |
Chitosan, Ag, TiO2 and MgO, and CNTs | Removal of contaminants from drinking water or wastewater | Disinfection | Cell membrane damage, metal chelation in cells, reactive oxygen species (ROS) production, chemical stability |
Nanoparticle | Contaminants | Removal Capacities | Rejection (%) | Process Used | pH | Contact Time | Reference |
---|---|---|---|---|---|---|---|
Aluminium substituted goethite (Al-FeOOH) | Ni | 94.52 mg·g−1 | - | - | 5 | 6 h | [103] |
SiO2 | Oil/water emulsion | - | 99% | Microfiltration | - | - | [104] |
ZnO and montmorillonite | Cu(II) | - | - | - | 4 | 90 min | [105] |
AgNps | E. coli, B. subtilis | 94% | Microfiltration | - | - | [106] | |
Iron nanoparticles modified micro fibrillated cellulose | As(V) | 2.460 mmol·g−1 | - | - | 2 | 75 min | [103] |
Hematite | As(III) and As(V) | 2899 ± 71.09 μg·g−1 and 4122 ± 62.79 μg·g−1 | - | - | 6–8 | 8 h | [107] |
Nanoscale zero valent iron (NZVI) | Cr(VI) | 100% | - | - | 2 | 10–30 min | [108] |
TiO2@g-C3N4 | tetracycline | - | 97% | Photocatalysis | - | - | [109] |
Magnetite Fe3O4/Chitosan nanoparticles (Fe3O4/CSNPs) | Pb(II) | 79.29 mg·g−1 | - | - | 6 | 12 h | [110] |
MWCNTS, Graphene, TiO2 | Cadmium | - | 100% | Adsorption | - | - | [109] |
MgO | Pb(II) | 2614 mg·g−1 | - | - | - | 180 min | [111] |
Zerovalent iron and reduced graphene oxide | Cd(II) | 425.72 mg·g−1 | - | - | 5 | 50 min | [112] |
CNTS | TOC | - | 30.5% | Microfiltration | - | - | [113] |
Ascorbic acid-stabilized zero valent iron Nps | Cd(II) | 79.58% | - | - | 7 | 60 min | [114] |
Copper oxide | Cr(VI) | 15.62 mg·g−1 | - | - | 3 | 180 min | [115] |
Ag Nps | AZG dye | 85% | Photocatalysis | [116] | |||
Graphene oxide-Cobalt oxide | Cr(VI) | 208.8 mg·g−1 | - | - | 3 | 12 h | [117] |
γ-Al2O3 NPs | Cd(II) | 17.22 mg·g−1 | - | - | 5 | 30 min | [118] |
Manganese ferrite and cobalt | As(III) | 24.17 and 24.81 mg·g−1 | - | - | 2 | 4 h | [119] |
ZnO Nps | Oil, E. coli | - | – | Microfiltration, Antimicrobial | - | - | [120] |
Sulfonated magnetic NPs | Pb(II) | 108.93 mg·g−1 | - | - | 7 | 24 h | [121] |
γ-alumina NPs and MWCNTs | Ni | 99.41% and 87.65% | - | - | 10 | 30 min | [122] |
Titanate nanotubes | Th(I) and Th(III) | 709.2 mg·g−1 | - | - | - | 10 min | [123] |
OMWCNTs | Indigo | 98% | Microfiltration | - | - | [124] | |
Modified henna with Fe3O4 | Cu(II) | 99.11% | - | - | 4 | 85 min | [125] |
SiO2 | Oil/water | - | 98% | Microfiltration | - | - | [126] |
γ-alumina | Cu(II) | 31.3 mg·g−1 | - | - | 5 | 4 h | [127] |
Fe3O4 | Ni | 209.205 to 362.318 mg·g−1 | - | - | 8 | 35 min | [107] |
GO | Oil/water; Methylene Blue dye | - | 99%, 95.38%, 92.45% | Microfiltration, Adsorption | - | - | [128] |
Nanoscale zero valent iron (nZVI) | Pb(II), Cd(II), Cu(II), Ni(II) | - | - | - | 2–7 | 30 min (Pb), 20 min (Cd, Cu, Ni) | [129] |
Modified Nanocellulose | Method Used | Application | Removal Efficiency | Reference |
---|---|---|---|---|
Amino-modified CNF | Infusion | Microfiltration of virus, bacteria, and metal ions adsorption | MS2: LRV 4; E. coli: LRV 6; Metal ions: - | [153] |
TEMPO-oxidized CNC | Membrane coating | Metal ions adsorption | – | [154] |
BTCA-functionalized CNC | Spray coating | Metal ions adsorption | 58.05% | [155] |
TEMPO-modified and Unmodified CNF | Membrane deposition | Oil-water separation | >99% | [156] |
Meldrum’s acid-modified CNF | Impregnation | Dye adsorption and Microfiltration of Fe2O3 nanoparticles | >99% dye and nanoparticles | [157] |
TiO2-modified CNC | In-situ growth | Oil-water separation | >99.5% | [158] |
AgNP- and PtNP-grafted CNC | phase separation | wastewater treatment | 92−94% | [159] |
(tridecafluoro-1,1,2,2-tetrahydrooctyl)-trichlorosilane-modified BNC | Supercritical-drying | Desalination using DCMD | >99.8% | [160] |
Thiol-modified CNF | Infusion | Metal ions adsorption | >93% | [161] |
Alkoxysilanes-modified BNC | Conventional drying | Water-oil separation | >99% | [162] |
Ag-modified CNF | Immobilizations | Dye degradation | 98% | [163] |
(3-aminopropyl) triethoxysilane-modified BNC | Freeze-drying | Metal ion adsorption | 5–100% | [164] |
Fe3O4 modified CNF | In-situ synthesis | Dye degradation | 94.9% | [165] |
Nano Fibrous Membrane | Heavy Metal Ion | Adsorption Capacity (Mg/G) | Reference |
---|---|---|---|
Chitosan | As(V) | 11.2 | [166] |
Multiwalled carbon nanotube-Polyethyleneimine/Polyacrylonitrile | Pb(II), Cu(II) | 232.7, 112.5 | [167] |
Polyindole | Cd(II) | 140.36 | [168] |
Polyvinyl alcohol/Silica | Cu(II) | 489.12 | [169] |
Silk fibroin/Cellulose acetate | Cu(II) | 22.8 | [170] |
Polyvinyl alcohol/Titanium dioxide/Zinc oxide | Th(IV) | 333.3 | [171] |
Chitosan | As(V) | 30.8 | [172] |
Polyacrylonitrile/Titanium dioxide | Pb(II), Cd(II) | 193, 91 | [173] |
Chitosan/Cellulose acetate | Cd(II) | 110.48 | [174] |
Polyvinylpyrrolidone/Silica/3-Aminopropyltriethoxysilane | Cd(II), Pb(II), Ni(II) | 157.4, 158.3, 63.0 | [175] |
Chitosan | Cr(VI) | 20.5 | [176] |
Polyamide 6/Fe3O4/Oxidized multiwalled carbon nanotubes | Pb(II) | 49.3 | [177] |
Wool keratose/Silk fibroin | Cu(II) | 2.88 | [178] |
Polyvinylpyrrolidone/Silica | Cr(III) | 97 | [179] |
Chitosan/poly(L–lactic acid) | Cu(II) | 111.66 ± 3.22 | [180] |
Polyvinyl alcohol/Titanium dioxide | Th(IV) | 238.1 | [181] |
polyethersulfone-poly (dimethyl amino) ethyl methacrylate | Cu(II) | 161.3 | [182] |
Chitosan/Polyvinyl alcohol | Cu(II) | 90.3 | [183] |
Polyacrylonitrile/Fe2O3/Sodium dodecyl sulfate | Cu(II), Pb(II), Cd(II) | 11.8, 30, 7.5 | [184] |
Chitosan/Poly(ethylene oxide)/Permutit | Cr(VI) | 208 | [185] |
Polyacrylonitrile/γ-AlOOH | Pb(II), Cu(II), Cd(II) | 180.83, 48.68, 114.94 | [186] |
Polyethyleneimine/Polyvinyl alcohol | Cr(VI) | 150 | [187] |
Polyacrylic acid/Polyvinyl alcohol/Zero-valent iron | Cu(II) | 107.8 | [188] |
Chitosan/Graphene oxide | Cu(II), Pb(II), Cr(VI) | 461.3, 423.8, 310.4 | [189] |
Polyethyleneimine/Polydopamine | Cu(II) | 33.59 | [190] |
Polyetherimide-Fe3O4/Polyacrylonitrile | Cr(VI) | 684.93 | [191] |
Chitosan/Sodium polyacrylate | Cr(VI) | 78.92 | [192] |
Polyvinyl alcohol/Chitosan/ZnO | Cd(II), Ni(II) | 138.77, 50.21 | [193] |
Polyindole | Cu(II) | 121.95 | [194] |
Poly(vinylidene fluoride)/Polydopamine | Cu(II) | 26.7 | [195] |
Wool keratin/Nylon 6 | Cu(II) | 103.5 | [196] |
Polyacrylonitrile/Cellulose acetate/ZIF-67 | Cu(II), Cr(VI) | 18.9, 14.5 | [197] |
Chitosan/Poly(ethylene oxide) | Ni(II) | 227.27 | [198] |
Polyvinyl alcohol/NaX zeolite | Ni(II), Cd(II) | 342.8, 838.7 | [199] |
Polyacrylic acid/Polyvinyl alcohol | Pb(II) | 288 | [200] |
Polyvinyl alcohol/Sb-TBC Polyvinyl alcohol/Sr-TBC Polyvinyl alcohol/La-TBC | Pb(II) | 91 124 194 | [201] |
Polyacrylonitrile/Polypyrrole | Cr(VI) | 74.91 | [202] |
Cellulose acetate/Polymethacrylic acid | Pb(II) | 146.21 | [203] |
Polyacrylic acid/Sodium alginate | Cu(II) | 591.7 | [204] |
Polystyrene/Titanium dioxide | Cu(II) | 522 | [205] |
Chitosan/Titanium dioxide | Cu(II), Pb(II) | 710.3, 579.1 | [206] |
Polyacrylonitrile/Zinc oxide | Pb(II), Cd(II) | 322, 166 | [207] |
Polyacrylonitrile@γ-AlOOH | Cr(VI) | 5 | [208] |
Ethyl cellulose/Al2O3 | Pb(II) | 134.5 | [209] |
Silica@Polyvinylidene fluoride-hexafluoropropylene | Cu(II) | 21.9 | [210] |
Polyacrylonitrile/Chitosan | Cr(III) | 116.5 | [211] |
MgAl-EDTH-LDH@Polyacrylonitrile | Cu(II) | 120.77 | [212] |
Polyvinyl alcohol/Silica | Mn(II), Ni(II) | 234.7, 229.9 | [213] |
Polyvinylpyrrolidone/Silica | Hg(II) | 852 | [214] |
Chitosan/Poly (ethylene oxide)/Activated carbon | Cr(VI), Fe(III), Cu(II), Zn(II), Pb(II) | 261.1, 217.4, 195.3, 186.2, 176.9 | [215] |
Poly (ethylene oxide)/Graphene oxide | Cu(II), Cd(II) | 44.7, 59.1 | [216] |
Cellulose/Graphene oxide | Hg(II) | 13.73 | [217] |
Polyacrylonitrile/F300 Polyacrylonitrile/MOF808 Poly(vinylidene fluoride)/MOF808 | Hg(II), Pb(II) | 53.09, 30.19 50.88, 23.98 42.60, 17.19 | [218] |
Polyacrylonitrile/MOF-808 | Cd(II), Zn(II) | 225.05, 287.06 | [219] |
Chitosan/Polyvinyl alcohol/Zeolite | Cr(VI) | 450 | [220] |
Chitosan/Fe | As(III) | 36.1 | [221] |
Chitosan/Fe3O4/Oxidized multiwalled carbon nanotubes | Cr(VI) | 358 | [222] |
Adsorbent | Pollutant | Adsorption Capacity (mg·g−1) | Kinetic Model | Reference |
---|---|---|---|---|
Reduced graphene oxide (rGO) decorated with molybdenum disulfide (MoS2) | Cr(III) | 242 | - | [235] |
Co(II) | 112 | |||
Ni(II) | 145 | |||
Cu(II) | 417 | |||
Zn(II) | 550 | |||
Pb(II) | 498 | |||
Chitosan reinforced graphene oxide-hydroxyapatite (CS@GO-Hap) | Congo Red (CR) | 43.06 | pseudo-second-order | [236] |
Acid Red 1 (AR1) | 41.32 | |||
Reactive Red 2 (RR2) | 40.03 | |||
β-CD/PAA/GO nanocomposites | methylene blue (MB) safranine T (ST) | 247.99 175.49 | Langmuir | [237] |
MnO2 nanotubes@reduced graphene oxide hydrogel (MNGH) | Pb2+ | 356.37 | - | [238] |
Cd2+ | 177.4 | |||
Ag+ | 138.2 | |||
Cu2+ | 121.5 | |||
Zn2+ | 83.9 | |||
Graphene oxide embedded calcium alginate (GOCA) | Pb(II) | 602 | Pseudo-second-order | [239] |
Hg(II) | 374 | |||
Cd(II) | 181 | |||
Silica-decorated graphene oxide (SGO) | Cadmium(II) | 43.45 | pseudo-second-order | [240] |
Thiosemicarbazide functionalized graphene oxide (GO-TSC-GO) | methylene blue (MB) | 596.642 | pseudo-second-order | [241] |
Fe3O4/SiO2-GO | Cd(II) Pb(II) | 128.2 385.1 | - | [242] |
Poly(m-phenylenediamine)/reduced graphene oxide/nickle ferrite nanocomposite | Cr(VI) | 502.5 | pseudo-second-order | [243] |
Graphene oxide–silica composite | Congo red (CR) Cadmium(II) | 43.45 333.33 | pseudo-second-order | [240] |
Graphene oxide-activated carbon (GO-AC) composite | methylene blue (MB) crystal violet (CV) | 147 70 | pseudo-second-order | [244] |
Graphene oxide (GO) | Pb2+ | 75.41 | pseudo-second-order | [245] |
Ni2+ | 29.04 | |||
Cd2+ | 31.35 | |||
Reduced graphene oxide (rGO) | malachite green (MG) | 476.2 | pseudo-second-order | [246] |
GO@SiO2-MSp@SiO2NH2 | Pb(II) | 323.5 | pseudo-second-order | [247] |
Reduced graphene oxide/Lanthanum Alluminate nanocomposites (RGO-LaAlO3) | Methyl orange (MO) | 702.2 | Pseudo-second-order | [248] |
Sulfonated graphene oxide (SGO) | Pb2+ | 415 | Pseudo-second-order | [249] |
MnFe2O4/rGO magnetic nanoparticles (MRGO) | methylene blue (MB) | 105 | Pseudo-second order | [250] |
Graphene oxide functionalized chitosan-magnetite nanocomposite | Cu(II) Cr(VI) | 111.11 142.85 | Pseudo-second-order | [251] |
Fe3O4/graphene nanocomposite | Cr(VI) | 280.6 | Pseudo-second-order | [252] |
magnetic CoFe2O4/graphene oxide (GO) | methylene blue (MB) rhodamine B (RhB) | 355.9 284.9 | Pseudo-second-order | [253] |
Graphene oxide (GO) | Pb(II) | 555 | Pseudo-second-order | [254] |
Bimetal oxide decorated graphene oxide (Gd2O3/Bi2O3@GO) nanocomposite | Methyl orange (MO) | 544 | Pseudo-second-order | [255] |
Thiosemicarbazide-grafted graphene oxide (GO-TSC) | Hg(II) | 231 | - | [256] |
3D graphene nanoedges | methyl orange (MO) | 27.932 | - | [257] |
Porous silica–graphene oxide nanocomposite(GO-SiO2) | Pb(II) As(III) | 527 30 | Pseudo-second-order | [258] |
Magnetic CoF/GO | MB | 157 | Pseudo-second-order | [259] |
MV | 122 | |||
GN-MnO2 | Co(II) Cr(III) | 403.4 491.98 | Second-order-pseudo | [260] |
Graphene oxide | Congo Red (CR) | 120.20 | second order | [261] |
Bifunctionalized graphene oxide/MnFe2O4 magnetic nanoparticles (PEHA-Phos-GO/MnFe2O4) | Pb(II) | 366.4 | Pseudo-second-order | [262] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khraisheh, M.; Elhenawy, S.; AlMomani, F.; Al-Ghouti, M.; Hassan, M.K.; Hameed, B.H. Recent Progress on Nanomaterial-Based Membranes for Water Treatment. Membranes 2021, 11, 995. https://doi.org/10.3390/membranes11120995
Khraisheh M, Elhenawy S, AlMomani F, Al-Ghouti M, Hassan MK, Hameed BH. Recent Progress on Nanomaterial-Based Membranes for Water Treatment. Membranes. 2021; 11(12):995. https://doi.org/10.3390/membranes11120995
Chicago/Turabian StyleKhraisheh, Majeda, Salma Elhenawy, Fares AlMomani, Mohammad Al-Ghouti, Mohammad K. Hassan, and Bassim H. Hameed. 2021. "Recent Progress on Nanomaterial-Based Membranes for Water Treatment" Membranes 11, no. 12: 995. https://doi.org/10.3390/membranes11120995
APA StyleKhraisheh, M., Elhenawy, S., AlMomani, F., Al-Ghouti, M., Hassan, M. K., & Hameed, B. H. (2021). Recent Progress on Nanomaterial-Based Membranes for Water Treatment. Membranes, 11(12), 995. https://doi.org/10.3390/membranes11120995