Influence of Casting Solvents on CO2/CH4 Separation Using Polysulfone Membranes
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials
2.2. Membrane Preparation
2.3. Characterization of the Membranes
2.4. CO2/CH4 Separation
3. Results and Discussion
3.1. Characterization
3.2. CO2/CH4 Separation
Regression | |||||||
Solvent | CO2/CH4 Selectivity | CO2 Permeability | CH4 Permeability | ||||
THF | y = 0.51 x2 − 10.40 x + 55.87, | y = 4.96 x2 − 0.07 x + 0.31, | y = 9.14 x2 − 2.18 x + 0.013, | ||||
R2 = 0.98 | R2 = 0.95 | R2 = 0.99 | |||||
CF | y = 0.11 x2 − 3.13 x + 37.56, | y = 2.75 x2 − 0.03 x + 0.20, | y = 7.27 x2 − 1.08 x + 6.42, | ||||
R2 = 0.99 | R2 = 0.91 | R2 = 0.95 | |||||
Membrane | Solvent | CO2/CH4 Selectivity | CO2 Permeability (barrer) | CH4 Permeability (barrer) | ∆P (bar) | T (°C) | Ref. |
PSF | tetrahydrofuran | 50 | 30.04 | 0.65 | 1 | 20 | Present work |
PSF | chloroform | 35 | 24.76 | 0.715 | 1 | 20 | Present work |
Poly (vinylidene fluoride) (PVDF) | N-methyl-2-pyrrolidone | 26.37 | 2.11 | 0.08 | 7 | 35 | [1] |
Matrimid/PVDF (3%) | N-methyl-2-pyrrolidone | 42.81 | 9.42 | 0.22 | 7 | 35 | [1] |
Matrimid | chloroform | 31 | 20 | 0.5 | 3 | 25 | [2] |
PES | N-metthyl-2-pyrrolidone | 25.5 | 0.51 | 0.02 | 3.5 | 25 | [11] |
PES | dimethylacetamide | 29.7 | 7.13 | 0.24 | 5 | 30–70 | [20] |
PSF | chloroform | 25 | 6.9 | 0.28 | 10 | 22 | [27] |
6FDA-bisP | chloroform | 27 | 30 | 2 | 5 | 25 | [44] |
Matrimid | dichloromethane | 31.13 | 7.16 | 0.23 | 4 | 35 | [45] |
Matrimid | N-methyl-2-pyrrolidone | 28.6 | 5.72 | 0.2 | 4 | 35 | [28] |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajati, H.; Navarchian, A.H.; Tangestaninejad, S. Preparation and characterization of mixed matrix membranes based on Matrimid/PVDF blend and MIL-101(Cr) as filler for CO2/CH4 separation. Chem. Eng. Sci. 2018, 185, 92–104. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, C.; Caro, J.; Huang, A. A new UiO-66-NH2 based mixed-matrix membranes with high CO2/CH4 separation performance. Microporous Mesoporous Mater. 2019, 274, 203–211. [Google Scholar] [CrossRef]
- Giorno, L.; Jansen, J.C. Environmental Science grade CO2 from biogas: An industrial case study. Energy Environ. Sci. 2019, 12, 281–289. [Google Scholar]
- Liu, G.; Cadiau, A.; Liu, Y.; Adil, K.; Chernikova, V.; Carja, I.D.; Belmabkhout, Y.; Karunakaran, M.; Shekhah, O.; Zhang, C.; et al. Enabling Fluorinated MOF-Based Membranes for Simultaneous Removal of H2S and CO2 from Natural Gas. Angew. Chem. Int. Ed. 2018, 57, 14811–14816. [Google Scholar] [CrossRef] [Green Version]
- Nikolaeva, D.; Azcune, I.; Tanczyk, M.; Warmuzinski, K.; Jaschik, M.; Dahl, P.I.; Genua, A.; Sheridan, E.; Fuoco, A.; Vankelecom, I. The performance of affordable and stable cellulose-based poly-ionic membranes in CO2/N2 and CO2/CH4 gas separation. J. Membr. Sci. 2018, 564, 552–561. [Google Scholar] [CrossRef]
- Figoli, A.; Marino, T.; Simone, S.; Di Nicolò, E.; Li, X.; He, T.; Tornaghi, S. Towards non-toxic solvents for membrane preparation: A review. Green Chem. 2014, 4034–4059. [Google Scholar] [CrossRef]
- Daugherty, J.; Alexander, K.; Cutler, D.; Patel, M.; Deshmukh, S. Applying advanced membrane technology for Orange County’s water reuse treatment facilities. In Proceedings of the AWWA Membrane Technology Conference, Phoenix, AZ, USA, 15 March 2005. [Google Scholar]
- Bartels, C.; Wilf, M.; Andes, K.; Iong, J. Design considerations for wastewater treatment by reverse osmosis. In Proceedings of the International Desalination and Water Reuse Conference, Tampa, FL, USA, 25–28 June 2003. [Google Scholar]
- Jeon, Y.; Lee, D. Gas Membranes for CO2/CH4 (Biogas) Separation: A Review. Environ. Eng. Sci. 2015, 32, 71–85. [Google Scholar] [CrossRef]
- Won, J.O.; Park, H.C.; Kang, Y.S. Polymer membranes for gas separation. Polym. Sci. Technol. 1999, 10, 170. [Google Scholar]
- Mahdavi, H.; Moradi-Garakani, F. Effect of mixed matrix membranes comprising a novel trinuclear zinc MOF, fumed silica nanoparticles and PES on CO2/CH4separation. Chem. Eng. Res. Des. 2017, 125, 156–165. [Google Scholar] [CrossRef]
- Pandey, P.; Chauhan, R.S. Membranes for gas separation. Prog. Polym. Sci. 2001, 26, 853–893. [Google Scholar] [CrossRef]
- Wang, Y.B.; Gong, M.; Yang, S.; Nakashima, K.; Gong, Y.K. Hemocompatibility and film stability improvement of crosslinkable MPC copolymer coated polypropylene hollow fiber membrane. J. Membr. Sci. 2014, 452, 29–36. [Google Scholar] [CrossRef]
- Jhaveri, J.H.; Murthy, Z.V.P. A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination 2016, 379, 137–154. [Google Scholar] [CrossRef]
- Rozuki, N.F.A.; Tajuddin, M.H.; Yusof, N. Effect of Different Solvent on Asymmetric Polysulfone (Psf) Membranes for Co2/Ch4 Separation. Environ. Ecosyst. Sci. 2018, 2, 11–14. [Google Scholar] [CrossRef]
- Aroon, M.A.; Ismail, A.F.; Montazer-Rahmati, M.M.; Matsuura, T. Morphology and permeation properties of polysulfone membranes for gas separation: Effects of non-solvent additives and co-solvent. Sep. Purif. Technol. 2010, 72, 194–202. [Google Scholar] [CrossRef]
- Hedin, L.E.; Illergård, K.; Elofsson, A. An introduction to membrane proteins. J. Proteome Res. 2011, 10, 3324–3331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, C.P.; Polintan, C.K.; Tayo, L.L.; Chou, S.C.; Tsai, H.A.; Hung, W.S.; Hu, C.C.; Lee, K.R.; Lai, J.Y. The gas separation performance adjustment of carbon molecular sieve membrane depending on the chain rigidity and free volume characteristic of the polymeric precursor. Carbon 2019, 143, 343–351. [Google Scholar] [CrossRef]
- Julian, H. Polysulfone membranes for CO2/CH4 separation: State of the art. IOSR J. Eng. 2012, 2, 484–495. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Mollaiy-Berneti, S.; Asadi, H.; Peydayesh, M.; Akhlaghian, F.; Mohammadi, T. PVA/PES-amine-functional graphene oxide mixed matrix membranes for CO2/CH4separation: Experimental and modeling. Chem. Eng. Res. Des. 2016, 109, 647–656. [Google Scholar] [CrossRef]
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Comesaña-Gándara, B.; Chen, J.; Bezzu, C.G.; Carta, M.; Rose, I.; Ferrari, M.C.; Esposito, E.; Fuoco, A.; Jansen, J.C.; McKeown, N.B. Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy Environ. Sci. 2019, 12, 2733–2740. [Google Scholar] [CrossRef] [Green Version]
- Moghadam, F.; Omidkhah, M.R.; Vasheghani-Farahani, E.; Pedram, M.Z.; Dorosti, F. The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218- based mixed matrix membranes. Sep. Purif. Technol. 2011, 77, 128. [Google Scholar] [CrossRef]
- Casado-coterillo, C.; Garea, A.; Irabien, Á. Effect of Water and Organic Pollutant in CO2/CH4 Separation Using Hydrophilic and Hydrophobic Composite Membranes. Membranes 2020, 10, 405. [Google Scholar] [CrossRef]
- Mohshim, D.F.; Bin Mukhtar, H.; Man, Z.; Nasir, R. Latest Development on Membrane Fabrication for Natural Gas Purification: A Review. J. Eng. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Zornoza, B.; Irusta, S.; Téllez, C.; Coronas, J. Mesoporous silica sphere-polysulfone mixed matrix membranes for gas separation. Langmuir 2009, 25, 5903–5909. [Google Scholar] [CrossRef]
- Alkhouzaam, A.; Khraisheh, M.; Atilhan, M.; Al-Muhtaseb, S.A.; Qi, L.; Rooney, D. High-pressure CO2/N2and CO2/CH4 separation using dense polysulfone-supported ionic liquid membranes. J. Nat. Gas. Sci. Eng. 2016, 36, 472–485. [Google Scholar] [CrossRef]
- Boroglu, M.S.; Ugus, M.; Boz, I. Enhanced gas transport properties of mixed matrix membranes consisting of Matrimid and rRHO type ZIF—12 particles. Chem. Eng. Res. Design 2017, 123, 201–213. [Google Scholar] [CrossRef]
- Wu, X.; Liu, W.; Wu, H.; Zong, X.; Yang, L.; Wu, Y.; Ren, Y.; Shi, C.; Wang, S.; Jiang, Z. Nanoporous ZIF-67 embedded polymers of intrinsic microporosity membranes with enhanced gas separation performanc. J. Membr. Sci. 2018, 548, 309–318. [Google Scholar] [CrossRef]
- Tien-Binh, N.; Vinh-Thang, H.; Chen, X.Y.; Rodrigue, D.; Kaliaguine, S. Crosslinked MOF-polymer to enhance gas separation of mixed matrix membranes. J. Membr. Sci. 2016, 520, 941–950. [Google Scholar] [CrossRef]
- Khraisheh, M.; Zadeh, K.M.; Alkhouzaam, A.I.; Turki, D.; Hassan, M.K.; Al Momani, F.; Zaidi, S.M.J. Characterization of polysulfone/diisopropylamine 1-alkyl-3-methylimidazolium ionic liquid membranes: High pressure gas separation applications. Greenh. Gases Sci. Technol. 2020, 10, 795–808. [Google Scholar] [CrossRef]
- Gaur, M.S.; Singh, P.K.; Suruchi; Chauhan, R.S. Structural and thermal properties of polysulfone-ZnO nanocomposites. J. Therm. Anal. Calorim. 2013, 111, 743–751. [Google Scholar] [CrossRef]
- Lu, Q.; Fang, J.; Yang, J.; Yan, G.; Liu, S.; Wang, J. A novel solid composite polymer electrolyte based on poly(ethylene oxide) segmented polysulfone copolymers for rechargeable lithium batteries. J. Membr. Sci. 2013, 425–426, 105–112. [Google Scholar] [CrossRef]
- Ionita, M.; Pandele, A.M.; Crica, L.E.; Obreja, A.C. Preparation and characterization of polysulfone/ammonia-functionalized graphene oxide composite membrane material. High Perform. Polym. 2016, 28, 181–188. [Google Scholar] [CrossRef]
- Chang, Y.W.; Chang, B.K. Influence of casting solvents on sedimentaion and performance in metal-organic framework mixed membranes. J. Taiwan Inst. Chem. Eng. 2018, 89, 224–233. [Google Scholar] [CrossRef]
- Zulhairun, A.K.; Ismail, A.F.; Matsuura, T.; Abdullah, M.S.; Mustafa, A. Asymmetric mixed matrix membrane incorporating organically modified clay particle for gas separation. Chem. Eng. J. 2014, 241, 495–503. [Google Scholar] [CrossRef]
- Suleman, M.S.; Lau, K.K. Enhanced gas separation performance of PSF membrane after modification to PSF / PDMS composite membrane in CO 2 / CH 4 separation. J. Appl. Polym. Sci. 2018, 135, 1–9. [Google Scholar] [CrossRef]
- Mohshim, D.F.; Mukhtar, H.; Man, Z. Composite blending of ionic liquid–poly (ether sulfone) polymeric membranes: Green materials with potential for carbon dioxide/methane separation. J. Appl. Polym. Sci. 2016, 133, 43999. [Google Scholar] [CrossRef]
- Yang, Z.; Peng, H.; Wang, W.; Liu, T. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J. Appl. Polym. Sci. 2010, 116, 2658–2667. [Google Scholar] [CrossRef]
- Rafiq, S.; Man, Z.; Maulud, A.; Muhammad, N.; Maitra, S. Separation of CO2 from CH4 using polysulfone/polyimide silica nanocomposite membranes. Sep. Purif. Technol. 2012, 90, 162–172. [Google Scholar] [CrossRef]
- Suleman, M.S.; Lau, K.K.; Yeong, Y.F. Development and performance evaluation of Polydimethyl siloxane/Polysulfone (PDMS/PSF) composite membrane for CO2/CH4 separation. IOP Conf. Ser. Earth Environ. Sci. 2016, 36. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Yoon, H.W.; Paul, D.R.; Freeman, B.D. Gas transport properties of PDMS-coated reverse osmosis membranes. J. Membr. Sci. 2020, 604, 118009. [Google Scholar] [CrossRef]
- Robeson, L.M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 1991, 62, 165–185. [Google Scholar] [CrossRef]
- Ahmad, M.; Martin-Gil, V.; Perfilove, V.; Sysel, P.; Fila, V. Separation and Puri fi cation Technology Investigation of a new co-polyimide, 6FDA-bisP and its ZIF-8 mixed matrix membranes for CO2/CH4 separation. J. Seppur. 2018, 207, 523–534. [Google Scholar]
- Abdollahi, S.; Mortaheb, H.R.; Ghadimi, A.; Esmaeili, M. Improvement in separation performance of Matrimid®5218 with encapsulated [Emim][Tf2N] in a heterogeneous structure: CO2/CH4 separation. J. Membr. Sci. 2018, 557, 38–48. [Google Scholar] [CrossRef]
Full Name | Abbreviation |
---|---|
Chloroform | CF |
Tetrahydrofuran | THF |
Polysulfone | PSF |
Gas Permeation Unit | GPU |
Polyethersulfone | PES |
Polydimethylesiloxane | PDMS |
Thermogravimetric analysis | TGA |
X-Ray Diffraction | XRD |
Gas Chromatography | GC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almuhtaseb, R.M.; Awadallah-F, A.; Al-Muhtaseb, S.A.; Khraisheh, M. Influence of Casting Solvents on CO2/CH4 Separation Using Polysulfone Membranes. Membranes 2021, 11, 286. https://doi.org/10.3390/membranes11040286
Almuhtaseb RM, Awadallah-F A, Al-Muhtaseb SA, Khraisheh M. Influence of Casting Solvents on CO2/CH4 Separation Using Polysulfone Membranes. Membranes. 2021; 11(4):286. https://doi.org/10.3390/membranes11040286
Chicago/Turabian StyleAlmuhtaseb, Roba M., Ahmed Awadallah-F, Shaheen A. Al-Muhtaseb, and Majeda Khraisheh. 2021. "Influence of Casting Solvents on CO2/CH4 Separation Using Polysulfone Membranes" Membranes 11, no. 4: 286. https://doi.org/10.3390/membranes11040286
APA StyleAlmuhtaseb, R. M., Awadallah-F, A., Al-Muhtaseb, S. A., & Khraisheh, M. (2021). Influence of Casting Solvents on CO2/CH4 Separation Using Polysulfone Membranes. Membranes, 11(4), 286. https://doi.org/10.3390/membranes11040286