Ionic Transport Properties of Cation-Exchange Membranes Prepared from Poly(vinyl alcohol-b-sodium Styrene Sulfonate)
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials
2.2. Synthesis of Block Copolymers
2.3. Analysis of Chemical Structure of Block Copolymers
2.4. Preparation of B-CEMs
2.5. Measurement of Membrane Water Content
2.6. Measurement of Ion-Exchange Capacity (IEC)
2.7. Determination of Membrane Charge Density
2.8. Measurement of Membrane Resistance
2.9. Measurement of Dynamic State Transport Number
2.10. Measurement of Mechanical Strength
3. Results and Discussion
3.1. Characterization of Synthesized Polymer
3.2. Ion-Exchange Capacity and Water Content of B-CEMs as a Function of SSS Content
3.3. Membrane Charge Density as a Function of
3.4. Membrane Resistance as Function of Water Content
3.5. Dynamic State Transport Number of CEMs vs. CCEG
3.6. Relationship between Membrane Resistance and Dynamic State Transport Number
3.7. Mechanical Strength of B-CEMs
4. Conclusions
5. Research Highlights
- ➢
- Block-type, PVA-based cation-exchange membranes (B-CEMs) were prepared.
- ➢
- The transport numbers of B-CEMs were higher than those of R-CEMs.
- ➢
- B-CEMs exhibit similar transport numbers to a commercial CEM.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sata, T. Ion Exchange Membranes, Preparation, Characterization, Modification and Application; Royal Society of Chemistry: London, UK, 2004. [Google Scholar]
- Nemati, M.; Hosseini, S.M.; Shabanian, M. Novel electrodialysis cation exchange membrane prepared by 2-acrylamido-2-methylpropane sulfonic acid; heavy metal ions removal. J. Hazard. Mater. 2017, 337, 90–104. [Google Scholar] [CrossRef]
- Ran, J.; Wu, L.; He, Y.; Yang, Z.; Wang, Y.; Jiang, C.; Ge, L.; Bakangura, E.; Xu, T. Ion exchange membranes: Newdevelopments and applications. J. Membr. Sci. 2017, 522, 267–291. [Google Scholar] [CrossRef]
- Lee, C.H.; Park, H.B.; Chung, Y.S.; Lee, Y.M.; Freeman, B.D. Water sorption, proton conduction, and methanol permeation properties of sulfonated polyimide membranes cross-linked with N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (BES). Macromolecules 2006, 39, 755–764. [Google Scholar] [CrossRef]
- Chen, K.; Hu, Z.; Endo, N.; Fang, J.; Higa, M.; Okamoto, K. Sulfonated polyimides bearing benzimidazole groups for direct methanol fuel cell applications. J. Membr. Sci. 2010, 351, 214–221. [Google Scholar] [CrossRef]
- Peighambardoust, S.J.; Rowshanzamir, S.; Amjadi, M. Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrogen Energy 2010, 35, 9349–9384. [Google Scholar] [CrossRef]
- Gottesfeld, S.; Dekel, D.R.; Page, M.; Bae, C.; Yan, Y.; Zelenay, P.; Kim, Y.S. Anion exchange membrane fuel cells: Current status and remaining challenges. J. Power Sources 2018, 375, 170–184. [Google Scholar] [CrossRef]
- Miyake, J.; Ogawa, Y.; Tanaka, T.; Ahn, J.; Oka, K.; Oyaizu, K.; Miyatake, K. Rechargeable proton exchange membrane fuel cell containing an intrinsic hydrogen storage polymer. Commun. Chem. 2020, 3, 138. [Google Scholar] [CrossRef]
- Jang, J.; Kim, D.-H.; Kang, B.; Lee, J.-H.; Pak, C.; Lee, J.-S. Impact of N-substituent and pKa of azole rings on fuel cell performance and phosphoric acid loss. Appl. Mater. Interfaces 2021, 13, 531–540. [Google Scholar] [CrossRef]
- Hana, L.; Liua, Y.; Chew, J.W. Boron transfer during desalination by electrodialysis. J. Membr. Sci. 2018, 522, 64–72. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Mai, Z.; Zhang, H.; Vankelecom, I. Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ. Sci. 2011, 4, 1147–1160. [Google Scholar] [CrossRef]
- Gubler, L. Membranes and separators for redox flow batteries. Curr. Opin. Electrochem. 2019, 18, 31–36. [Google Scholar] [CrossRef]
- Xue, R.; Jiang, F.; Wang, F.; Zhou, X. Towards cost-effective proton-exchange membranes for redox flow batteries: A facile and innovative method. J. Power Sources 2020, 449, 227475. [Google Scholar] [CrossRef]
- Tedesco, M.; Scalici, C.; Vaccari, D.; Cipollina, A.; Tamburini, A.; Micale, G. Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines. J. Membr. Sci. 2016, 500, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Nam, J.-Y.; Hwang, K.-S.; Kim, H.-C.; Jeong, H.; Kim, H.; Jwa, E.; Yang, S.; Choi, J.; Kim, C.-S.; Han, J.-H.; et al. Assessing the behavior of the feed-water constituents of a pilot-scale 1000-cell-pair reverse electrodialysis with seawater and municipal wastewater effluent. Water Res. 2019, 148, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Mehdizadeh, S.; Kakihana, Y.; Abo, T.; Yuan, Q.; Higa, M. Power generation performance of a pilot-scale reverse electrodialysis using monovalent selective ion-exchange membranes. Membranes 2021, 11, 27. [Google Scholar] [CrossRef]
- Kasahara, S.; Kubo, S.; Onuki, K.; Nomura, M. Thermal efficiency evaluation of HI synthesis/concentration procedures in the thermochemical water splitting IS process. Int. J. Hydrogen Energy 2004, 29, 579–587. [Google Scholar] [CrossRef]
- Kasahara, S.; Kubo, S.; Hino, R.; Onuki, K.; Nomura, M.; Nakao, S. Flowsheet study of the thermochemical water-splitting iodine–sulfur process for effective hydrogen production. Int. J. Hydrogen Energy 2007, 32, 489–496. [Google Scholar] [CrossRef]
- Tanaka, N.; Sawada, S.; Yamaki, T.; Kodaira, T.; Kimura, T.; Nomura, M. Improvement of HI concentration performance for hydrogen production iodine–sulfur process using crosslinked cation-exchange membrane. Chem. Eng. Sci. 2021, 237, 116575. [Google Scholar] [CrossRef]
- Choi, E.Y.; Bae, B.; Moon, S.H. Control of the fixed charge distribution in an ion exchange membrane via diffusion and the reaction rate of the monomer. J. Phys. Chem. B 2007, 111, 6383–6390. [Google Scholar] [CrossRef]
- Asari, Y.; Shoji, N.; Miyoshi, K.; Umeno, D.; Saito, K. Electrodialysis of sulfuric acid with cation-exchange membranes prepared by electro-beam-induced graft polymerization. J. Ion Exch. 2011, 22, 53–57. [Google Scholar] [CrossRef] [Green Version]
- Higa, M.; Goto, M.; Yamaki, T.; Sawada, S.; Koshikawa, H.; Kitamura, A. Characterization of cation-exchange membranes prepared by ion-track graft polymerization. Bull. Soc. Sea Water Sci. Jpn. 2017, 71, 37–38. [Google Scholar]
- Qin, X.H.; Wang, S.Y. Filtration properties of electrospinning nanofibers. J. Appl. Polym. Sci. 2006, 102, 1285–1290. [Google Scholar] [CrossRef]
- Dai, X.S.; Shivkumar, S. Electrospinning of hydroxyapatite fibrous Mats. Mater. Lett. 2007, 61, 2735–2738. [Google Scholar] [CrossRef]
- Yang, E.; Qin, X.; Wang, S. Electrospun crosslinked polyvinyl alcohol membrane. Mater. Lett. 2008, 62, 3555–3557. [Google Scholar] [CrossRef]
- Seino, F.; Konosu, Y.; Ashizawa, M.; Kakihana, Y.; Higa, M.; Matsumoto, H. Polyelectrolyte composite membranes containing electrospun ion-exchange nanofibers: Effect of nanofiber surface charges on ionic transport. Langmuir 2018, 34, 13035–13040. [Google Scholar] [CrossRef] [PubMed]
- Yang, T. Preliminary study of SPEEK/PVA blend membranes for DMFC applications. Int. J. Hydrogen Energy 2008, 33, 6772–6779. [Google Scholar] [CrossRef]
- Yang, T. Poly(vinyl alcohol)/sulfated β-cyclodextrin for direct methanol fuel cell applications. Int. J. Hydrogen Energy 2009, 4, 6917–6924. [Google Scholar] [CrossRef]
- Yang, C.-C.; Chien, W.-C.; Li, Y.J. Direct methanol fuel cell based on poly(vinyl alcohol)/titanium oxide nanotubes/poly(styrene sulfonic acid) (PVA/nt-TiO2/PSSA) composite polymer membrane. J. Power Sources 2010, 195, 3407–3415. [Google Scholar] [CrossRef]
- Higa, M.; Sugita, M.; Maesowa, S.; Endo, N. Poly(vinyl alcohol)-based polymer electrolyte membranes for direct methanol fuel cells. Electrochim. Acta 2010, 55, 1445–1449. [Google Scholar] [CrossRef]
- Yang, C.-C. Fabrication and characterization of poly(vinyl alcohol)/montmorillonite/poly(styrene sulfonic acid) proton-conducting composite membranes for direct methanol fuel cells. Int. J. Hydrogen Energy 2011, 34, 4419–4431. [Google Scholar] [CrossRef]
- Liu, C.-P.; Dai, C.-A.; Chao, C.-Y.; Chang, S.-J. Novel proton exchange membrane based on crosslinked poly(vinyl alcohol) for direct methanol fuel cells. J. Power Sources 2014, 249, 285–298. [Google Scholar] [CrossRef]
- Higa, M.; Feng, S.; Endo, N.; Kakihana, Y. Characteristics and direct methanol fuel cell performance of polymer electrolyte membranes prepared from poly(vinyl alcohol-b-styrene sulfonic acid). Electrochim. Acta 2015, 153, 83–89. [Google Scholar] [CrossRef]
- Dong, F.; Xu, S.; Wu, Xi.; Jin, D.; Wang, P.; Wu, D.; Leng, Q. Cross-linked poly(vinyl alcohol)/sulfosuccinic acid (PVA/SSA) as cation exchange membranes for reverse electrodialysis. Sep. Purif. Technol. 2021, 267, 118629. [Google Scholar]
- Higa, M.; Yamakawa, T. Design and preparation of a novel temperature-responsive ionic gel. 1. A fast and reversible temperature response in the charge density. J. Phys. Chem. B 2004, 108, 16703–16707. [Google Scholar]
- Yamakawa, T.; Ishida, S.; Higa, M. Transport properties of ions through temperature-responsive charged membranes prepared using poly(vinyl alcohol)/ poly(N-isopropylacrylamide)/poly(vinylalcohol-co-2-acrylamido-2-methylpropane sulfonic acid). J. Membr. Sci. 2005, 250, 61–68. [Google Scholar] [CrossRef]
- Nishimura, M.; Shimizu, E.; Higa, M. Electrodialytic transport properties of cation exchange membranes prepared from poly(vinyl alcohol) and poly(vinyl alcohol-co-2-acrylamido-2-methylpropane sulfonic acid). Desalin. Water Treat. 2010, 17, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Higa, M.; Mehdizadeh, S.; Feng, S.; Endo, N.; Kakihana, Y. Cell performance of direct methanol alkaline fuel cell (DMAFC) using anion exchange membranes prepared from PVA-Based block copolymer. J. Membr. Sci. 2020, 597, 117618. [Google Scholar] [CrossRef]
- Kuraray Co., Ltd. Vinyl Alchol-Based Graft Polymer, Method for Producing Same, And Ion-Exchange Membrane Using Same. Japan Patent WO2014087981 A1, 12 June 2014. [Google Scholar]
- Brandrup, J.; Immergeut, E.H.; Grulke, E.A. Polymer Handbook, 4th ed.; Wiley-Interscience: Hoboken, NJ, USA, 1999; p. VI-14. [Google Scholar]
- Nishimura, M.; Higa, M.; Akamine, K.; Masudaya, S. Preparation and characterization of anion-exchange membranes with a semi-interpenetrating network structure of poly(vinyl alcohol) and poly(allyl amine). Desalination 2008, 233, 157–165. [Google Scholar] [CrossRef]
- Higa, M.; Tanaka, N.; Nagase, M.; Yutani, K.; Kameyama, T.; Takamura, K.; Kakihana, Y. Electrodialytic properties of aromatic and aliphatic type hydrocarbon-based anion-exchange membranes with various anion-exchange groups. Polymer 2014, 55, 3951–3960. [Google Scholar] [CrossRef]
Sample | PVA [g] | SSS [g] | H2O [g] | V-50 [g] | CmSSS [mol%] | CCEG [mol%] |
---|---|---|---|---|---|---|
PVA-b-PSSS-1 | 35.6 | 8.00 | 230 | 0.14 | 4 | 2.91 |
PVA-b-PSSS-2 | 35.6 | 13.0 | 250 | 0.22 | 7 | 5.66 |
PVA-b-PSSS-3 | 35.6 | 20.0 | 273 | 0.34 | 10 | 8.25 |
PVA-b-PSSS-4 | 28.5 | 20.8 | 232 | 0.35 | 13 | 10.7 |
Sample | CCEG [mol%] | CGA [vol. %] | dW [µm] | H [-] | IEC [meq/g] |
---|---|---|---|---|---|
B-CEM-1 | 2.91 | 0.01 | 76 | 0.52 | 0.56 |
B-CEM-2 | 0.05 | 82 | 0.43 | ||
B-CEM-3 | 0.10 | 72 | 0.41 | ||
B-CEM-4 | 5.66 | 0.01 | 97 | 0.55 | 0.79 |
B-CEM-5 | 0.05 | 92 | 0.47 | ||
B-CEM-6 | 0.10 | 90 | 0.44 | ||
B-CEM-7 | 8.25 | 0.01 | 89 | 0.56 | 1.05 |
B-CEM-8 | 0.05 | 85 | 0.53 | ||
B-CEM-9 | 0.10 | 112 | 0.50 | ||
B-CEM-10 | 10.7 | 0.01 | 109 | 0.57 | 1.38 |
B-CEM-11 | 0.05 | 119 | 0.56 | ||
B-CEM-12 | 0.10 | 101 | 0.54 |
Sample | TS [MPa] | YM [MPa] | E [%] |
---|---|---|---|
B-CEM-1 | 4.98 | 28.2 | 17.7 |
B-CEM-2 | 1.48 | 46.3 | 4.98 |
B-CEM-3 | 5.14 | 74.4 | 1.66 |
B-CEM-4 | 3.58 | 77.9 | 11.0 |
B-CEM-5 | 2.10 | 39.2 | 2.18 |
B-CEM-6 | 4.63 | 71.0 | 2.24 |
B-CEM-7 | 3.86 | 63.6 | 10.9 |
B-CEM-8 | 6.13 | 50.7 | 4.90 |
B-CEM-9 | 2.38 | 35.6 | 3.07 |
B-CEM-10 | 2.33 | 6.43 | 8.80 |
B-CEM-11 | 7.75 | 41.7 | 3.57 |
B-CEM-12 | - | - | - |
CMX | 36.7 | 1120 | 14.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakihana, Y.; Hashim, N.A.; Mizuno, T.; Anno, M.; Higa, M. Ionic Transport Properties of Cation-Exchange Membranes Prepared from Poly(vinyl alcohol-b-sodium Styrene Sulfonate). Membranes 2021, 11, 452. https://doi.org/10.3390/membranes11060452
Kakihana Y, Hashim NA, Mizuno T, Anno M, Higa M. Ionic Transport Properties of Cation-Exchange Membranes Prepared from Poly(vinyl alcohol-b-sodium Styrene Sulfonate). Membranes. 2021; 11(6):452. https://doi.org/10.3390/membranes11060452
Chicago/Turabian StyleKakihana, Yuriko, N. Awanis Hashim, Taiko Mizuno, Marika Anno, and Mitsuru Higa. 2021. "Ionic Transport Properties of Cation-Exchange Membranes Prepared from Poly(vinyl alcohol-b-sodium Styrene Sulfonate)" Membranes 11, no. 6: 452. https://doi.org/10.3390/membranes11060452
APA StyleKakihana, Y., Hashim, N. A., Mizuno, T., Anno, M., & Higa, M. (2021). Ionic Transport Properties of Cation-Exchange Membranes Prepared from Poly(vinyl alcohol-b-sodium Styrene Sulfonate). Membranes, 11(6), 452. https://doi.org/10.3390/membranes11060452