Preparation of Perfluorosulfonated Ionomer Nanofibers by Solution Blow Spinning
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Chemicals
2.2. Solution Blow Spinning
2.3. Characterization of Spinning Solutions
2.4. Characterization of NFs
3. Results and Discussion
3.1. Characterization of Spinning Solutions
3.2. Preparation of NFs
3.3. Properties and Surface/Internal Structures of NFs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grot, W. Fluorinated Ionomers, 2nd ed.; William Andrew: Norwich, NY, USA, 2011; ISBN 13-978-1437744576. [Google Scholar]
- Eisenberg, A.; Yeager, H.L. (Eds.) Perfluorinated Ionomer Membranes; ACS Sympoium Series; American Chemical Society: Washingtion, DC, USA, 1982; Volume 180. [Google Scholar] [CrossRef] [Green Version]
- Sata, T. Ion Exchange Membranes: Preparation, Characterization, Modification, and Application; Royal Society of Chemistry: London, UK, 2004; pp. 35–88. [Google Scholar] [CrossRef]
- Matsumoto, H.; Tanioka, A.; Murata, T.; Higa, M.; Horiuchi, K. Effect of proton on potassium ion in countertransport across Fine porous charged membranes. J. Phys. Chem. B 1998, 102, 5011–5016. [Google Scholar] [CrossRef]
- Gierke, T.D.; Munn, G.E.; Wilson, F.C. The Morphology in Nafion Perfluorinated Membrane Products, as Determined by Wide- and Small- Angle X-Ray Studies. J. Polym. Sci. Polym. Phys. Ed. 1981, 19, 1687–1704. [Google Scholar] [CrossRef]
- Kusoglu, A.; Weber, A.Z. New insights into perfluorinated sulfonic-acid ionomers. Chem. Rev. 2017, 117, 987–1104. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Rohr, K.; Chen, Q. Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nat. Mater. 2008, 7, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, H.; Tanioka, A. Functionality in electrospun nanofibrous membranes based on fiber’s size, surface area, and molecular orientation. Membranes 2011, 1, 249–264. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Tanioka, A.; Matsumoto, H. Nanofibers as novel platform for high-functional ion exchangers. J. Chem. Technol. Biotechnol. 2018, 93, 2791–2803. [Google Scholar] [CrossRef]
- Dong, B.; Gwee, L.; Cruz, D.S.; Winey, K.I.; Elabd, Y.A. Super proton conductive high-purity Nafion. Nano Lett. 2010, 10, 3785–3790. [Google Scholar] [CrossRef]
- Wang, J.; Li, P.; Zhang, Y.; Liu, Y.; Wu, W.; Liu, J. Porous Nafion nanofiber composite membrane with vertical pathways for efficient through-plane proton conduction. J. Memb. Sci. 2019, 585, 157–165. [Google Scholar] [CrossRef]
- Loppinet, B.; Ioniques, C.; Cedex, G.; Williams, C.E.; Batiment, D.; Paris-sud, C.U.V.; Cedex, O. Small-angle scattering study of perfluorosulfonated ionomer solutions. J. Phys. Chem. B 1997, 101, 1884–1892. [Google Scholar] [CrossRef]
- Gupit, C.I.; Li, X.; Maekawa, R.; Hasegawa, N.; Iwase, H.; Takata, S.; Shibayama, M. Nanostructures and viscosities of Nafion dispersions in water/ethanol from dilute to concentrated regimes. Macromolecules 2020, 53, 1464–1473. [Google Scholar] [CrossRef]
- Matsumoto, H.; Tanioka, A. Surface electrochemistry of electrospun nanofibers. In Electrical Phenomena at Interfaces and Biointerfaces: Fundamentals and Applications in Nano-, Bio-, and Environmental Sciences; Ohshima, H., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 469–480. [Google Scholar]
- Ballengee, J.B.; Pintauro, P.N. Morphological Control of Electrospun Nafion Nanofiber Mats. J. Electrochem. Soc. 2011, 158, B568–B572. [Google Scholar] [CrossRef]
- Hwang, M.; Karenson, M.O.; Elabd, Y.A. High production rate of high purity, high fidelity Nafion nanofibers via needleless electrospinning. ACS Appl. Polym. Mater. 2019, 1, 2731–2740. [Google Scholar] [CrossRef]
- Chen, H.; Snyder, J.D.; Elabd, Y.A. Electrospinning and solution properties of Nafion and poly(acrylic acid). Macromolecules 2008, 41, 128–135. [Google Scholar] [CrossRef]
- Sun, Y.; Cui, L.; Gong, J.; Zhang, J.; Xiang, Y.; Lu, S. Design of a catalytic layer with hierarchical proton transport structure: The role of Nafion nanofiber. ACS Sustain. Chem. Eng. 2019, 7, 2955–2963. [Google Scholar] [CrossRef]
- Huang, Y.; Song, J.; Yang, C.; Long, Y.; Wu, H. Scalable manufacturing and applications of nanofibers. Mater. Today 2019, 28, 98–113. [Google Scholar] [CrossRef]
- Medeiros, E.S.; Glenn, G.M.; Klamczynski, A.P.; Orts, W.J.; Mattoso, L.H.C. Solution blow spinning: A new method to produce micro-and nanofibers from polymer solutions. J. Appl. Polym. Sci. 2009, 113, 2322–2330. [Google Scholar] [CrossRef]
- Song, J.; Li, Z.; Wu, H. Blowspinning: A New Choice for Nanofibers. ACS Appl. Mater. Interfaces 2020, 12, 33447–33464. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, J.; Su, Y.; Wang, H.; Wang, X.-X.; Huang, L.-P.; Yu, M.; Ramakrishna, S.; Long, Y.-Z. Recent progress and challenges in solution blow spinning. Mater. Horiz. 2021, 8, 426–446. [Google Scholar] [CrossRef]
- Aiba, M.; Higashihara, T.; Ashizawa, M.; Otsuka, H.; Matsumoto, H. Triggered structural control of dynamic covalent aromatic polyamides: Effects of thermal reorganization behavior in solution and solid states. Macromolecules 2016, 49, 2153–2161. [Google Scholar] [CrossRef]
- Seino, F.; Konosu, Y.; Ashizawa, M.; Kakihana, Y.; Higa, M.; Matsumoto, H. Polyelectrolyte composite membranes containing electrospun ion-exchange nanofibers: Effect of nanofiber surface charges on ionic transport. Langmuir 2018, 34, 13035–13040. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Takarada, W.; Ashizawa, M.; Yamamoto, T.; Matsumoto, H. Effect of hydrogen–deuterium exchange in amide linkages on molecular interactions in electrospun polyamide nanofibers. Polymer. under revision.
- McKee, M.G.; Wilkes, G.L.; Colby, R.H.; Long, T.E. Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters. Macromolecules 2004, 37, 1760–1767. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Matsunaga, T.; Amemiya, K.; Ohira, A.; Hasegawa, N.; Shinohara, K.; Ando, M.; Yoshida, T. Dispersion of rod-like particles of Nafion in salt-free water/1-propanol and water/ethanol solutions. J. Phys. Chem. B 2014, 118, 14922–14928. [Google Scholar] [CrossRef]
- Devanand, K.; Seiser, J.C. Polyethylene oxide does necessarily aggregate in water. Nature 1990, 343, 739–741. [Google Scholar] [CrossRef]
- Cirkel, P.A.; Okada, T. Equilibrium Aggregation in Perfluorinated Ionomer Solutions. Macromolecules 1999, 32, 531–533. [Google Scholar] [CrossRef]
- Chen, H.L.; Ko, C.C.; Lin, T.L. Self-assembly in the bulk complexes of poly(ethylene-oxide) with amphiphilic dodecylbenzenesulfonic acid. Langmuir 2002, 18, 5619–5623. [Google Scholar] [CrossRef]
- Kreuer, K. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J. Membr. Sci. 2001, 185, 29–39. [Google Scholar] [CrossRef]
- Kusoglu, A.; Dursch, T.J.; Weber, A.Z. Nanostructure/swelling relationships of bulk and thin-film PFSA ionomers. Adv. Funct. Mater. 2016, 26, 4961–4975. [Google Scholar] [CrossRef] [Green Version]
- Benkoski, J.J.; Fredrickson, G.H.; Kramer, E.J. Effects of composition drift on the effectiveness of random copolymer reinforcement at polymer–polymer interfaces. J. Polym. Sci. Part B Polym. Phys. 2001, 39, 2363–2377. [Google Scholar] [CrossRef]
- Dea, J.R.O.; Buratto, S.K. Phase imaging of proton exchange membranes under attractive and repulsive tip-sample interaction forces. J. Phys. Chem. B 2011, 115, 1014–1020. [Google Scholar] [CrossRef]
- Bass, M.; Berman, A.; Singh, A.; Konovalov, O.; Freger, V. Surface-Induced Micelle Orientation in Nafion Films. Macromolecules 2011, 44, 2893–2899. [Google Scholar] [CrossRef]
Samples | IEC [mmol g−1] | ww* [%] |
---|---|---|
Nafion/PEO (99:1) NF | 1.0 | 7.5 |
As-cast Nafion film | 1.1 | 7.8 |
Samples | Crystalline Peak (°) | Amorphous Peak | Xc a (%) | τ b (nm) | |
---|---|---|---|---|---|
#1 (°) | #2 (°) | ||||
Nafion/PEO (99:1) NF | 17.5 | 16.1 | 38.8 | 18.5 | 5.46 |
Nafion/PEO (99:1) film | 17.4 | 16.1 | 39.0 | 13.4 | 5.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shinkawa, M.; Motai, K.; Eguchi, K.; Takarada, W.; Ashizawa, M.; Masunaga, H.; Ohta, N.; Hayamizu, Y.; Matsumoto, H. Preparation of Perfluorosulfonated Ionomer Nanofibers by Solution Blow Spinning. Membranes 2021, 11, 389. https://doi.org/10.3390/membranes11060389
Shinkawa M, Motai K, Eguchi K, Takarada W, Ashizawa M, Masunaga H, Ohta N, Hayamizu Y, Matsumoto H. Preparation of Perfluorosulfonated Ionomer Nanofibers by Solution Blow Spinning. Membranes. 2021; 11(6):389. https://doi.org/10.3390/membranes11060389
Chicago/Turabian StyleShinkawa, Masahiro, Kazunori Motai, Keita Eguchi, Wataru Takarada, Minoru Ashizawa, Hiroyasu Masunaga, Noboru Ohta, Yuhei Hayamizu, and Hidetoshi Matsumoto. 2021. "Preparation of Perfluorosulfonated Ionomer Nanofibers by Solution Blow Spinning" Membranes 11, no. 6: 389. https://doi.org/10.3390/membranes11060389
APA StyleShinkawa, M., Motai, K., Eguchi, K., Takarada, W., Ashizawa, M., Masunaga, H., Ohta, N., Hayamizu, Y., & Matsumoto, H. (2021). Preparation of Perfluorosulfonated Ionomer Nanofibers by Solution Blow Spinning. Membranes, 11(6), 389. https://doi.org/10.3390/membranes11060389