State-of-the-Art and Opportunities for Forward Osmosis in Sewage Concentration and Wastewater Treatment
Abstract
:1. Introduction
2. Deployment of FO as a Single Treatment Process
2.1. Selection of Draw Solutes
2.2. Effect of Process Parameters and Fouling Control
3. The Integration of FO with Other Membrane Technologies
3.1. Integration of FO with Membrane Distillation
3.2. Integration of FO with UF/NF/RO
3.3. Integration of FO with Membrane Bioreactor
4. Integration of FO with Other Wastewater Treatment Technologies
4.1. Integration of FO with Biological Process
4.2. Integrations of FO with Other Water Treatment Processes
5. Emerging Application of FO for Resource Recovery
6. Conclusion and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klaysom, C.; Cath, T.Y.; Depuydt, T.; Vankelecom, I.F. Forward and pressure retarded osmosis: Potential solutions for global challenges in energy and water supply. Chem. Soc. Rev. 2013, 42, 6959–6989. [Google Scholar] [CrossRef] [PubMed]
- Yasukawa, M.; Mishima, S.; Tanaka, Y.; Takahashi, T.; Matsuyama, H. Thin-film composite forward osmosis membrane with high water flux and high pressure resistance using a thicker void-free polyketone porous support. Desalination 2017, 402, 1–9. [Google Scholar] [CrossRef]
- Lutchmiah, K.; Cornelissen, E.R.; Harmsen, D.J.; Post, J.W.; Lampi, K.; Ramaekers, H.; Rietveld, L.C.; Roest, K. Water recovery from sewage using forward osmosis. Water Sci. Technol. 2011, 64, 1443–1449. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zheng, J.; Tang, J.; Wang, X.; Wu, Z. A pilot-scale forward osmosis membrane system for concentrating low-strength municipal wastewater: Performance and implications. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.; Ngadi, N.; Inuwa, I.M.; Hassan, O. Recent advances in applications of activated carbon from biowaste for wastewater treatment: A short review. J. Clean. Prod. 2018, 175, 361–375. [Google Scholar] [CrossRef]
- Paul, R.; Kenway, S.; Mukheibir, P. How scale and technology influence the energy intensity of water recycling systems-an analytical review. J. Clean. Prod. 2019, 215, 1457–1480. [Google Scholar] [CrossRef] [Green Version]
- Iskander, S.M.; Zou, S.; Brazil, B.; Novak, J.T.; He, Z. Energy consumption by forward osmosis treatment of landfill leachate for water recovery. Waste Manag. 2017, 63, 284–291. [Google Scholar] [CrossRef]
- Di Palma, L.; Ferrantelli, P.; Merli, C.; Petrucci, E. Treatment of industrial landfill leachate by means of evaporation and reverse osmosis. Waste Manage. 2002, 22, 951–955. [Google Scholar] [CrossRef]
- Renou, S.; Givaudan, J.; Poulain, S.; Dirassouyan, F.; Moulin, P. Landfill leachate treatment: Review and opportunity. J. Hazard. Mater. 2008, 150, 468–493. [Google Scholar] [CrossRef]
- Lin, J.; Ye, W.; Zeng, H.; Yang, H.; Shen, J.; Darvishmanesh, S.; Luis, P.; Sotto, A.; Van der Bruggen, B. Fractionation of direct dyes and salts in aqueous solution using loose nanofiltration membranes. J. Membr. Sci. 2015, 477, 183–193. [Google Scholar] [CrossRef]
- Lin, J.; Tang, C.Y.; Ye, W.; Sun, S.-P.; Hamdan, S.H.; Volodin, A.; Van Haesendonck, C.; Sotto, A.; Luis, P.; Van der Bruggen, B. Unraveling flux behavior of superhydrophilic loose nanofiltration membranes during textile wastewater treatment. J. Membr. Sci. 2015, 493, 690–702. [Google Scholar] [CrossRef]
- Marcucci, M.; Ciardelli, G.; Matteucci, A.; Ranieri, L.; Russo, M. Experimental campaigns on textile wastewater for reuse by means of different membrane processes. Desalination 2002, 149, 137–143. [Google Scholar] [CrossRef]
- Verliefde, A.R.; Cornelissen, E.; Heijman, S.; Verberk, J.; Amy, G.; Van der Bruggen, B.; Van Dijk, J. The role of electrostatic interactions on the rejection of organic solutes in aqueous solutions with nanofiltration. J. Membr. Sci. 2008, 322, 52–66. [Google Scholar] [CrossRef]
- Van der Bruggen, B.; Cornelis, G.; Vandecasteele, C.; Devreese, I. Fouling of nanofiltration and ultrafiltration membranes applied for wastewater regeneration in the textile industry. Desalination 2005, 175, 111–119. [Google Scholar] [CrossRef]
- Pearce, G. Uf/mf pre-treatment to ro in seawater and wastewater reuse applications: A comparison of energy costs. Desalination 2008, 222, 66–73. [Google Scholar] [CrossRef]
- Wu, X.; Fang, F.; Zhang, K. Graphene oxide modified forward osmosis membranes with improved hydrophilicity and desalination performance. Desalin. Water Treat. 2017, 85, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Ding, M.; Xu, H.; Yang, W.; Zhang, K.; Tian, H.; Wang, H.; Xie, Z. Scalable ti3c2t x mxene interlayered forward osmosis membranes for enhanced water purification and organic solvent recovery. ACS Nano 2020, 14, 9125–9135. [Google Scholar] [CrossRef]
- Loeb, S. Production of energy from concentrated brines by pressure-retarded osmosis: I. Preliminary technical and economic correlations. J. Membr. Sci. 1976, 1, 49–63. [Google Scholar] [CrossRef]
- Nayak, C.A.; Rastogi, N.K. Forward osmosis for the concentration of anthocyanin from garcinia indica choisy. Sep. Purif. Technol. 2010, 71, 144–151. [Google Scholar] [CrossRef]
- Chung, T.-S.; Li, X.; Ong, R.C.; Ge, Q.; Wang, H.; Han, G. Emerging forward osmosis (fo) technologies and challenges ahead for clean water and clean energy applications. Curr. Opin. Chem. Eng. 2012, 1, 246–257. [Google Scholar] [CrossRef]
- Han, G.; Zhao, B.; Fu, F.; Chung, T.-S.; Weber, M.; Staudt, C.; Maletzko, C. High performance thin-film composite membranes with mesh-reinforced hydrophilic sulfonated polyphenylenesulfone (sppsu) substrates for osmotically driven processes. J. Membr. Sci. 2016, 502, 84–93. [Google Scholar] [CrossRef] [Green Version]
- Achilli, A.; Cath, T.Y.; Marchand, E.A.; Childress, A.E. The forward osmosis membrane bioreactor: A low fouling alternative to mbr processes. Desalination 2009, 239, 10–21. [Google Scholar] [CrossRef]
- Liu, X.; Wu, J.; Hou, L.-a.; Wang, J. Removal of co, sr and cs ions from simulated radioactive wastewater by forward osmosis. Chemosphere 2019, 232, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Korenak, J.; Hélix-Nielsen, C.; Bukšek, H.; Petrinić, I. Efficiency and economic feasibility of forward osmosis in textile wastewater treatment. J. Clean. Prod. 2019, 210, 1483–1495. [Google Scholar] [CrossRef]
- Gao, Y.; Fang, Z.; Liang, P.; Huang, X. Direct concentration of municipal sewage by forward osmosis and membrane fouling behavior. Bioresour. Technol. 2018, 247, 730–735. [Google Scholar] [CrossRef]
- Chekli, L.; Kim, Y.; Phuntsho, S.; Li, S.; Ghaffour, N.; Leiknes, T.; Shon, H.K. Evaluation of fertilizer-drawn forward osmosis for sustainable agriculture and water reuse in arid regions. J. Environ. Manag. 2017, 187, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Xie, M.; Zheng, M.; Cooper, P.; Price, W.E.; Nghiem, L.D.; Elimelech, M. Osmotic dilution for sustainable greenwall irrigation by liquid fertilizer: Performance and implications. J. Membr. Sci. 2015, 494, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Gulied, M.; Al Momani, F.; Khraisheh, M.; Bhosale, R.; AlNouss, A. Influence of draw solution type and properties on the performance of forward osmosis process: Energy consumption and sustainable water reuse. Chemosphere 2019, 233, 234–244. [Google Scholar] [CrossRef]
- Luján-Facundo, M.J.; Soler-Cabezas, J.L.; Mendoza-Roca, J.A.; Vincent-Vela, M.C.; Bes-Piá, A.; Doñate-Hernández, S. A study of the osmotic membrane bioreactor process using a sodium chloride solution and an industrial effluent as draw solutions. Chem. Eng. J. 2017, 322, 603–610. [Google Scholar] [CrossRef]
- Akther, N.; Phuntsho, S.; Chen, Y.; Ghaffour, N.; Shon, H.K. Recent advances in nanomaterial-modified polyamide thin-film composite membranes for forward osmosis processes. J. Membr. Sci. 2019, 584, 20–45. [Google Scholar] [CrossRef]
- Chaoui, I.; Abderafi, S.; Vaudreuil, S.; Bounahmidi, T. Water desalination by forward osmosis: Draw solutes and recovery methods–review. Environ. Technol. Rev. 2019, 8, 25–46. [Google Scholar] [CrossRef]
- Blandin, G.; Ferrari, F.; Lesage, G.; Le-Clech, P.; Héran, M.; Martinez-Lladó, X. Forward osmosis as concentration process: Review of opportunities and challenges. Membranes 2020, 10, 284. [Google Scholar] [CrossRef]
- Wu, X.; Tanner, J.; Ng, D.; Acharya, D.; Xie, Z. Sewage concentration via a graphene oxide modified thin-film nanocomposite forward osmosis membrane: Enhanced performance and mitigated fouling. Chem. Eng. J. 2020, 127718. [Google Scholar] [CrossRef]
- Yang, S.; Gao, B.; Jang, A.; kyong Shon, H.; Yue, Q. Municipal wastewater treatment by forward osmosis using seawater concentrate as draw solution. Chemosphere 2019, 237, 124485. [Google Scholar] [CrossRef]
- Chang, J.; Qiu, H.; Wang, J.; Lin, R.; Hernandez, B.V.; Ji, C.; Liu, G.; Zhao, X.; Ge, L. Efficient organic enrichment from sludge filtrate via a forward osmosis membrane process. J. Environ. Chem. Eng. 2020, 8, 104042. [Google Scholar] [CrossRef]
- Singh, N.; Petrinic, I.; Hélix-Nielsen, C.; Basu, S.; Balakrishnan, M. Concentrating molasses distillery wastewater using biomimetic forward osmosis (fo) membranes. Water Res. 2018, 130, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Liang, J.; Liu, Y. Application of forward osmosis membrane technology for oil sands process-affected water desalination. Water Sci. Technol. 2016, 73, 1809–1816. [Google Scholar] [CrossRef]
- Soler-Cabezas, J.L.; Mendoza-Roca, J.A.; Vincent-Vela, M.C.; Luján-Facundo, M.J.; Pastor-Alcañiz, L. Simultaneous concentration of nutrients from anaerobically digested sludge centrate and pre-treatment of industrial effluents by forward osmosis. Sep. Purif. Technol. 2018, 193, 289–296. [Google Scholar] [CrossRef]
- Lu, X.; Boo, C.; Ma, J.; Elimelech, M. Bidirectional diffusion of ammonium and sodium cations in forward osmosis: Role of membrane active layer surface chemistry and charge. Environ. Sci. Technol. 2014, 48, 14369–14376. [Google Scholar] [CrossRef]
- Wan, C.F.; Chung, T.-S. Techno-economic evaluation of various ro+ pro and ro+ fo integrated processes. Appl. Energy 2018, 212, 1038–1050. [Google Scholar] [CrossRef]
- Ansari, A.J.; Hai, F.I.; Guo, W.; Ngo, H.H.; Price, W.E.; Nghiem, L.D. Factors governing the pre-concentration of wastewater using forward osmosis for subsequent resource recovery. Sci. Total Environ. 2016, 566, 559–566. [Google Scholar] [CrossRef]
- Chekli, L.; Phuntsho, S.; Kim, J.E.; Kim, J.; Choi, J.Y.; Choi, J.-S.; Kim, S.; Kim, J.H.; Hong, S.; Sohn, J. A comprehensive review of hybrid forward osmosis systems: Performance, applications and future prospects. J. Membr. Sci. 2016, 497, 430–449. [Google Scholar] [CrossRef]
- Heo, J.; Chu, K.H.; Her, N.; Im, J.; Park, Y.-G.; Cho, J.; Sarp, S.; Jang, A.; Jang, M.; Yoon, Y. Organic fouling and reverse solute selectivity in forward osmosis: Role of working temperature and inorganic draw solutions. Desalination 2016, 389, 162–170. [Google Scholar] [CrossRef]
- McCutcheon, J.R.; Elimelech, M. Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. J. Membr. Sci. 2006, 284, 237–247. [Google Scholar] [CrossRef]
- Xie, M.; Price, W.E.; Nghiem, L.D.; Elimelech, M. Effects of feed and draw solution temperature and transmembrane temperature difference on the rejection of trace organic contaminants by forward osmosis. J. Membr. Sci. 2013, 438, 57–64. [Google Scholar] [CrossRef] [Green Version]
- You, S.-J.; Wang, X.-H.; Zhong, M.; Zhong, Y.-J.; Yu, C.; Ren, N.-Q. Temperature as a factor affecting transmembrane water flux in forward osmosis: Steady-state modeling and experimental validation. Chem. Eng. J. 2012, 198, 52–60. [Google Scholar] [CrossRef]
- Lutchmiah, K.; Verliefde, A.; Roest, K.; Rietveld, L.C.; Cornelissen, E. Forward osmosis for application in wastewater treatment: A review. Water Res. 2014, 58, 179–197. [Google Scholar] [CrossRef]
- Lotfi, F.; Samali, B.; Hagare, D. Cleaning efficiency of the fouled forward osmosis membranes under different experimental conditions. J. Environ. Chem. Eng. 2018, 6, 4555–4563. [Google Scholar] [CrossRef]
- Lee, S.; Boo, C.; Elimelech, M.; Hong, S. Comparison of fouling behavior in forward osmosis (fo) and reverse osmosis (ro). J. Membr. Sci. 2010, 365, 34–39. [Google Scholar] [CrossRef]
- Zou, S.; Gu, Y.; Xiao, D.; Tang, C.Y. The role of physical and chemical parameters on forward osmosis membrane fouling during algae separation. J. Membr. Sci. 2011, 366, 356–362. [Google Scholar] [CrossRef]
- Zhang, X.; Ning, Z.; Wang, D.K.; da Costa, J.C.D. Processing municipal wastewaters by forward osmosis using cta membrane. J. Membr. Sci. 2014, 468, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Jafarinejad, S.; Park, H.; Mayton, H.; Walker, S.L.; Jiang, S.C. Concentrating ammonium in wastewater by forward osmosis using a surface modified nanofiltration membrane. Environ. Sci. Water Res. Technol. 2019, 5, 246–255. [Google Scholar] [CrossRef]
- Zou, S.; Smith, E.D.; Lin, S.; Martin, S.M.; He, Z. Mitigation of bidirectional solute flux in forward osmosis via membrane surface coating of zwitterion functionalized carbon nanotubes. Environ. Int. 2019, 131, 104970. [Google Scholar] [CrossRef]
- Wu, X.; Field, R.W.; Wu, J.J.; Zhang, K. Polyvinylpyrrolidone modified graphene oxide as a modifier for thin film composite forward osmosis membranes. J. Membr. Sci. 2017, 540, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Yun, T.; Kim, Y.-J.; Lee, S.; Hong, S.; Kim, G.I. Flux behavior and membrane fouling in pressure-assisted forward osmosis. Desalin. Water Treat. 2014, 52, 564–569. [Google Scholar] [CrossRef]
- Vinardell, S.; Astals, S.; Mata-Alvarez, J.; Dosta, J. Techno-economic analysis of combining forward osmosis-reverse osmosis and anaerobic membrane bioreactor technologies for municipal wastewater treatment and water production. Bioresour. Technol. 2020, 297, 122395. [Google Scholar] [CrossRef] [PubMed]
- Teusner, A.; Blandin, G.; Le-Clech, P. Augmenting water supply by combined desalination/water recycling methods: An economic assessment. Environ. Technol. 2017, 38, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Linares, R.V.; Li, Z.; Yangali-Quintanilla, V.; Ghaffour, N.; Amy, G.; Leiknes, T.; Vrouwenvelder, J.S. Life cycle cost of a hybrid forward osmosis–low pressure reverse osmosis system for seawater desalination and wastewater recovery. Water Res. 2016, 88, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Blandin, G.; Verliefde, A.R.; Tang, C.Y.; Le-Clech, P. Opportunities to reach economic sustainability in forward osmosis–reverse osmosis hybrids for seawater desalination. Desalination 2015, 363, 26–36. [Google Scholar] [CrossRef]
- Wu, C.-Y.; Chen, S.-S.; Zhang, D.-Z.; Kobayashi, J. Hg removal and the effects of coexisting metals in forward osmosis and membrane distillation. Water Sci. Technol. 2017, 75, 2622–2630. [Google Scholar] [CrossRef] [Green Version]
- Xie, M.; Nghiem, L.D.; Price, W.E.; Elimelech, M. A forward osmosis–membrane distillation hybrid process for direct sewer mining: System performance and limitations. Environ. Sci. Technol. 2013, 47, 13486–13493. [Google Scholar] [CrossRef] [Green Version]
- Carbonell-Alcaina, C.; Soler-Cabezas, J.L.; Bes-Piá, A.; Vincent-Vela, M.C.; Mendoza-Roca, J.A.; Pastor-Alcañiz, L.; Álvarez-Blanco, S. Integrated membrane process for the treatment and reuse of residual table olive fermentation brine and anaerobically digested sludge centrate. Membranes 2020, 10, 253. [Google Scholar] [CrossRef]
- Nghiem, L.D.; Cath, T. A scaling mitigation approach during direct contact membrane distillation. Sep. Purif. Technol. 2011, 80, 315–322. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, P.; Fu, X.; Chung, T.-S. Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (fo-md). Water Res. 2014, 52, 112–121. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, C.; Zhao, L.; Ma, W.; Liu, H.; Ma, J. Integrated forward osmosis-membrane distillation process for human urine treatment. Water Res. 2016, 91, 45–54. [Google Scholar] [CrossRef]
- Hafiz, M.A.; Hawari, A.H.; Altaee, A. A hybrid forward osmosis/reverse osmosis process for the supply of fertilizing solution from treated wastewater. J. Water Process. Eng. 2019, 32, 100975. [Google Scholar] [CrossRef]
- Yao, M.; Duan, L.; Wei, J.; Qian, F.; Hermanowicz, S.W. Carbamazepine removal from wastewater and the degradation mechanism in a submerged forward osmotic membrane bioreactor. Bioresour. Technol. 2020, 314, 123732. [Google Scholar] [CrossRef]
- Qiu, G.; Law, Y.-M.; Das, S.; Ting, Y.-P. Direct and complete phosphorus recovery from municipal wastewater using a hybrid microfiltration-forward osmosis membrane bioreactor process with seawater brine as draw solution. Environ. Sci. Technol. 2015, 49, 6156–6163. [Google Scholar] [CrossRef]
- Urgun-Demirtas, M.; Benda, P.L.; Gillenwater, P.S.; Negri, M.C.; Xiong, H.; Snyder, S.W. Achieving very low mercury levels in refinery wastewater by membrane filtration. J. Hazard. Mater. 2012, 215, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Lind, B.-B.; Ban, Z.; Bydén, S. Volume reduction and concentration of nutrients in human urine. Ecol. Eng. 2001, 16, 561–566. [Google Scholar] [CrossRef]
- Maurer, M.; Pronk, W.; Larsen, T. Treatment processes for source-separated urine. Water Res. 2006, 40, 3151–3166. [Google Scholar] [CrossRef] [PubMed]
- Tice, R.C.; Kim, Y. Energy efficient reconcentration of diluted human urine using ion exchange membranes in bioelectrochemical systems. Water Res. 2014, 64, 61–72. [Google Scholar] [CrossRef] [PubMed]
- O’Neal, J.A.; Boyer, T.H. Phosphate recovery using hybrid anion exchange: Applications to source-separated urine and combined wastewater streams. Water Res. 2013, 47, 5003–5017. [Google Scholar] [CrossRef]
- Zhang, J.; She, Q.; Chang, V.W.; Tang, C.Y.; Webster, R.D. Mining nutrients (n, k, p) from urban source-separated urine by forward osmosis dewatering. Environ. Sci. Technol. 2014, 48, 3386–3394. [Google Scholar] [CrossRef]
- Balkema, A.J.; Preisig, H.A.; Otterpohl, R.; Lambert, F.J. Indicators for the sustainability assessment of wastewater treatment systems. Urban. Water 2002, 4, 153–161. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, L.; Jia, Q. Nutrient recovery of source-separated urine via forward osmosis and a pilot-scale resource-oriented sanitation system. Desalin. Water Treat. 2017, 91, 252–259. [Google Scholar] [CrossRef] [Green Version]
- Giagnorio, M.; Ricceri, F.; Tagliabue, M.; Zaninetta, L.; Tiraferri, A. Hybrid forward osmosis–nanofiltration for wastewater reuse: System design. Membranes 2019, 9, 61. [Google Scholar] [CrossRef] [Green Version]
- Jang, N.-J.; Yeo, Y.-H.; Hwang, M.-H.; Vigneswaran, S.; Cho, J.-W.; Kim, I.S. The effect of air bubbles from dissolved gases on the membrane fouling in the hollow fiber submerged membrane bio-reactor (smbr). Environ. Eng. Res. 2006, 11, 91–98. [Google Scholar] [CrossRef]
- Ferrari, F.; Balcazar, J.L.; Rodriguez-Roda, I.; Pijuan, M. Anaerobic membrane bioreactor for biogas production from concentrated sewage produced during sewer mining. Sci. Total Environ. 2019, 670, 993–1000. [Google Scholar] [CrossRef]
- Aftab, B.; Khan, S.J.; Maqbool, T.; Hankins, N.P. Heavy metals removal by osmotic membrane bioreactor (ombr) and their effect on sludge properties. Desalination 2017, 403, 117–127. [Google Scholar] [CrossRef]
- Huang, L.; Lee, D.-J. Membrane bioreactor: A mini review on recent r&d works. Bioresour. Technol. 2015, 194, 383–388. [Google Scholar]
- Praveen, P.; Loh, K.-C. Osmotic membrane bioreactor for phenol biodegradation under continuous operation. J. Hazard. Mater. 2016, 305, 115–122. [Google Scholar] [CrossRef]
- Qiu, G.; Ting, Y.-P. Direct phosphorus recovery from municipal wastewater via osmotic membrane bioreactor (ombr) for wastewater treatment. Bioresour. Technol. 2014, 170, 221–229. [Google Scholar] [CrossRef]
- Xiao, D.; Tang, C.Y.; Zhang, J.; Lay, W.C.; Wang, R.; Fane, A.G. Modeling salt accumulation in osmotic membrane bioreactors: Implications for fo membrane selection and system operation. J. Membr. Sci. 2011, 366, 314–324. [Google Scholar] [CrossRef]
- Qiu, G.; Ting, Y.-P. Osmotic membrane bioreactor for wastewater treatment and the effect of salt accumulation on system performance and microbial community dynamics. Bioresour. Technol. 2013, 150, 287–297. [Google Scholar] [CrossRef]
- Kim, S. Scale-up of osmotic membrane bioreactors by modeling salt accumulation and draw solution dilution using hollow-fiber membrane characteristics and operation conditions. Bioresour. Technol. 2014, 165, 88–95. [Google Scholar] [CrossRef]
- Ab Hamid, N.H.; Wang, D.K.; Smart, S.; Ye, L. Achieving stable operation and shortcut nitrogen removal in a long-term operated aerobic forward osmosis membrane bioreactor (fombr) for treating municipal wastewater. Chemosphere 2020, 260, 127581. [Google Scholar] [CrossRef]
- Chen, L.; Gu, Y.; Cao, C.; Zhang, J.; Ng, J.-W.; Tang, C. Performance of a submerged anaerobic membrane bioreactor with forward osmosis membrane for low-strength wastewater treatment. Water Res. 2014, 50, 114–123. [Google Scholar] [CrossRef]
- Gao, Y.; Fang, Z.; Chen, C.; Zhu, X.; Liang, P.; Qiu, Y.; Zhang, X.; Huang, X. Evaluating the performance of inorganic draw solution concentrations in an anaerobic forward osmosis membrane bioreactor for real municipal sewage treatment. Bioresour. Technol. 2020, 307, 123254. [Google Scholar] [CrossRef]
- Luo, W.; Hai, F.I.; Price, W.E.; Guo, W.; Ngo, H.H.; Yamamoto, K.; Nghiem, L.D. Phosphorus and water recovery by a novel osmotic membrane bioreactor–reverse osmosis system. Bioresour. Technol. 2016, 200, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Loong, W.L.C.; Chou, S.; Tang, C.; Wang, R.; Fane, A.G. Membrane biofouling and scaling in forward osmosis membrane bioreactor. J. Membr. Sci. 2012, 403, 8–14. [Google Scholar] [CrossRef]
- Gu, Y.; Chen, L.; Ng, J.-W.; Lee, C.; Chang, V.W.-C.; Tang, C.Y. Development of anaerobic osmotic membrane bioreactor for low-strength wastewater treatment at mesophilic condition. J. Membr. Sci. 2015, 490, 197–208. [Google Scholar] [CrossRef]
- Lay, W.C.; Liu, Y.; Fane, A.G. Impacts of salinity on the performance of high retention membrane bioreactors for water reclamation: A review. Water Res. 2010, 44, 21–40. [Google Scholar] [CrossRef]
- Wang, K.Y.; Ong, R.C.; Chung, T.-S. Double-skinned forward osmosis membranes for reducing internal concentration polarization within the porous sublayer. Ind. Eng. Chem. Res. 2010, 49, 4824–4831. [Google Scholar] [CrossRef]
- Holloway, R.W.; Regnery, J.; Nghiem, L.D.; Cath, T.Y. Removal of trace organic chemicals and performance of a novel hybrid ultrafiltration-osmotic membrane bioreactor. Environ. Sci. Technol. 2014, 48, 10859–10868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luján-Facundo, M.J.; Fernández-Navarro, J.; Alonso-Molina, J.L.; Amorós-Muñoz, I.; Moreno, Y.; Mendoza-Roca, J.A.; Pastor-Alcañiz, L. The role of salinity on the changes of the biomass characteristics and on the performance of an ombr treating tannery wastewater. Water Res. 2018, 142, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Park, B.; Shon, H.K.; Kim, S. Modeling full-scale osmotic membrane bioreactor systems with high sludge retention and low salt concentration factor for wastewater reclamation. Bioresour. Technol. 2015, 190, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Hai, F.I.; Kang, J.; Price, W.E.; Nghiem, L.D.; Elimelech, M. The role of forward osmosis and microfiltration in an integrated osmotic-microfiltration membrane bioreactor system. Chemosphere 2015, 136, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yuan, B.; Chen, Y.; Li, X.; Ren, Y. Integration of micro-filtration into osmotic membrane bioreactors to prevent salinity build-up. Bioresour. Technol. 2014, 167, 116–123. [Google Scholar] [CrossRef]
- Zou, S.; Yuan, H.; Childress, A.; He, Z. Energy Consumption by Recirculation: A Missing Parameter When Evaluating forward Osmosis. Environ. Sci. Technol. 2016, 50, 6827–6829. [Google Scholar] [CrossRef] [Green Version]
- Cath, T.Y.; Gormly, S.; Beaudry, E.G.; Flynn, M.T.; Adams, V.D.; Childress, A.E. Membrane contactor processes for wastewater reclamation in space: Part i. Direct osmotic concentration as pretreatment for reverse osmosis. J. Membr. Sci. 2005, 257, 85–98. [Google Scholar] [CrossRef]
- McGinnis, R.L.; Elimelech, M. Energy requirements of ammonia–carbon dioxide forward osmosis desalination. Desalination 2007, 207, 370–382. [Google Scholar] [CrossRef]
- Xiang, X.; Zou, S.; He, Z. Energy consumption of water recovery from wastewater in a submerged forward osmosis system using commercial liquid fertilizer as a draw solute. Sep. Purif. Technol. 2017, 174, 432–438. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Li, Y.; Pan, S.; Tu, Q.; Zhu, H. Performance of a forward osmotic membrane bioreactor for anaerobic digestion of waste sludge with increasing solid concentration. J. Environ. Manag. 2019, 246, 239–246. [Google Scholar] [CrossRef]
- Hu, Y.-y.; Wu, J.; Li, H.-z.; Poncin, S.; Wang, K.-j.; Zuo, J.-e. Novel insight into high solid anaerobic digestion of swine manure after thermal treatment: Kinetics and microbial community properties. J. Environ. Manag. 2019, 235, 169–177. [Google Scholar] [CrossRef]
- Castelló, E.; Braga, L.; Fuentes, L.; Etchebehere, C. Possible causes for the instability in the h2 production from cheese whey in a cstr. Int. J. Hydrog. Energy 2018, 43, 2654–2665. [Google Scholar] [CrossRef]
- Gao, Y.; Fang, Z.; Liang, P.; Zhang, X.; Qiu, Y.; Kimura, K.; Huang, X. Anaerobic digestion performance of concentrated municipal sewage by forward osmosis membrane: Focus on the impact of salt and ammonia nitrogen. Bioresour. Technol. 2019, 276, 204–210. [Google Scholar] [CrossRef]
- Lau, W.-J.; Ismail, A. Polymeric nanofiltration membranes for textile dye wastewater treatment: Preparation, performance evaluation, transport modelling, and fouling control—A review. Desalination 2009, 245, 321–348. [Google Scholar] [CrossRef]
- Verma, A.K.; Dash, R.R.; Bhunia, P. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J. Environ. Manag. 2012, 93, 154–168. [Google Scholar] [CrossRef]
- Chen, T.; Gao, B.; Yue, Q. Effect of dosing method and ph on color removal performance and floc aggregation of polyferric chloride–polyamine dual-coagulant in synthetic dyeing wastewater treatment. Colloids Surf. Physicochem. Eng. Aspects 2010, 355, 121–129. [Google Scholar] [CrossRef]
- Liang, C.-Z.; Sun, S.-P.; Li, F.-Y.; Ong, Y.-K.; Chung, T.-S. Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration. J. Membr. Sci. 2014, 469, 306–315. [Google Scholar] [CrossRef]
- Han, G.; Liang, C.-Z.; Chung, T.-S.; Weber, M.; Staudt, C.; Maletzko, C. Combination of forward osmosis (fo) process with coagulation/flocculation (cf) for potential treatment of textile wastewater. Water Res. 2016, 91, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Iskander, S.M.; Novak, J.T.; He, Z. Reduction of reagent requirements and sludge generation in fenton’s oxidation of landfill leachate by synergistically incorporating forward osmosis and humic acid recovery. Water Res. 2019, 151, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Englehardt, J.D. Treatment of landfill leachate by the fenton process. Water Res. 2006, 40, 3683–3694. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wei, X.; Xia, P.; Liu, H.; Qu, J. Removal and transformation characterization of refractory components from biologically treated landfill leachate by fe2+/naclo and fenton oxidation. Sep. Purif. Technol. 2013, 116, 107–113. [Google Scholar] [CrossRef]
- Hermosilla, D.; Cortijo, M.; Huang, C.P. Optimizing the treatment of landfill leachate by conventional fenton and photo-fenton processes. Sci. Total Environ. 2009, 407, 3473–3481. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Jin, Y.; Nie, Y. Application of alkaline treatment for sludge decrement and humic acid recovery. Bioresour. Technol. 2009, 100, 6278–6283. [Google Scholar] [CrossRef] [PubMed]
- Morozesk, M.; Bonomo, M.M.; da Costa Souza, I.; Rocha, L.D.; Duarte, I.D.; Martins, I.O.; Dobbss, L.B.; Carneiro, M.T.W.D.; Fernandes, M.N.; Matsumoto, S.T. Effects of humic acids from landfill leachate on plants: An integrated approach using chemical, biochemical and cytogenetic analysis. Chemosphere 2017, 184, 309–317. [Google Scholar] [CrossRef]
- Nguyen, N.C.; Nguyen, H.T.; Chen, S.-S.; Nguyen, N.T.; Li, C.-W. Application of forward osmosis (fo) under ultrasonication on sludge thickening of waste activated sludge. Water Sci. Technol. 2015, 72, 1301–1307. [Google Scholar] [CrossRef]
- Volpin, F.; Chekli, L.; Phuntsho, S.; Cho, J.; Ghaffour, N.; Vrouwenvelder, J.S.; Shon, H.K. Simultaneous phosphorous and nitrogen recovery from source-separated urine: A novel application for fertiliser drawn forward osmosis. Chemosphere 2018, 203, 482–489. [Google Scholar] [CrossRef] [Green Version]
- He, S.-B.; Xue, G.; Wang, B.-Z. Factors affecting simultaneous nitrification and de-nitrification (snd) and its kinetics model in membrane bioreactor. J. Hazard. Mater. 2009, 168, 704–710. [Google Scholar] [CrossRef]
Membrane | Feed Solution | Draw Solution | Membrane Area | Temperature (°C) | Flow Rate/Velocity | Operation Time | Water Flux (LMH) | Filtration Performance | Ref. |
---|---|---|---|---|---|---|---|---|---|
CTA-FO | Municipal wastewater | 0.5–4.5 mol/L NaCl | 124 cm2 | 20 | 375 L/h | 6–7 h | 4.3–12.5 | - | [3] |
CTA-FO | Municipal wastewater | 0.5 mol/L NaCl | 0.3 m2 | 18–22 | 20 cm/s | 51 days | ~5.0 | Rejection: COD (99.8%), TP (99.7%), NH4+ (48.1%), and TN (67.8%) | [4] |
CTA-FO | THP-AD sludge filtrate 1 | 2 mol/L NaCl | 195 cm2 | 25 | 90 L/h | 20 h | 1.0–6.0 | Rejection: Total organic carbon (TOC, 93.0%), TN (92.8%), NH4+-N (92.5%), TP (96.5%), Fe (99.0%), Mn (99.0%), Ca (95.7%), and Mg (97.1%) | [35] |
Aquaporin embedded TFC-FO | Molasses distillery wastewater | 3 mol/L MgCl2·6H2O | 43 cm2 | - | 108 L/h | 24 h | 2.7 | Rejection: COD (85.2%), melanoidins (97.3%), and antioxidant activity (94.2%)Water recovery: 65% | [36] |
CTA-FO | Simulated radioactive wastewater | 2 mol/L NaCl | 40.5 cm2 | 25 ± 2 | 2–11 cm/s | 3 h | 15.3 (ALFS) and 19.3 (ALDS) | Ion flux in ALFS mode: Co (1.54 mg/m2h), Sr (10.22 mg/m2h), and Cs (15.63 mg/m2h) | [23] |
CTA-FO | OSPW 2 | 4 mol/L NH4HCO3 | 64 cm2 | 21± 1 | 1.26 L/h | 28 h | 68.1 (Max) | Rejection: F−, NO2−,Br−, Al, Ca, Fe, Sr, Mo and Ba (>70%) Water recovery: 85% | [37] |
CTA-FO | ADSC 3 | Industrial effluent 4 | 42 cm2 | - | 30 L/h | 70 h | 2.5–4.0 | Concentration factor: NH4+-N (1.42) | [38] |
TFC-FO | Municipal wastewater | Synthetic seawater concentrate | 20.02 cm2 | 35 | 16.8 L/h | 24 h | ~15.5–18.5 | Concentration factor: COD (2.5), NH4+-N (1.5), TN (1.75) and TP (3.4) | [34] |
Wastewater | COD (mg/L) | TP (mg/L) | TN (mg/L) | NH4+-N (mg/L) |
---|---|---|---|---|
Raw municipal wastewater | 165–229 | 1.69–2.74 | 30.5–44.8 | 24.6–37.5 |
Concentrated wastewater after FO process | 438–563 | 5.92–9.37 | 55.4–83.5 | 43.2–63.0 |
Integrated System | Feed Solution | Draw Solution | Membrane Area | Temperature (°C) | Cross-Flow Rate/Velocity | Operation Time of FO | Water Flux (LMH) | Filtration Performance | Ref. |
---|---|---|---|---|---|---|---|---|---|
FO-MD | Simulated wastewater containing HgCl2, Pb(NO3)2, and CdCl2 | 1 mol/L NaCl | 42 cm2 (FO) and 100 cm2 (MD) | ~20 (FO) and ~55 (MD) | 6 L/h (FO) and 90 L/h (MD) | 5 h | ~6.1 | Hg rejection: >97 % (FO) and ~100% (FO-MD) | [60] |
FO-MD | Human urine | 2 mol/L NaCl | 29.5 cm2 (FO) and 29.5 cm2 (MD) | 25 (FO) and 50 (MD) | 12 L/h | 8 h | ~5.5 | Urine concentration factor: 1.116 Water production rate: 10.385% | [65] |
FO-RO | Treated sewage effluent (TSE) after a membrane bioreactor (MBR) unit | Engineered fertilising solutions (EFS) 1 | 42 cm2 (FO) and 42 cm2 (RO) | - | 120 L/h | 3 h | ~13 | Rejection: TP (99%) and NH4+ (95%) | [66] |
UF-FO-NF | ADSC 2 | Effluent from a table olive fermentation process (FTOP) | 0.025 m2 (UF), 0.5 m2 (FO) and 0.0047 m2 (NF) | 25 | 2.2 m/s (UF and NF) 42 and 250 L/h for the FO draw and feed solution respectively | 10 h | 4.0–5.5 | Rejection: COD (88.7%), TN (58.1%), TP (100%) and colour (99.9%) | [62] |
OMBR | Carbamazepine solution (50 μg/L, 100 μg/L, and 200 μg/L) | 1 mol/L NaCl | 50 cm2 | 26 ± 0.5 | 10 cm/s for draw solution | 80 days | 1.9–11.9 | Rejection: COD (94.77–97.45%), NH4+-N (93.56–99.28%), and CBZ (88.20–94.45%) | [67] |
MF-OMBR | Activated sludge | Seawater brine from desalination plant | 0.072 m2 | ~20 | - | 98 days | 7–9 | Rejection: TOC (90.0%), NH4+-N (99.0%), and TP (>90.0%) | [68] |
Wastewater | TOC (mg/L) | TN (mg/L) | NH4+-N (mg/L) | TP (mg/L) |
---|---|---|---|---|
Raw human urine | 5298 ± 792 | 7523 ± 1097 | 1125 ± 147 | 448 ± 56 |
Product water by FO-MD | 2.25 ± 0.04 | 0.2125 ± 0.0089 | 0.061 ± 0.006 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Lau, C.H.; Pramanik, B.K.; Zhang, J.; Xie, Z. State-of-the-Art and Opportunities for Forward Osmosis in Sewage Concentration and Wastewater Treatment. Membranes 2021, 11, 305. https://doi.org/10.3390/membranes11050305
Wu X, Lau CH, Pramanik BK, Zhang J, Xie Z. State-of-the-Art and Opportunities for Forward Osmosis in Sewage Concentration and Wastewater Treatment. Membranes. 2021; 11(5):305. https://doi.org/10.3390/membranes11050305
Chicago/Turabian StyleWu, Xing, Cher Hon Lau, Biplob Kumar Pramanik, Jianhua Zhang, and Zongli Xie. 2021. "State-of-the-Art and Opportunities for Forward Osmosis in Sewage Concentration and Wastewater Treatment" Membranes 11, no. 5: 305. https://doi.org/10.3390/membranes11050305
APA StyleWu, X., Lau, C. H., Pramanik, B. K., Zhang, J., & Xie, Z. (2021). State-of-the-Art and Opportunities for Forward Osmosis in Sewage Concentration and Wastewater Treatment. Membranes, 11(5), 305. https://doi.org/10.3390/membranes11050305