Composite Polymer Anion Exchange Membranes with Sandwich Structure and Improved Performance for Zn–Air Battery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of RDC/PAAK/KOH Alkaline Polymer Electrolyte Membranes
2.3. Zn–Air Battery Design and Assembly
2.4. General Characterization
3. Results
3.1. Morphology and Structure Analyses
3.2. Property Evaluation
3.2.1. Mechanical and Thermal Properties
3.2.2. Electrochemical Properties
3.2.3. Performance of Zn/ASPE/Air Battery
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, H.J.; Lim, J.M.; Kim, H.W.; Jeong, S.H.; Eom, S.W.; Hong, Y.T.; Lee, S.Y. Electrospunpolyetherimide nanofiber mat-reinforced, permselective polyvinyl alcohol composite separator membranes: A membrane-driven step closer toward rechargeable Zn–Airbatteries. J. Membr. Sci. 2016, 499, 526–537. [Google Scholar] [CrossRef]
- Sun, N.; Lu, F.; Yu, Y.; Su, L.; Zheng, L. Alkaline Double-Network Hydrogels with High Conductivity, Superior Mechanical Performance and Anti-Freezing Property for Solid-State Zn–AirBatteries. ACS Appl. Mater. Interfaces 2020, 12, 11778–11788. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liang, G.; Zhan, Y.; Li, H.; Wang, Z.; Ma, L.; Wang, Y.; Niu, X.; Zhi, C. A Soft yet Device-Level Dynamically Su-per-Tough Supercapacitor Enabled by an Energy-Dissipative Dual-Crosslinked Hydrogel Electrolyte. Nano Energy 2019, 58, 732–742. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Cai, X.; Yao, J.; Li, M.; Zhang, X.; Liu, Q. High alkaline tolerant electrolyte membrane with improved conductivity and mechanical strength via lithium chloride/dimethylacetamide dissolved microcrystalline cellulose for Zn-Air batteries. Electrochim. Acta 2016, 220, 635–642. [Google Scholar] [CrossRef]
- Herranz, D.; Coppola, R.E.; Escudero-Cid, R.; Ochoa-Romero, K.; D’Accorso, N.B.; Juan Pérez-Flores, J.C.; Canales-Vázquez, J.; Palacio, C.; Abuin, G.C.; Ocón, P. Application of crosslinked polybenzimidazole-poly(Vinyl Benzyl Chloride) anion exchange membranes in directe thanol fuel cells. Membranes 2020, 10, 349. [Google Scholar] [CrossRef]
- Qiao, J.; Fu, J.; Lin, R.; Ma, J.; Liu, J. Alkaline solid polymer electrolyte membranes based on structurally modified PVA/PVP with improved alkali stability. Polymer 2010, 51, 4850–4859. [Google Scholar] [CrossRef]
- Zhang, Z.; Zuo, C.; Liu, Z.; Yu, Y.; Zuo, Y.; Song, Y. All-solid-state Al–air batteries with polymer alkaline gel electrolyte. J. Power Sources 2014, 251, 470–475. [Google Scholar] [CrossRef]
- Wei, Y.A.; Wang, M.; Xu, N.N.; Peng, L.W.; Mao, J.F.; Gong, Q.J.; Qiao, J.L. Alkaline Exchange Polymer Membrane Elec-trolyte for High Performance of All-Solid-State Electrochemical Devices. ACS Appl. Mater. Interfaces 2018, 10, 29593–29598. [Google Scholar] [CrossRef]
- Kim, H.W.; Lim, J.M.; Lee, H.J.; Eom, S.W.; Hong, Y.T.; Lee, S.Y. Artificially engineered, bicontinuous ani-on-conducting/-repelling polymeric phases as a selective ion transport channel for rechargeable Zn–Air battery separator membranes. J. Mater. Chem. A 2016, 4, 3711–3720. [Google Scholar] [CrossRef]
- Hu, X.; Fan, L.; Qin, G.; Shen, Z.; Chen, J.; Wang, M.; Yang, J.; Chen, Q. Flexible and low temperature resistant double network alkaline gel polymer electrolyte with dual-role KOH for supercapacitor. J. Power Sources 2019, 414, 201–209. [Google Scholar] [CrossRef]
- Fenton, D.; Parker, J.; Wright, P. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 1973, 14, 589. [Google Scholar] [CrossRef]
- Appetecchi, G.B.; Hassoun, J.; Scrosati, B.; Croce, F.; Cassel, F.; Salomon, M. Hot-pressed, solvent-free, nanocomposite, PEO-based electrolyte membranes: II. All solid-state Li/LiFePO4 polymer batteries. J. Mater. Chem. 2003, 124, 246–253. [Google Scholar]
- Lewandowski, A.; Skorupska, K.; Malinska, J. Novel poly(vinyl alcohol)–KOH–H2O alkaline polymer electrolyte. Solid State Ion. 2000, 133, 265–271. [Google Scholar] [CrossRef]
- Fu, J.; Qiao, J.; Wang, X.; Ma, J.; Okada, T. Alkali doped poly(vinyl alcohol) for potential fuel cell applications. Synth. Met. 2010, 160, 193–199. [Google Scholar] [CrossRef]
- Merle, G.; Hosseiny, S.S.; Wessling, M.; Nijmeijer, K. New cross-linked PVA based polymer electrolyte membranes for alkaline fuel cells. J. Membr. Sci. 2012, 409–410, 191–199. [Google Scholar] [CrossRef]
- Jikihara, A.; Ohashi, R.; Kakihana, Y.; Higa, M.; Kobayashi, K. Electrodialytic transport properties of anion-exchange mem-branes prepared from poly(vinyl alcohol) and poly(vinyl alcohol-co-methacryloylaminopropyltrimethyl ammonium chlo-ride). Membranes 2013, 3, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.C.; Lin, S.J. Alkaline composite PEO–PVA–glass-fiber-mat polymer electrolyte for Zn–air battery. J. Power Sources 2002, 112, 497–503. [Google Scholar] [CrossRef]
- Yang, C.C.; Chien, W.C.; Li, Y.J. Direct methanol fuel cell based on poly(vinyl alcohol)/titanium oxide nano-tubes/poly(styrene sulfonic acid) (PVA/nt-TiO2/PSSA) composite polymer membrane. J. Power Sources. 2010, 195, 3407–3415. [Google Scholar] [CrossRef]
- Li, P.-C.; Liao, G.; Kumar, S.R.; Shih, C.-M.; Yang, C.-C.; Wang, D.-M.; Lue, S.J. Fabrication and Characterization of Chitosan Nanoparticle-Incorporated Quaternized Poly(Vinyl Alcohol) Composite Membranes as Solid Electrolytes for Direct Methanol Alkaline Fuel Cells. Electrochim. Acta 2016, 187, 616–628. [Google Scholar] [CrossRef]
- Lue, S.J.; Pan, W.H.; Chang, C.M.; Liu, Y.L. High-performance direct methanol alkaline fuel cells using potassium hy-droxide-impregnated polyvinyl alcohol/carbon nano-tube electrolytes. J. Power Sources 2012, 202, 1–10. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, J.; Song, X.; Jiang, G.; Zarrin, H.; Xu, P.; Li, K.; Yu, A.; Chen, Z. Laminated cross-linked nanocellulose/graphene oxide electrolyte for flexible rechargeable Zn–Air batteries. Adv. Energy Mater. 2016, 6, 1600476. [Google Scholar] [CrossRef]
- Li, L.; Liu, L.; Qing, Y.; Zhang, Z.; Yan, N.; Wu, Y.; Tian, C. Stretchable alkaline poly(acrylic acid) electrolyte with high ionic conductivity enhanced by cellulose nanofibrils. Electrochim. Acta 2018, 270, 302–309. [Google Scholar] [CrossRef]
- You, X.; Qiao, C.; Peng, D.; Liu, W.; Li, C.; Zhao, H.; Qi, H.; Cai, X.; Shao, Y.; Shi, X. Preparation of Alkaline Polyelectrolyte Membrane Based on Quaternary Ammonium Salt–Modified Cellulose and Its Application in Zn–Air Flexible Battery. Polymers 2020, 13, 9. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, X.; Zhang, Y.; Li, C.; Zhang, G.; Wang, X.; Zhang, X.; Wang, Q.; Wang, F. Composite Polymer Anion Exchange Membranes with Sandwich Structure and Improved Performance for Zn–Air Battery. Membranes 2021, 11, 224. https://doi.org/10.3390/membranes11030224
Cai X, Zhang Y, Li C, Zhang G, Wang X, Zhang X, Wang Q, Wang F. Composite Polymer Anion Exchange Membranes with Sandwich Structure and Improved Performance for Zn–Air Battery. Membranes. 2021; 11(3):224. https://doi.org/10.3390/membranes11030224
Chicago/Turabian StyleCai, Xiaoxia, Yuansong Zhang, Cong Li, Guotao Zhang, Xiaotao Wang, Xian Zhang, Qiang Wang, and Fuzhong Wang. 2021. "Composite Polymer Anion Exchange Membranes with Sandwich Structure and Improved Performance for Zn–Air Battery" Membranes 11, no. 3: 224. https://doi.org/10.3390/membranes11030224
APA StyleCai, X., Zhang, Y., Li, C., Zhang, G., Wang, X., Zhang, X., Wang, Q., & Wang, F. (2021). Composite Polymer Anion Exchange Membranes with Sandwich Structure and Improved Performance for Zn–Air Battery. Membranes, 11(3), 224. https://doi.org/10.3390/membranes11030224