Radiation-Grafted Anion-Exchange Membrane for Fuel Cell and Electrolyzer Applications: A Mini Review
Abstract
:1. Overview of Anion Exchange Membrane for Fuel Cell (AEMFC) and Electrolysis Cell (AEMEC) Applications
2. Modification of Anion-Exchange Membrane
2.1. AEM Prepared via Solution Casting
2.2. AEM Prepared via Solution Casting with Crosslinker
2.3. AEM Composite Membranes Incorporated with Inorganic Fillers
2.4. AEM Prepared via Pore-Filling Copolymerization Technique
3. Design Consideration on Radiation-Grafted AEM
3.1. Radiation Source
3.2. Radiation Technique and Mechanism
3.2.1. Pre-Irradiation
3.2.2. Simultaneous Irradiation Grafting
3.3. Selection of Polymer Backbone, Irradiation Dose and Dose Rate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wong, C.; Wong, W.; Ramya, K.; Khalid, M.; Loh, K.; Daud, W.; Lim, K.; Walvekar, R.; Kadhum, A. Additives in proton exchange membranes for low- and high-temperature fuel cell applications: A review. Int. J. Hydrogen Energy 2019, 44, 6116–6135. [Google Scholar] [CrossRef]
- Wong, C.Y.; Wong, W.Y.; Loh, K.S.; Daud, W.R.W.; Lim, K.L.; Khalid, M.; Walvekar, R. Development of Poly(Vinyl Alcohol)-Based Polymers as Proton Exchange Membranes and Challenges in Fuel Cell Application: A Review. Polym. Rev. 2020, 60, 171–202. [Google Scholar] [CrossRef]
- Wong, C.Y.; Wong, W.Y.; Loh, K.S.; Daud, W.R.W.; Lim, K.L.; Walvekar, R.; Khalid, M.; Loh, K.S. Comparative Study on Water Uptake and Ionic Transport Properties of Pre- and Post Sulfonated Chitosan/PVA polymer Exchange Membrane. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Kuala Lumpur, Malaysia, 13–14 August 2018; IOP Publishing: Bristol, UK, 2018; Volume 458, p. 012017. [Google Scholar]
- Wong, C.Y.; Wong, W.Y.; Loh, K.S.; Khalid, M.; Daud, W.R.W.; Lim, K.L.; Walvekar, R. Influences of crosslinked carboxylic acid monomers on the proton conduction characteristics of chitosan/SPVA composite membranes. Polymers 2020, 203, 122782. [Google Scholar] [CrossRef]
- Wong, C.; Wong, W.; Walvekar, R.; Loh, K.; Khalid, M.; Lim, K. Effect of deep eutectic solvent in proton conduction and thermal behaviour of chitosan-based membrane. J. Mol. Liq. 2018, 269, 675–683. [Google Scholar] [CrossRef]
- Kordesch, K.; Cifrain, M. A comparison between the alkaline fuel cell (AFC) and the polymer electrolyte membrane (PEM) fuel cell. In Handbook of Fuel Cells; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- USDOE. Multi-Year Research Development, and Demonstration Plan; United State Department of Energy: Washington, DC, USA, 2015.
- Miller, H.A.; Bouzek, K.; Hnat, J.; Loos, S.; Bernäcker, C.I.; Weissgaerber, T.; Röntzsch, L.; Meier-Haack, J. Green hydrogen from anion exchange membrane water electrolysis: A review of recent developments in critical materials and operating conditions. Sustain. Energy Fuels 2020, 4, 2114–2133. [Google Scholar] [CrossRef]
- Merle, G.; Wessling, M.; Nijmeijer, K. Anion exchange membranes for alkaline fuel cells: A review. J. Membr. Sci. 2011, 377, 1–35. [Google Scholar] [CrossRef]
- Varcoe, J.R.; Kizewski, J.P.; Halepoto, D.M.; Poynton, S.D.; Slade, R.C.T.; Zhao, F. Fuel Cells Alkaline fuel cells | anion-exchange membranes. In Encyclopedia of Electrochemical Power Sources; Garche, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 329–343. [Google Scholar]
- Hagesteijn, K.F.L.; Jiang, S.; Ladewig, B.P. A review of the synthesis and characterization of anion exchange membranes. J. Mater. Sci. 2018, 53, 11131–11150. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Su, Y.; Lin, B. Progress of Alkaline Anion Exchange Membranes for Fuel Cells: The Effects of Micro-Phase Separation. Front. Mater. 2020, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Samaniego, A.J.; Arabelo, A.K.; Sarker, M.; Mojica, F.; Madrid, J.; Chuang, P.A.; Ocon, J.; Espiritu, R. Fabrication of cellulose acetate-based radiation grafted anion exchange membranes for fuel cell application. J. Appl. Polym. Sci. 2021, 138. [Google Scholar] [CrossRef]
- Vincent, I.; Kruger, A.; Bessarabov, D. Development of efficient membrane electrode assembly for low cost hydrogen production by anion exchange membrane electrolysis. Int. J. Hydrogen Energy 2017, 42, 10752–10761. [Google Scholar] [CrossRef]
- Arges, C.G.; Ramani, V.; Pintauro, P.N. Anion exchange membrane fuel cells. Electrochem. Soc. Interface 2010, 31–35. [Google Scholar] [CrossRef]
- Zongqing, L.; Jianwu, L. Research on elimination of chloromethylation in preparation on anion-exchange. Desalination 1985, 56, 421–430. [Google Scholar] [CrossRef]
- Khan, M.I.; Luque, R.; Akhtar, S.; Shaheen, A.; Mehmood, A.; Idress, S.; Buzdar, S.A.; Rehman, A.U. Design of Anion Exchange Membranes and Electrodialysis Studies for Water Desalination. Materials 2016, 9, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurya, S.; Shin, S.-H.; Kim, Y.; Moon, S.-H. A review on recent developments of anion exchange membranes for fuel cells and redox flow batteries. RSC Adv. 2015, 5, 37206–37230. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, Q.; Zheng, Y.; Yu, Y.; Chen, D. Densely quaternized anion exchange membranes synthesized from Ullmann coupling extension of ionic segments for vanadium redox flow batteries. Sci. China Mater. 2019, 62, 211–224. [Google Scholar] [CrossRef] [Green Version]
- Tsai, T.-H.; Maes, A.M.; Vandiver, M.A.; Versek, C.; Seifert, S.; Tuominen, M.; Liberatore, M.W.; Herring, A.M.; Coughlin, E.B. Synthesis and structure-conductivity relationship of polystyrene-block -poly(vinyl benzyl trimethylammonium) for alkaline anion exchange membrane fuel cells. J. Polym. Sci. Part. B Polym. Phys. 2013, 51, 1751–1760. [Google Scholar] [CrossRef]
- Kim, D.J.; Lee, B.-N.; Nam, S.Y. Synthesis and characterization of PEEK containing imidazole for anion exchange membrane fuel cell. Int. J. Hydrog. Energy 2017, 42, 23759–23767. [Google Scholar] [CrossRef]
- Lin, B.; Qiu, L.; Qiu, B.; Peng, Y.; Yan, F. A Soluble and Conductive Polyfluorene Ionomer with Pendant Imidazolium Groups for Alkaline Fuel Cell Applications. Macromolecules 2011, 44, 9642–9649. [Google Scholar] [CrossRef]
- Gu, F.; Dong, H.; Li, Y.; Sun, Z.; Yan, F. Base Stable Pyrrolidinium Cations for Alkaline Anion Exchange Membrane Applications. Macromolecules 2014, 47, 6740–6747. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; Zhang, S. Novel Hydroxide-Conducting Polyelectrolyte Composed of an Poly(arylene ether sulfone) Containing Pendant Quaternary Guanidinium Groups for Alkaline Fuel Cell Applications. Macromolecules 2010, 43, 3890–3896. [Google Scholar] [CrossRef]
- Gu, S.; Cai, R.; Yan, Y. Self-crosslinking for dimensionally stable and solvent-resistant quaternary phosphonium based hydroxide exchange membranes. Chem. Commun. 2011, 47, 2856–2858. [Google Scholar] [CrossRef]
- Stokes, K.K.; Orlicki, J.A.; Beyer, F.L. RAFT polymerization and thermal behavior of trimethylphosphonium polystyrenes for anion exchange membranes. Polym. Chem. 2010, 2, 80–82. [Google Scholar] [CrossRef]
- Nonjola, P.T.; Mathe, M.; Modibedi, R.M. Chemical modification of polysulfone: Composite anionic exchange membrane with TiO2 nano-particles. Int. J. Hydrogen Energy 2013, 38, 5115–5121. [Google Scholar] [CrossRef]
- Chen, W.; Yan, X.; Wu, X.; Huang, S.; Luo, Y.; Gong, X.; He, G. Tri-quaternized poly (ether sulfone) anion exchange membranes with improved hydroxide conductivity. J. Membr. Sci. 2016, 514, 613–621. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Moh, L.C.; Swager, T.M. Anion Exchange Membranes: Enhancement by Addition of Unfunctionalized Triptycene Poly(Ether Sulfone)s. ACS Appl. Mater. Interfaces 2017, 9, 42409–42414. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Zhang, Q.; Qian, H.; Xue, B.; Li, S.; Zhang, S. Self-assembly prepared anion exchange membranes with high alkaline stability and organic solvent resistance. J. Membr. Sci. 2017, 522, 159–167. [Google Scholar] [CrossRef]
- Hwang, G.-J.; Ohya, H. Preparation of anion-exchange membrane based on block copolymers part 1. Amination of the chloromethylated copolymers. J. Membr. Sci. 1998, 140, 195–203. [Google Scholar] [CrossRef]
- Liu, L.; Tong, C.; He, Y.; Zhao, Y.; Lü, C. Enhanced properties of quaternized graphenes reinforced polysulfone based composite anion exchange membranes for alkaline fuel cell. J. Membr. Sci. 2015, 487, 99–108. [Google Scholar] [CrossRef]
- Movil, O.; Frank, L.; Staser, J.A. Graphene Oxide–Polymer Nanocomposite Anion-Exchange Membranes. J. Electrochem. Soc. 2015, 162, F419–F426. [Google Scholar] [CrossRef] [Green Version]
- Oh, B.H.; Kim, A.R.; Yoo, D.J. Profile of extended chemical stability and mechanical integrity and high hydroxide ion conductivity of poly(ether imide) based membranes for anion exchange membrane fuel cells. Int. J. Hydrogen Energy 2019, 44, 4281–4292. [Google Scholar] [CrossRef]
- Parrondo, J.; Jung, M.-S.J.; Wang, Z.; Arges, C.G.; Ramani, V. Synthesis and Alkaline Stability of Solubilized Anion Exchange Membrane Binders Based on Poly(phenylene oxide) Functionalized with Quaternary Ammonium Groups via a Hexyl Spacer. J. Electrochem. Soc. 2015, 162, F1236–F1242. [Google Scholar] [CrossRef]
- Zhu, Y.; Ding, L.; Liang, X.; Shehzad, M.A.; Wang, L.; Ge, X.; He, Y.; Wu, L.; Varcoe, J.R.; Xu, T. Beneficial use of rotatable-spacer side-chains in alkaline anion exchange membranes for fuel cells. Energy Environ. Sci. 2018, 11, 3472–3479. [Google Scholar] [CrossRef]
- Chen, D.; Hickner, M.A. Degradation of Imidazolium- and Quaternary Ammonium-Functionalized Poly(fluorenyl ether ketone sulfone) Anion Exchange Membranes. ACS Appl. Mater. Interfaces 2012, 4, 5775–5781. [Google Scholar] [CrossRef]
- Liu, L.; He, S.; Zhang, S.; Zhang, M.; Guiver, M.D.; Li, N. 1,2,3-Triazolium-Based Poly(2,6-Dimethyl Phenylene Oxide) Copolymers as Anion Exchange Membranes. ACS Appl. Mater. Interfaces 2016, 8, 4651–4660. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, M.; Golding, B.T.; Sadeghi, M.; Cao, Y.; Yu, E.H.; Scott, K. A polytetrafluoroethylene-quaternary 1,4-diazabicyclo-[2.2.2]-octane polysulfone composite membrane for alkaline anion exchange membrane fuel cells. Int. J. Hydrogen Energy 2011, 36, 10022–10026. [Google Scholar] [CrossRef]
- Pérez-Prior, M.T.; Ureña, N.; Tannenberg, M.; Del Río, C.; Levenfeld, B. DABCO-functionalized polysulfones as anion-exchange membranes for fuel cell applications: Effect of crosslinking. J. Polym. Sci. Part. B Polym. Phys. 2017, 55, 1326–1336. [Google Scholar] [CrossRef]
- Wu, L.; Xu, T.; Wu, D.; Zheng, X. Preparation and characterization of CPPO/BPPO blend membranes for potential application in alkaline direct methanol fuel cell. J. Membr. Sci. 2008, 310, 577–585. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, G.; Liu, Z.; Zhang, N.; Zhang, L.; Ma, W.; Zhao, C.; Qi, D.; Li, G.; Na, H. Self-crosslinked alkaline electrolyte membranes based on quaternary ammonium poly (ether sulfone) for high-performance alkaline fuel cells. Int. J. Hydrogen Energy 2012, 37, 9873–9881. [Google Scholar] [CrossRef]
- Fang, J.; Yang, Y.; Lu, X.; Ye, M.; Li, W.; Zhang, Y. Cross-linked, ETFE-derived and radiation grafted membranes for anion exchange membrane fuel cell applications. Int. J. Hydrog. Energy 2012, 37, 594–602. [Google Scholar] [CrossRef]
- Komkova, E.; Stamatialis, D.; Strathmann, H.; Wessling, M. Anion-exchange membranes containing diamines: Preparation and stability in alkaline solution. J. Membr. Sci. 2004, 244, 25–34. [Google Scholar] [CrossRef]
- Zhou, J.; Unlu, M.; Anestis-Richard, I.; Kohl, P.A. Crosslinked, epoxy-based anion conductive membranes for alkaline membrane fuel cells. J. Membr. Sci. 2010, 350, 286–292. [Google Scholar] [CrossRef]
- Lu, W.; Shao, Z.-G.; Zhang, G.; Zhao, Y.; Yi, B. Crosslinked poly(vinylbenzyl chloride) with a macromolecular crosslinker for anion exchange membrane fuel cells. J. Power Sources 2014, 248, 905–914. [Google Scholar] [CrossRef]
- Xue, J.; Liu, L.; Liao, J.; Shen, Y.; Li, N. UV-crosslinking of polystyrene anion exchange membranes by azidated macromolecular crosslinker for alkaline fuel cells. J. Membr. Sci. 2017, 535, 322–330. [Google Scholar] [CrossRef]
- Vinodh, R.; Purushothaman, M.; Sangeetha, D. Novel quaternized polysulfone/ZrO2 composite membranes for solid alkaline fuel cell applications. Int. J. Hydrog. Energy 2011, 36, 7291–7302. [Google Scholar] [CrossRef]
- Mohamad, A.A.; Arof, A. Plasticized alkaline solid polymer electrolyte system. Mater. Lett. 2007, 61, 3096–3099. [Google Scholar] [CrossRef]
- Sang, S.; Zhang, J.; Wu, Q.; Liao, Y. Influences of Bentonite on conductivity of composite solid alkaline polymer electrolyte PVA-Bentonite-KOH-H2O. Electrochimica ACTA 2007, 52, 7315–7321. [Google Scholar] [CrossRef]
- García-Cruz, L.; Casado-Coterillo, C.; Irabien, Á.; Montiel, V.; Iniesta, J. High Performance of Alkaline Anion-Exchange Membranes Based on Chitosan/Poly (vinyl) Alcohol Doped with Graphene Oxide for the Electrooxidation of Primary Alcohols. J. Carbon Res. 2016, 2, 10. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Shi, S.; Cao, H.; Zhao, Z.; Wen, H. Modification and properties characterization of heterogeneous anion-exchange membranes by electrodeposition of graphene oxide (GO). Appl. Surf. Sci. 2018, 442, 700–710. [Google Scholar] [CrossRef]
- Ion-Ebrasu, D.; Pollet, B.G.; Caprarescu, S.; Chitu, A.; Trusca, R.; Niculescu, V.; Gabor, R.; Carcadea, E.; Varlam, M.; Vasile, B.S. Graphene inclusion effect on anion-exchange membranes properties for alkaline water electrolyzers. Int. J. Hydrogen Energy 2020, 45, 17057–17066. [Google Scholar] [CrossRef]
- Kim, D.-H.; Park, J.-S.; Choun, M.; Lee, J.; Kang, M.-S. Pore-filled anion-exchange membranes for electrochemical energy conversion applications. Electrochim. ACTA 2016, 222, 212–220. [Google Scholar] [CrossRef]
- Kim, J.-H.; Ryu, S.; Maurya, S.; Lee, J.-Y.; Sung, K.-W.; Lee, J.-S.; Moon, S.-H. Fabrication of a composite anion exchange membrane with aligned ion channels for a high-performance non-aqueous vanadium redox flow battery. RSC Adv. 2020, 10, 5010–5025. [Google Scholar] [CrossRef]
- Kim, D.-H.; Seo, S.-J.; Lee, M.-J.; Park, J.-S.; Moon, S.-H.; Kang, Y.S.; Choi, Y.-W.; Kang, M.-S. Pore-filled anion-exchange membranes for non-aqueous redox flow batteries with dual-metal-complex redox shuttles. J. Membr. Sci. 2014, 454, 44–50. [Google Scholar] [CrossRef]
- Seo, S.-J.; Kim, B.-C.; Sung, K.-W.; Shim, J.; Jeon, J.-D.; Shin, K.-H.; Shin, S.-H.; Yun, S.-H.; Lee, J.-Y.; Moon, S.-H. Electrochemical properties of pore-filled anion exchange membranes and their ionic transport phenomena for vanadium redox flow battery applications. J. Membr. Sci. 2013, 428, 17–23. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, J.; Hou, J.; Yang, Z.; Xu, T. Hyperbranched Polystyrene Copolymer Makes Superior Anion Exchange Membrane. ACS Appl. Polym. Mater. 2018, 1, 76–82. [Google Scholar] [CrossRef]
- Buggy, N.C.; Du, Y.; Kuo, M.-C.; Ahrens, K.A.; Wilkinson, J.S.; Seifert, S.; Coughlin, E.B.; Herring, A.M. A Polyethylene-Based Triblock Copolymer Anion Exchange Membrane with High Conductivity and Practical Mechanical Properties. ACS Appl. Polym. Mater. 2020, 2, 1294–1303. [Google Scholar] [CrossRef]
- Kim, J.H.; Vinothkannan, M.; Kim, A.R.; Yoo, D.J. Anion Exchange Membranes Obtained from Poly(arylene ether sulfone) Block Copolymers Comprising Hydrophilic and Hydrophobic Segments. Polymers 2020, 12, 325. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; He, R. Formation and evaluation of interpenetrating networks of anion exchange membranes based on quaternized chitosan and copolymer poly(acrylamide)/polystyrene. Solid State Ion. 2015, 278, 49–57. [Google Scholar] [CrossRef]
- Espiritu, R.; Golding, B.T.; Scott, K.; Mamlouk, M. Degradation of radiation grafted anion exchange membranes tethered with different amine functional groups via removal of vinylbenzyl trimethylammonium hydroxide. J. Power Sources 2018, 375, 373–386. [Google Scholar] [CrossRef]
- Wang, L.; Peng, X.; Mustain, W.E.; Varcoe, J.R. Radiation-grafted anion-exchange membranes: The switch from low- to high-density polyethylene leads to remarkably enhanced fuel cell performance. Energy Environ. Sci. 2019, 12, 1575–1579. [Google Scholar] [CrossRef] [Green Version]
- Espiritu, R.; Mamlouk, M.; Scott, K. Study on the effect of the degree of grafting on the performance of polyethylene-based anion exchange membrane for fuel cell application. Int. J. Hydrogen Energy 2016, 41, 1120–1133. [Google Scholar] [CrossRef] [Green Version]
- Yoshimura, K.; Hiroki, A.; Yu, H.-C.; Zhao, Y.; Shishitani, H.; Yamaguchi, S.; Tanaka, H.; Maekawa, Y. Alkaline durable 2-methylimidazolium containing anion-conducting electrolyte membranes synthesized by radiation-induced grafting for direct hydrazine hydrate fuel cells. J. Membr. Sci. 2019, 573, 403–410. [Google Scholar] [CrossRef]
- Poynton, S.D.; Slade, R.C.T.; Omasta, T.J.; Mustain, W.E.; Escudero-Cid, R.; Ocón, P.; Varcoe, J.R. Preparation of radiation-grafted powders for use as anion exchange ionomers in alkaline polymer electrolyte fuel cells. J. Mater. Chem. A 2014, 2, 5124–5130. [Google Scholar] [CrossRef] [Green Version]
- Sherazi, T.A.; Sohn, J.Y.; Lee, Y.M.; Guiver, M.D. Polyethylene-based radiation grafted anion-exchange membranes for alkaline fuel cells. J. Membr. Sci. 2013, 441, 148–157. [Google Scholar] [CrossRef] [Green Version]
- Sherazi, T.A.; Zahoor, S.; Raza, R.; Shaikh, A.; Naqvi, S.A.R.; Abbas, G.; Khan, Y.; Li, S. Guanidine functionalized radiation induced grafted anion-exchange membranes for solid alkaline fuel cells. Int. J. Hydrog. Energy 2015, 40, 786–796. [Google Scholar] [CrossRef]
- Gupta, G.; Scott, K.; Mamlouk, M. Performance of polyethylene based radiation grafted anion exchange membrane with polystyrene-b-poly (ethylene/butylene)-b-polystyrene based ionomer using NiCo2O4 catalyst for water electrolysis. J. Power Sources 2018, 375, 387–396. [Google Scholar] [CrossRef]
- Wang, L.; Magliocca, E.; Cunningham, E.L.; Mustain, W.E.; Poynton, S.D.; Escudero-Cid, R.; Nasef, M.M.; Ponce-González, J.; Bance-Souahli, R.; Slade, R.C.T.; et al. An optimised synthesis of high performance radiation-grafted anion-exchange membranes. Green Chem. 2017, 19, 831–843. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.-C.; Chiu, S.-J.; Lee, K.-T.; Chien, W.-C.; Lin, C.-T.; Huang, C.-A. Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell. J. Power Sources 2008, 184, 44–51. [Google Scholar] [CrossRef]
- Yang, S.; Choi, Y.-W.; Choi, J.; Jeong, N.; Kim, H.; Jeong, H.; Byeon, S.Y.; Yoon, H.; Kim, Y.H. Green fabrication of pore-filling anion exchange membranes using R2R processing. J. Membr. Sci. 2019, 584, 181–190. [Google Scholar] [CrossRef]
- Ran, J.; Wu, L.; He, Y.; Yang, Z.; Wang, Y.; Jiang, C.; Ge, L.; Bakangura, E.; Xu, T. Ion exchange membranes: New developments and applications. J. Membr. Sci. 2017, 522, 267–291. [Google Scholar] [CrossRef]
- Walo, M. Radiation-induced Grafting. In Applications of Ionizing Radiation in Materials Processing; Sun, Y.C., Chmielewski, A.G., Eds.; Institute of Nuclear Chemistry and Technology: Warsaw, Poland, 2017; Volume 2, pp. 193–210. [Google Scholar]
- Espiritu, R.; Golding, B.T.; Scott, K.; Mamlouk, M. Degradation of radiation grafted hydroxide anion exchange membrane immersed in neutral pH: Removal of vinylbenzyl trimethylammonium hydroxide due to oxidation. J. Mater. Chem. A 2016, 5, 1248–1267. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Brink, J.J.; Liu, Y.; Herring, A.M.; Ponce-González, J.; Whelligan, D.K.; Varcoe, J.R. Non-fluorinated pre-irradiation-grafted (peroxidated) LDPE-based anion-exchange membranes with high performance and stability. Energy Environ. Sci. 2017, 10, 2154–2167. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Shao, R.; Chen, S.; He, X.; Qiao, J.; Zhang, J. A review of radiation-grafted polymer electrolyte membranes for alkaline polymer electrolyte membrane fuel cells. J. Power Sources 2015, 293, 946–975. [Google Scholar] [CrossRef]
- Ashfaq, A.; Clochard, M.-C.; Coqueret, X.; Dispenza, C.; Driscoll, M.S.; Ulański, P.; Al-Sheikhly, M. Polymerization Reactions and Modifications of Polymers by Ionizing Radiation. Polymers 2020, 12, 2877. [Google Scholar] [CrossRef]
- Pino-Ramos, V.H.; Meléndez-Ortiz, H.I.; Ramos-Ballesteros, A.; Bucio, E. Chapter 6-Radiation Grafting of Biopolymers and Synthetic Polymers: Synthesis and Biomedical Applications. In Biopolymer Grafting; Thakur, V.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Sherazi, T.A. Radiation-Induced Grafting. In Encyclopedia of Membranes; Drioli, E., Giorno, L., Eds.; Springer: Berlin, Heidelberg, 2015; pp. 1–2. [Google Scholar] [CrossRef]
- Casimiro, M.H.; Ferreira, L.M.; Leal, J.P.; Pereira, C.C.L.; Monteiro, B. Ionizing Radiation for Preparation and Functionalization of Membranes and Their Biomedical and Environmental Applications. Membranes 2019, 9, 163. [Google Scholar] [CrossRef] [Green Version]
- Nasef, M.M. Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films. Prog. Polym. Sci. 2004, 29, 499–561. [Google Scholar] [CrossRef]
- Ponce-González, J.; Ouachan, I.; Varcoe, J.R.; Whelligan, D.K. Radiation-induced grafting of a butyl-spacer styrenic monomer onto ETFE: The synthesis of the most alkali stable radiation-grafted anion-exchange membrane to date. J. Mater. Chem. A 2017, 6, 823–827. [Google Scholar] [CrossRef] [Green Version]
- Danks, T.N.; Slade, R.C.T.; Varcoe, J. Alkaline anion-exchange radiation-grafted membranes for possible electrochemical application in fuel cells. J. Mater. Chem. 2003, 13, 712–721. [Google Scholar] [CrossRef] [Green Version]
- Horsfall, J.; Lovell, K. Fuel Cell Performance of Radiation Grafted Sulphonic Acid Membranes. Fuel Cells 2001, 1, 186–191. [Google Scholar] [CrossRef]
- Pasquini, L.; Wacrenier, O.; Di Vona, M.L.; Knauth, P.C. Hydration and Ionic Conductivity of Model Cation and Anion-Conducting Ionomers in Buffer Solutions (Phosphate, Acetate, Citrate). J. Phys. Chem. B 2018, 122, 12009–12016. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, K.; Zhao, Y.; Hasegawa, S.; Hiroki, A.; Kishiyama, Y.; Shishitani, H.; Yamaguchi, S.; Tanaka, H.; Koizumi, S.; Appavou, M.-S.; et al. Imidazolium-based anion exchange membranes for alkaline anion fuel cells: (2) elucidation of the ionic structure and its impact on conducting properties. Soft Matter 2017, 13, 8463–8473. [Google Scholar] [CrossRef]
- Yoshimura, K.; Zhao, Y.; Hiroki, A.; Kishiyama, Y.; Shishitani, H.; Yamaguchi, S.; Tanaka, H.; Koizumi, S.; Houston, J.E.; Radulescu, A.; et al. Reverse relationships of water uptake and alkaline durability with hydrophilicity of imidazolium-based grafted anion-exchange membranes. Soft Matter 2018, 14, 9118–9131. [Google Scholar] [CrossRef]
- Kimura, T.; Akiyama, R.; Miyatake, K.; Inukai, J. Phase separation and ion conductivity in the bulk and at the surface of anion exchange membranes with different ion exchange capacities at different humidities. J. Power Sources 2018, 375, 397–403. [Google Scholar] [CrossRef]
- Zhao, Y.; Yoshimura, K.; Mahmoud, A.M.A.; Yu, H.-C.; Okushima, S.; Hiroki, A.; Kishiyama, Y.; Shishitani, H.; Yamaguchi, S.; Tanaka, H.; et al. A long side chain imidazolium-based graft-type anion-exchange membrane: Novel electrolyte and alkaline-durable properties and structural elucidation using SANS contrast variation. Soft Matter 2020, 16, 8128–8143. [Google Scholar] [CrossRef]
- Zhao, Y.; Yoshimura, K.; Yu, H.-C.; Maekawa, Y.; Hiroki, A.; Kishiyama, Y.; Shishitani, H.; Yamaguchi, S.; Tanaka, H.; Koizumi, S.; et al. Small angle neutron scattering study on the morphology of imidazolium-based grafted anion-conducting fuel cell membranes. Phys. B Condens. Matter 2018, 551, 203–207. [Google Scholar] [CrossRef]
- Otsuki, A.; De Campo, L.; Garvey, C.J.; Rehm, C. H2O/D2O Contrast Variation for Ultra-Small-Angle Neutron Scattering to Minimize Multiple Scattering Effects of Colloidal Particle Suspensions. Colloids Interfaces 2018, 2, 37. [Google Scholar] [CrossRef] [Green Version]
- Faraj, M.; Boccia, M.; Miller, H.; Martini, F.; Borsacchi, S.; Geppi, M.; Pucci, A. New LDPE based anion-exchange membranes for alkaline solid polymeric electrolyte water electrolysis. Int. J. Hydrogen Energy 2012, 37, 14992–15002. [Google Scholar] [CrossRef]
- Lu, W.; Zhang, G.; Li, J.; Hao, J.; Wei, F.; Li, W.; Zhang, J.; Shao, Z.-G.; Yi, B. Polybenzimidazole-crosslinked poly(vinylbenzyl chloride) with quaternary 1,4-diazabicyclo (2.2.2) octane groups as high-performance anion exchange membrane for fuel cells. J. Power Sources 2015, 296, 204–214. [Google Scholar] [CrossRef]
- Meek, K.M.; Reed, C.M.; Pivovar, B.; Kreuer, K.-D.; Varcoe, J.R.; Bance-Soualhi, R. The alkali degradation of LDPE-based radiation-grafted anion-exchange membranes studied using different ex situ methods. RSC Adv. 2020, 10, 36467–36477. [Google Scholar] [CrossRef]
- Gupta, G.; Scott, K.; Mamlouk, M. Soluble Polystyrene-b-poly (ethylene/butylene)-b-polystyrene Based Ionomer for Anion Exchange Membrane Fuel Cells Operating at 70 °C. Fuel Cells 2018, 18, 137–147. [Google Scholar] [CrossRef]
- Kim, Y.J.; Hwang, C.W.; Hyeon, S.M.; Canlier, A.; Hwang, T.S. Synthesis of polyketone-g-vinylbenzyl chloride anion exchange membrane via irradiation and its properties. Macromol. Res. 2017, 25, 898–904. [Google Scholar] [CrossRef]
Modification Method | Polymer | Reagent(s) for Cationic Head Group | Water Uptake (%) | Swelling Ratio (%) | Tensile Strength (MPa) | IEC (meq g−1) | Ionic Conductivity (mS cm−1) | Cell Performance (mW cm−2) | Ref. |
---|---|---|---|---|---|---|---|---|---|
Simple solution casting without modification | PEI | Trimethylamine (TMA) | 40.3 | 19.2 | 21.5 | 1.23 | 44.2 (at 90 °C) | - | [34] |
C6-PPO | TMA | - | - | - | 1.80 | 1.2 (at 25 °C) | - | [35] | |
PPO | 1,2-bis(2-(2-methylimidazole)ethoxy)ethane | 150.0 (at 60 °C) | 18.0 | - | 2.10 | 45.0 (at 60 °C) | 437.0 (at 65 °C) | [36] | |
Poly(fluorenyl ether ketone sulfone) (PFEKS) | (i) TMA (ii) 1-methylimidazole (IM) | (i) 59.0 (ii) 48.0 | - | - | (i) 1.80 (ii) 1.60 | (i) 22.3 (ii) 17.1 | - | [37] | |
PPO | 1-benzyl-3-methyl-4-butyl-1,2,3-triazolium iodide | 128.0 | 35.0 | - | 1.21 | 61.6 | - | [38] | |
PTFE | Quaternized 1,4-diazabicyclo[2.2.2]-octane (DABCO) | 24.0 | 17.0 | 32.0 | - | 51.0 (at 55 °C) | 146 (at 50 °C) | [39] | |
Polysulfone | DABCO | 122.7 | 12.3 | 24.0 | 1.68 | 0.9 | - | [40] | |
CPPO/BPPO | TMA | 137.4 | - | 28.0 | 2.10 | 27.6 | - | [41] | |
Covalent crosslinking | Polysulfone | Quaternary phosphonium | 100.0 | 15.0 | - | 1.23 | 38.0 (at 20 °C) | - | [25] |
ETFE | TMA | 11.7 | 0.8 | 55.8 | 1.07 | 15.3 (at 60 °C) | - | [42] | |
Ethylene-co-tetrafluoroethylene (ETFE) | TMA | 64.4 | - | - | 2.11 | 73.5 (at 80 °C) | 48.0 (at 40 °C) | [43] | |
Polysulfone | N-methyl-pyrrolidinone (NMP) | 22.7 | - | - | 1.33 | - | - | [44] | |
Poly(acrylene ether sulfone) (PSF) | TMA | 50.0 | 24.0 | - | 0.73 | 5.5 | - | [45] | |
PVBC | PVAc | 139.1 | 26.3 | 14.2 | 1.26 | 29.0 | 124.7 (at 40 °C) | [46] | |
PVBC | PPO-N3 | 19.8 | 6.9 | 59.5 | 1.95 | 14.8 (at 20 °C) | 11.0 (at 60 °C) | [47] | |
Composite membrane with inorganic fillers | Polysulfone Filler: TiO2 | TMA | 39.0 | - | - | - | 125.2 (at 21 °C) | - | [27] |
Polysulfone Filler: ZrO2 | Triethyl amine (TEA) | 18.3 | - | 28.4 | 0.90 | 14.6 | 250.0 (at 60 °C) | [48] | |
Poly(vinyl alcohol) (PVA) Filler: Al2O3 | KOH | - | - | - | - | 0.6 | - | [49] | |
PVA Filler: Bentonite | KOH | 65.0 | - | - | - | 110.0 | - | [50] | |
Chitosan/PVA Filler: GO | NaOH | 138.4 | - | 48.6 | 0.37 | 0.1 | - | [51] | |
Polystyrene Filler: GO | Sodium dodecyl benzene sulfonate (SDBS) | - | - | - | >1.80 | - | - | [52] | |
Fumion® Filler: GO | NMP | 18.4 | - | 2890.6 | 3.16 | 113.2 (at 80 °C) | - | [53] | |
Pore-filling | PTFE filled with poly(DMAEMA-DVB) | p-xylene dichloride (XBC) | 19.9 | - | 44.7 | 1.40 | 128.0 | 7.7 (at 60 °C) | [54] |
PTFE filled with QPPO | TEA | 14.6 | 18.3 | 275.0 | 1.44 | 33.1 | - | [55] | |
Poly(styrene) filled with VBC-DVB | TMA | 25.8 | 10.1 | 125.8 | 2.04 | 0.4 | - | [56] | |
Polyethylene filled with VBC-DVB | Pyridine | 70.0 | 4.0 | - | 0.95 | - | - | [57] | |
Conventional copolymerization | Hyper-branched PVBC-grafted-VBC | TMA | 38.6 | 36.3 | 6.77 | 1.26 | 50.8 (at 30 °C) | - | [58] |
Polychloromethylstyrene-b-polycyclooctene-b-polychloromethylstyrene (PCMS-b-PCOE-b -PCMS) | TMA | 64.7 | 13.6 | 184.5 | 1.83 | 179.0 (at 80 °C) | - | [59] | |
Quaternized poly(arylene ether sulfone) | DABCO | 74.1 (at 90 °C) | 29.6 (at 90 °C) | - | 1.86 | 51.8 (at 90 °C) | 64.0 (at 60 °C) | [60] | |
Quaternized chitosan-polyacrylamide/polystyrene (QCS-PAM/PS) | (2,3-epoxypropyl)trimethylammonium chloride (EPTMAC) | 64.5 | 19.0 | 43.9 | 0.93 | 6.0 (at 80 °C) | - | [61] | |
Radiation grafting copolymerization | Low density polyethylene-grafted-VBC (LDPE-g-VBC) | TMA | - | - | - | 2.53 | 85.0 (at 60 °C) | - | [62] |
Cellulose acetate-g-VBC | TMA | 176.0 | 45.9 | - | 1.41 | 93.0 (at 70 °C) | - | [13] | |
HDPE-g-VBC | TMA | 155.0 | 21.0 | 35.0 | 2.44 | 214.0 (at 80 °C) | 2550.0 (at 80 °C) | [63] | |
LDPE-g-VBC | TMA | 285.0 | 55.6 | 11.2 | 3.20 | 120.0 (at 70 °C) | 607.8 (at 50 °C) | [64] | |
MNVIm/En/St-AEM | 2-methylimidazolium | 128.0 | 23.0 | - | 1.05 | 55.0 (at 80 °C) | - | [65] | |
ETFE-g-VBC | TMA | 155.4 | - | - | 1.24 | - | 240.0 (at 50 °C) | [66] | |
Polyethylene-grafted-VBC (PE-g-VBC) | TMA | 13.7 | 14.6 | - | 0.49 | 47.5 (at 90 °C) | - | [67] | |
PE-g-VBC | 1,1,3,3-tetramethyl-2-n-butylguanidine (TMBG) | 4.5 | 7.3 | - | 0.33 | 27.7 (at 90 °C) | - | [68] | |
LDPE-g-VBC | TMA | - | - | - | 2.30 | 90.0 (at 50 °C) | 180 mV | [69] | |
ETFE-g-VBC | TMA | 40.0 | - | 18.2 | - | 34.0 (at 50 °C) | 2.8 (at 50 °C) | [10] | |
ETFE-g-VBC | TMA | 57.0 | 32.0 | 27.0 | 2.13 | 68.0 (at 80 °C) | - | [70] |
AEM | Irradiation Dose/Dose Rate (kGy/Gy h−1) | D.O.G (%) | Water Uptake (%) | Tensile Strength (MPa) | IEC (meq g−1) | Ionic Conductivity (mS cm−1) | Cell Performance (mW cm−2) | Ref. |
---|---|---|---|---|---|---|---|---|
StIm-ETFE | Dose: 50 Grafting time: 40 to 72 min | 8 to 18 | 5 to 10 | - | 0.26 to 0.54 | 17 to 50 (at 60 °C) | - | [90] |
BPI-LDPE-g-VBC | Dose: 10 to 20 | 50.4 to 74.6 | 285 | - | 2.4 to 3.2 | 90 to 110 (at 60 °C) | 608 (at 50 °C) | [64] |
ETFE-g-VBC | Dose: 40 to 30 | 89 to 76 | 57 to 53 | 262 to 416 | 2.13 to 2.01 | 68 to 60 (at 80 °C) | 1160 (at 60 °C) | [70] |
LDPE-based AEM | Dose: 50 to 100 | 102 to 143 | 97 to 104 | 275 | 2.63 to 2.87 | 64 to 76 | 1450 (at 80 °C) | [76] |
UHMWPE-g-VBC-TMBG | Dose: 3 to 5 | 8.5 to 12.5 | 3.25 to 4.5 | - | 0.22 to 0.33 | 14.4 to 27.7 (at 90 °C) | - | [68] |
LDPE-g-VBC-TMA | Dose rate: 67 to 2000 | 68 to 65 | - | - | 2.8 to 2.7 | 84 to 99 (at 60 °C) | - | [75] |
HDPE-g-VBC-TMA | Dose rate: 35 to 67 | 58 to 66 | - | - | 2.6 to 2.9 | 84 to 101 (at 60 °C) | - | [75] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, K.L.; Wong, C.Y.; Wong, W.Y.; Loh, K.S.; Selambakkannu, S.; Othman, N.A.F.; Yang, H. Radiation-Grafted Anion-Exchange Membrane for Fuel Cell and Electrolyzer Applications: A Mini Review. Membranes 2021, 11, 397. https://doi.org/10.3390/membranes11060397
Lim KL, Wong CY, Wong WY, Loh KS, Selambakkannu S, Othman NAF, Yang H. Radiation-Grafted Anion-Exchange Membrane for Fuel Cell and Electrolyzer Applications: A Mini Review. Membranes. 2021; 11(6):397. https://doi.org/10.3390/membranes11060397
Chicago/Turabian StyleLim, Kean Long, Chun Yik Wong, Wai Yin Wong, Kee Shyuan Loh, Sarala Selambakkannu, Nor Azillah Fatimah Othman, and Hsiharng Yang. 2021. "Radiation-Grafted Anion-Exchange Membrane for Fuel Cell and Electrolyzer Applications: A Mini Review" Membranes 11, no. 6: 397. https://doi.org/10.3390/membranes11060397
APA StyleLim, K. L., Wong, C. Y., Wong, W. Y., Loh, K. S., Selambakkannu, S., Othman, N. A. F., & Yang, H. (2021). Radiation-Grafted Anion-Exchange Membrane for Fuel Cell and Electrolyzer Applications: A Mini Review. Membranes, 11(6), 397. https://doi.org/10.3390/membranes11060397