Laboratory Study of the Ultraviolet Radiation Effect on an HDPE Geomembrane
Abstract
:1. Introduction
2. Materials and Methods
2.1. HDPE Geomembrane and Accelerated Weathering Tests
2.2. Melt Flow Index (MFI) Test
2.3. Tensile Properties
2.4. Oxidative-Induction Time (OIT) Tests
2.5. Differential Scanning Calorimetry (DSC) Analysis
2.6. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
3. Results and Discussion
3.1. Melt Flow Index (MFI) Test Results
3.2. Tensile Properties
3.3. Oxidative-Induction Time (OIT) Test Results
3.3.1. Standard Oxidative-Induction Time (Std. OIT) Test Results
3.3.2. High-Pressure Oxidative-Induction Time (HP OIT) Test Results
3.4. Differential Scanning Calorimetry (DSC) Analysis
3.5. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Koerner, R.M. Designing with Geosynthetics, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Rollin, A.R.; Rigo, J.M. Geomembranes—Identification and Performance Testing, 1st ed.; Chapman and Hall: London, UK, 1991. [Google Scholar]
- Vertematti, J.C. Manual Brasileiro de Geossintéticos, 2nd ed.; Blücher: São Paulo, Brazil, 2015. [Google Scholar]
- Rowe, R.K.; Sangam, H.P. Durability of HDPE Geomembranes. Geotext Geomembr. 2002, 20, 77–95. [Google Scholar] [CrossRef]
- Koerner, G.R.; Hsuan, Y.G.; Koerner, R.M. The durability of geosynthetics. In Geosynthetics in Civil Engineering; Sarsby, R.W., Ed.; Woodhead Published Limited: Cambridge, UK, 2007; pp. 36–65. [Google Scholar]
- Kelen, T. Polymer Degradation, 1st ed.; Van Nostrand Reinhold Co.: New York, NY, USA, 1983. [Google Scholar]
- Lavoie, F.L.; Kobelnik, M.; Valentin, C.A.; da Silva, J.L. Durability of HDPE geomembranes: An overview. Quim. Nova 2020, 43, 656–667. [Google Scholar] [CrossRef]
- Van Santvoort, G. Geotextiles and Geomembranes in Civil. Engineering, 1st ed.; A.A. Balkema: Rotterdam, The Netherlands, 1994. [Google Scholar]
- Sharma, H.D.; Lewis, S.P. Waste Containment System, Waste Stabilization and Landfills: Design and Evaluation, 1st ed.; Wiley: New York, NY, USA, 1994. [Google Scholar]
- Suits, L.D.; Hsuan, Y.G. Assessing the photo-degradation of geosynthetics by outdoor exposure and laboratory weatherometer. Geotext. Geomembr. 2003, 21, 111–122. [Google Scholar] [CrossRef]
- Koerner, R.M.; Hsuan, Y.G.; Koerner, G.R. Freshwater and geosynthetics; A perfect marriage. In Proceedings of the 1st Pan American Conference on Geosynthetics, Cancun, Mexico, 2–5 March 2008. [Google Scholar]
- Sahu, A.K.; Sudhakar, K.; Sarviya, R.M. Influence of U.V light on the thermal properties of HDPE/Carbon black composites. Case Stud. Therm. Eng. 2019, 15, 100534. [Google Scholar] [CrossRef]
- Jiang, T.; Qi, Y.; Wu, Y.; Zhang, J. Application of antioxidant and ultraviolet absorber into HDPE: Enhanced resistance to UV irradiation. e-Polymers 2019, 19, 499–510. [Google Scholar] [CrossRef]
- Reis, R.K.; Barroso, M.; Lopes, M.G. Evolução de cinco geomembranas expostas a condições climáticas em Portugal durante 12 anos. Geotecnia 2017, 141, 41–58. [Google Scholar] [CrossRef]
- Martínez-Romo, A.; González-Mota, R.; Soto-Bernal, J.J.; Rosales-Candelas, I. Investigating the Degradability of HDPE, LDPE, PE-BIO, and PE-OXO Films under UV-B Radiation. J. Spectrosc. 2015, 586514. [Google Scholar] [CrossRef] [Green Version]
- Mendes, L.C.; Rufino, E.S.; de Paula, F.O.C.; Torres, A.C., Jr. Mechanical, thermal and microstructure evaluation of HDPE after weathering in Rio de Janeiro City. Polym. Degrad. Stab. 2003, 79, 371–383. [Google Scholar] [CrossRef]
- Qureshi, F.S.; Amin, M.B.; Maadha, A.G.; Hamid, S.H. Weather-induced degradation of linear low-density polyethylene: Mechanical properties. Polym.-Plast. Technol. Eng. 1989, 28, 649–662. [Google Scholar] [CrossRef]
- Rowe, R.K.; Ewais, A.M.R. Ageing of exposed geomembranes at locations with different climatological conditions. Can. Geotech. J. 2015, 52, 326–343. [Google Scholar] [CrossRef] [Green Version]
- Lavoie, F.L.; Valentin, C.A.; Kobelnik, M.; Lins da Silva, J.; Lopes, M.L. Study of an exhumed HDPE geomembrane used in an industrial water pond: Physical and thermoanalytical characterisations. Results Mater. 2020, 8, 100131. [Google Scholar] [CrossRef]
- Lodi, P.C.; Bueno, B.S.; Vilar, O.M. The effects of weathering exposure on the physical, mechanical, and thermal properties of high-density polyethylene and poly (vinyl chloride). Mater. Res. 2013, 16, 1331–1335. [Google Scholar] [CrossRef] [Green Version]
- ASTM (American Society for Testing and Materials). ASTM D5199 Standard Test Methods for Measuring the Nominal Thickness of Geosynthetics; ASTM: West Conshohocken, PA, USA, 2019; p. 4. [Google Scholar]
- ASTM (American Society for Testing and Materials). ASTM D792 Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement; ASTM: West Conshohocken, PA, USA, 2020; p. 6. [Google Scholar]
- ASTM (American Society for Testing and Materials). ASTM D1238 Standard Test Methods for Melt Flow Rates of Thermoplastics by Extrusion Plastometer; ASTM: West Conshohocken, PA, USA, 2020; p. 17. [Google Scholar]
- ASTM (American Society for Testing and Materials). ASTM D4218 Standard Test Method for Determination of Carbon Black Content in Polyethylene Compounds by the Muffle-Furnace Technique; ASTM: West Conshohocken, PA, USA, 2020; p. 4. [Google Scholar]
- ASTM (American Society for Testing and Materials). ASTM D5596 Standard Test Method for Microscopic Evaluation of the Dispersion of Carbon Black in Polyolefin Geosynthetics; ASTM: West Conshohocken, PA, USA, 2016; p. 3. [Google Scholar]
- ASTM (American Society for Testing and Materials). ASTM D6693 Standard Test Methods for Determining Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes; ASTM: West Conshohocken, PA, USA, 2020; p. 6. [Google Scholar]
- ASTM (American Society for Testing and Materials). ASTM D1004 Standard Test Methods for Tear Resistance (Graves Tear) of Plastic Film and Sheeting; ASTM: West Conshohocken, PA, USA, 2021; p. 5. [Google Scholar]
- ASTM (American Society for Testing and Materials). ASTM D4833 Standard Test Method for Index Puncture Resistance of Geomembranes and Related Products; ASTM: West Conshohocken, PA, USA, 2020; p. 4. [Google Scholar]
- ASTM (American Society for Testing and Materials). ASTM D5397 Standard Test Method for Evaluation of Stress Crack Resistance of Polyolefin Geomembranes Using Notched Constant Tensile Load Test.; ASTM: West Conshohocken, PA, USA, 2020; p. 7. [Google Scholar]
- ASTM (American Society for Testing and Materials). ASTM D3895 Standard Test Method for Oxidative-Induction Time of Polyolefins by Differential Scanning Calorimetry; ASTM: West Conshohocken, PA, USA, 2019; p. 7. [Google Scholar]
- ASTM (American Society for Testing and Materials). ASTM D5885 Standard Test Method for Oxidative Induction Time of Polyolefin Geosynthetics by High-Pressure Differential Scanning Calorimetry; ASTM: West Conshohocken, PA, USA, 2020; p. 7. [Google Scholar]
- GRI (Geosynthetic Research Institute). GRI-GM13 Test Methods, Test Properties and Testing Frequency for High. Density Polyethylene (HDPE) Smooth and Textured Geomembranes; GRI: Folsom, PA, USA, 2021; p. 11. [Google Scholar]
- ASTM (American Society for Testing and Materials). ASTM D7238 Standard Test Method for Effect of Exposure of Unreinforced Polyolefin Geomembrane Using Fluorescent UV Condensation Apparatus; ASTM: West Conshohocken, PA, USA, 2020; p. 4. [Google Scholar]
- ASTM (American Society for Testing and Materials). ASTM G155 Standard Practice for Operating Xenon Arc Light Apparatus for Exposure of Non-Metallic Materials; ASTM: West Conshohocken, PA, USA, 2013; p. 11. [Google Scholar]
- Hsuan, Y.G.; Koerner, R.M. Antioxidant depletion lifetime in high density polyethylene geomembranes. J. Geotech. Geoenviron. Eng. 1998, 124, 532–541. [Google Scholar] [CrossRef]
- Rowe, R.K.; Islam, M.Z.; Hsuan, Y.G. Leachate chemical composition effects on OIT depletion in an HDPE geomembranes. Geosynth. Int. 2008, 15, 136–151. [Google Scholar] [CrossRef] [Green Version]
- Noval, A.M.; Blanco, M.; Castillo, F.; Leiro, A.; Mateo, B.; Zornberg, J.G.; Aguiar, E.; Torregrosa, J.B.; Redón, M. Long-term performance of the HDPE geomembrane at the “San Isidro” reservoir. In Proceedings of the 10th International Conference on Geosynthetics, Berlin, Germany, 21–25 September 2014. [Google Scholar]
- Colthup, N.B.; Daly, L.H.; Wiberley, S.E. Introduction to Infrared and Raman Spectroscopy, 3rd ed.; Academic Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Koenig, J.L. Spectroscopy of Polymers, 2nd ed.; American Chemical Society: Washington, DC, USA, 1999. [Google Scholar]
- Stuart, B. Infrared Spectroscopy Fundamentals and Applications, 1st ed.; John Wiley and Sons: New York, NY, USA, 2004. [Google Scholar]
- Moynihan, R. The molecular structure of perfluorocarbon polymers. Infrared studies on polytetrafluoroethylene. J. Am. Chem. Soc. 1959, 81, 1045–1050. [Google Scholar] [CrossRef]
Property | Method | Unit | Mean Value |
---|---|---|---|
Thickness | ASTM D5199 [21] | mm | 1.040 (±0.079) |
Density | ASTM D792 [22] | g cm−3 | 0.958 (±0.002) |
MFI (5.0 kg/190 °C) | ASTM D1238 [23] | g 10 min−1 | 0.6800 (±0.0217) |
Carbon black content | ASTM D4218 [24] | % | 3.14 (±0.13) |
Carbon black dispersion | ASTM D5593 [25] | Category | Category I |
Tensile break resistance | ASTM D6693 [26] | kN m−1 | 28.52 (±1.55) |
Tensile break elongation | % | 733.47 (±10.76) | |
Tear resistance | ASTM D1004 [27] | N | 169.17 (±8.76) |
Puncture resistance | ASTM D4833 [28] | N | 434.17 (±18.19) |
Stress crack resistance | ASTM D5397 [29] | h | 16.47 (±2.66) |
Standard OIT | ASTM D3895 [30] | min | 40.49 (±0.73) |
High-pressure OIT | ASTM D5885 [31] | min | 125.70 (±0.42) |
Sample | Exposure Time (h) | MFI (g min−1) | MFI (%) |
---|---|---|---|
Virgin | 0 | 0.6800 (±0.0217) | 100.0 |
UV fluorescent | 960 | 0.7094 (±0.0460) | 104.33 |
UV fluorescent | 4380 | 0.6275 (±0.0369) | 92.29 |
UV fluorescent | 8760 | 0.6991 (±0.0594) | 102.81 |
Xenon arc | 960 | 0.6958 (±0.0161) | 102.33 |
Xenon arc | 1639 | 0.7437 (±0.0514) | 109.36 |
Xenon arc | 2160 | 0.7677 (±0.0453) | 112.89 |
Exposure Time (h) | Tensile Resist. (kN m−1) | Tensile Resist. (%) | Tensile Elong. (%) | Tensile Elong. (%) |
---|---|---|---|---|
0 | 28.52 (±1.55) | 100.0 | 733.47 (±10.76) | 100.0 |
960 | 20.87 (±1.12) | 73.18 | 511.47 (±13.67) | 69.73 |
4380 | 20.09 (±1.64) | 70.45 | 509.67 (±16.20) | 69.49 |
8760 | 20.00 (±1.54) | 77.15 | 558.70 (±12.47) | 76.17 |
Sample | Exposure Time (h) | Std. OIT (min) | Std. OIT (%) |
---|---|---|---|
Virgin | 0 | 40.49 (±0.73) | 100 |
UV fluorescent | 960 | 37.63 (±3.30) | 92.94 |
UV fluorescent | 4380 | 28.32 (±2.11) | 69.93 |
UV fluorescent | 8760 | 11.30 ((±1.48) | 27.91 |
Xenon arc | 960 | 34.15 (±1.27) | 84.33 |
Xenon arc | 1639 | 28.40 (±0.93) | 70.13 |
Xenon arc | 2160 | 24.88 (±2.04) | 61,45 |
Sample | Exposure Time (h) | HP OIT (min) | HP OIT (%) |
---|---|---|---|
Virgin | 0 | 125.70 (±0.42) | 100 |
UV fluorescent | 960 | 118.02 (±2.62) | 93.89 |
UV fluorescent | 4380 | 103.09 (±2.13) | 82.01 |
UV fluorescent | 8760 | 80.96 (±1.46) | 64.40 |
Xenon arc | 960 | 124.69 (±0.86) | 99.20 |
Xenon arc | 1639 | 119.17 (±2.10) | 94.80 |
Xenon arc | 2160 | 114.83 (±1.20) | 91.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lavoie, F.L.; Kobelnik, M.; Valentin, C.A.; Tirelli, É.F.d.S.; Lopes, M.d.L.; Silva, J.L.d. Laboratory Study of the Ultraviolet Radiation Effect on an HDPE Geomembrane. Membranes 2021, 11, 390. https://doi.org/10.3390/membranes11060390
Lavoie FL, Kobelnik M, Valentin CA, Tirelli ÉFdS, Lopes MdL, Silva JLd. Laboratory Study of the Ultraviolet Radiation Effect on an HDPE Geomembrane. Membranes. 2021; 11(6):390. https://doi.org/10.3390/membranes11060390
Chicago/Turabian StyleLavoie, Fernando Luiz, Marcelo Kobelnik, Clever Aparecido Valentin, Érica Fernanda da Silva Tirelli, Maria de Lurdes Lopes, and Jefferson Lins da Silva. 2021. "Laboratory Study of the Ultraviolet Radiation Effect on an HDPE Geomembrane" Membranes 11, no. 6: 390. https://doi.org/10.3390/membranes11060390
APA StyleLavoie, F. L., Kobelnik, M., Valentin, C. A., Tirelli, É. F. d. S., Lopes, M. d. L., & Silva, J. L. d. (2021). Laboratory Study of the Ultraviolet Radiation Effect on an HDPE Geomembrane. Membranes, 11(6), 390. https://doi.org/10.3390/membranes11060390