Treatment of Wastewater from a Food and Beverage Industry Using Conventional Wastewater Treatment Integrated with Membrane Bioreactor System: A Pilot-Scale Case Study
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Sample Collection
2.2. Analytical Method (Laboratory Analysis)
2.3. Experimental Design
2.4. Membrane Configuration
2.5. Membrane Fouling
3. Results
3.1. Characteristics of Raw F&B Wastewater
3.2. Characteristic and Quality of F&B Effluent in a DAF System
3.3. Characteristic and Quality of F&B Effluent in an MBR System
3.4. Continuous Performance Monitoring
3.5. TSS Analysis
3.6. Transmembrane Pressure (TMP) Analysis
3.7. Flux Analysis
3.8. Silt Density Index (SDI)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hsine, E.A.; Benhammou, A.; Pons, M.-N. Design of a Beverage Industry Wastewater Treatment Facility Using Process Simulation. IFAC Proc. Vol. 2004, 37, 299–302. [Google Scholar] [CrossRef]
- Gu, Y.; Li, Y.; Li, X.; Luo, P.; Wang, H.; Wang, X.; Wu, J.; Li, F. Energy Self-sufficient Wastewater Treatment Plants: Feasibilities and Challenges. Energy Procedia 2017, 105, 3741–3751. [Google Scholar] [CrossRef]
- Iorhemen, O.T.; Hamza, R.A.; Tay, J.H. Membrane Bioreactor (MBR) Technology for Wastewater Treatment and Reclamation: Membrane Fouling. Membranes 2016, 6, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Commissioner of Law Revision, Environmental Quality Act 1974; Percetakan National Malaysia Bhd: Kuala Lum-pur, Malaysia, 2006.
- Wang, Y.; Serventi, L. Sustainability of dairy and soy processing: A review on wastewater recycling. J. Clean. Prod. 2019, 237, 117821. [Google Scholar] [CrossRef]
- Razavi, S.M.R.; Miri, T. A real petroleum refinery wastewater treatment using hollow fiber membrane bioreactor (HF-MBR). J. Water Process. Eng. 2015, 8, 136–141. [Google Scholar] [CrossRef]
- Su, D.; Ben, W.; Strobel, B.W.; Qiang, Z. Impacts of wastewater treatment plant upgrades on the distribution and risks of pharmaceuticals in receiving rivers. J. Hazard. Mater. 2021, 406, 124331. [Google Scholar] [CrossRef]
- Kawasaki, K.; Maruoka, S.; Katagami, R.; Bhatta, C.P.; Omori, D.; Matsuda, A. Effect of initial MLSS on operation of submerged membrane activated sludge process. Desalination 2011, 281, 334–339. [Google Scholar] [CrossRef]
- Gurung, K.; Ncibi, M.C.; Sillanpää, M. Assessing membrane fouling and the performance of pilot-scale membrane bioreactor (MBR) to treat real municipal wastewater during winter season in Nordic regions. Sci. Total. Environ. 2017, 579, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Cicek, N. A review of membrane bioreactors and their potential application in the treatment of agricultural wastewater. Can. Biosyst. Eng. 2003, 45, 37–49. [Google Scholar]
- Hoinkis, J.; Deowan, S.A.; Panten, V.; Figoli, A.; Huang, R.R.; Drioli, E. Membrane Bioreactor (MBR) Technology–a Promising Approach for Industrial Water Reuse. Procedia Eng. 2012, 33, 234–241. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Li, G.; Wang, B. Application of Granular Sludge Membrane Bioreactor in the Treatment of Wastewater. Procedia Environ. Sci. 2011, 10, 108–111. [Google Scholar] [CrossRef] [Green Version]
- Luong, T.V.; Schmidt, S.; Deowan, S.; Hoinkis, J.; Figoli, A.; Galiano, F. Membrane Bioreactor and Promising Application for Textile Industry in Vietnam. Procedia CIRP 2016, 40, 419–424. [Google Scholar] [CrossRef] [Green Version]
- Pathak, N.; Phuntsho, S.; Tran, V.H.; Johir, M.; Ghaffour, N.; Leiknes, T.; Fujioka, T.; Shon, H.K. Simultaneous nitrification-denitrification using baffled osmotic membrane bioreactor-microfiltration hybrid system at different oxic-anoxic conditions for wastewater treatment. J. Environ. Manag. 2020, 253, 109685. [Google Scholar] [CrossRef] [PubMed]
- Sikosana, M.L.; Sikhwivhilu, K.; Moutloali, R.; Madyira, D.M. Municipal wastewater treatment technologies: A review. Procedia Manuf. 2019, 35, 1018–1024. [Google Scholar] [CrossRef]
- Yan, S.; Songtao, Z.; Li, Z. Pilot Tests on the Treatment of Bath Wastewater by a Membrane Bioreactor. Membranes 2021, 11, 85. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, X.; Wang, Z.; Wang, L.; Wu, Z. QAC modified PVDF membranes: Antibiofouling performance, mechanisms, and effects on microbial communities in an MBR treating municipal wastewater. Water Res. 2017, 120, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Mei, X.; Quek, P.J.; Wang, Z.; Ng, H.Y. Alkali-assisted membrane cleaning for fouling control of anaerobic ceramic membrane bioreactor. Bioresour. Technol. 2017, 240, 25–32. [Google Scholar] [CrossRef]
- Ng, K.-K.; Lin, C.-F.; Panchangam, S.C.; Hong, P.-K.A.; Yang, P.-Y. Reduced membrane fouling in a novel bio-entrapped membrane reactor for treatment of food and beverage processing wastewater. Water Res. 2011, 45, 4269–4278. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Cheng, F.; Liu, Y. New insights into membrane fouling in submerged MBR under sub-critical flux condition. Bioresour. Technol. 2013, 137, 404–408. [Google Scholar] [CrossRef]
- Yao, M.; Ladewig, B.; Zhang, K. Identification of the change of soluble microbial products on membrane fouling in membrane bioreactor (MBR). Desalination 2011, 278, 126–131. [Google Scholar] [CrossRef]
- Abushaban, A.; Salinas-Rodriguez, S.; Pastorelli, D.; Schippers, J.; Mondal, S.; Goueli, S.; Kennedy, M. Assessing Pretreatment Effectiveness for Particulate, Organic and Biological Fouling in a Full-Scale SWRO Desalination Plant. Membranes 2021, 11, 167. [Google Scholar] [CrossRef] [PubMed]
- Hwang, B.-K.; Lee, C.-H.; Chang, I.-S.; Drews, A.; Field, R. Membrane bioreactor: TMP rise and characterization of bio-cake structure using CLSM-image analysis. J. Membr. Sci. 2012, 419–420, 33–41. [Google Scholar] [CrossRef]
- Hai, F.I.; Yamamoto, K.; Fukushi, K. Different fouling modes of submerged hollow-fiber and flat-sheet membranes induced by high strength wastewater with concurrent biofouling. Desalination 2005, 180, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Futamura, O.; Katoh, M.; Takeuchi, K. Organic waste water treatment by activated sludge process using integrated type membrane separation. Desalination 1994, 98, 17–25. [Google Scholar] [CrossRef]
- Hashisho, J.; El-Fadel, M.; Al-Hindi, M.; Salam, D.; Alameddine, I. Hollow fiber vs. flat sheet MBR for the treatment of high strength stabilized landfill leachate. Waste Manag. 2016, 55, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Chmiel, H.; Kaschek, M.; Blöcher, C.; Noronha, M.; Mavrov, V. Concepts for the treatment of spent process water in the food and beverage industries. Desalination 2003, 152, 307–314. [Google Scholar] [CrossRef]
- Matošić, M.; Prstec, I.; Jakopović, H.K.; Mijatovic, I. Treatment of beverage production wastewater by membrane bioreactor. Desalination 2009, 246, 285–293. [Google Scholar] [CrossRef]
- Sheldon, M.S.; Erdogan, I. Multi-stage EGSB/MBR treatment of soft drink industry wastewater. Chem. Eng. J. 2016, 285, 368–377. [Google Scholar] [CrossRef]
- APHA. American Public Health Association; American Water Works Association; Water Environment Federation. Stand. Methods Exam. Water Wastewater 2002, 2, 1–541.
- Wei, C.-H.; Huang, X.; Ben Aim, R.; Yamamoto, K.; Amy, G. Critical flux and chemical cleaning-in-place during the long-term operation of a pilot-scale submerged membrane bioreactor for municipal wastewater treatment. Water Res. 2011, 45, 863–871. [Google Scholar] [CrossRef]
- Ninomiya, Y.; Kimura, K.; Sato, T.; Kakuda, T.; Kaneda, M.; Hafuka, A.; Tsuchiya, T. High-flux operation of MBRs with ceramic flat-sheet membranes made possible by intensive membrane cleaning: Tests with real domestic wastewater under low-temperature conditions. Water Res. 2020, 181, 115881. [Google Scholar] [CrossRef]
- Park, C.; Kim, H.; Hong, S.; Choi, S.-I. Variation and prediction of membrane fouling index under various feed water characteristics. J. Membr. Sci. 2006, 284, 248–254. [Google Scholar] [CrossRef]
- Choi, J.-S.; Hwang, T.-M.; Lee, S.; Hong, S. A systematic approach to determine the fouling index for a RO/NF membrane process. Desalination 2009, 238, 117–127. [Google Scholar] [CrossRef]
- DuPont de Nemours, Inc. “Resource Centre: DuPont,” April 2020. Available online: https://www.dupont.com/content/dam/dupont/amer/us/en/water-solutions/public/documents/en/45-D01559-en.pdf (accessed on 28 January 2021).
- Musa, M.A.; Idrus, S.; Man, H.C.; Daud, N.N.N. Wastewater Treatment and Biogas Recovery Using Anaerobic Membrane Bioreactors (AnMBRs): Strategies and Achievements. Energies 2018, 11, 1675. [Google Scholar] [CrossRef] [Green Version]
- Muniz, G.L.; Borges, A.C.; da Silva, T.C.F. Performance of natural coagulants obtained from agro-industrial wastes in dairy wastewater treatment using dissolved air flotation. J. Water Process. Eng. 2020, 37, 101453. [Google Scholar] [CrossRef]
- El-Gohary, F.; Tawfik, A.; Mahmoud, U. Comparative study between chemical coagulation/precipitation (C/P) versus coagulation/dissolved air flotation (C/DAF) for pre-treatment of personal care products (PCPs) wastewater. Desalination 2010, 252, 106–112. [Google Scholar] [CrossRef]
- Atallah, E.; Zeaiter, J.; Ahmad, M.N.; Kwapinska, M.; Leahy, J.J.; Kwapinski, W. The effect of temperature, residence time, and water-sludge ratio on hydrothermal carbonization of DAF dairy sludge. J. Environ. Chem. Eng. 2020, 8, 103599. [Google Scholar] [CrossRef]
- Sun, J.; Wang, X.; Li, R.; Dai, L.; Zhu, W.-T. Hyperhaline Municipal Wastewater Treatment of a Processing Zone through Pilot-Scale A/O MBR, Part I: Characteristics of Mixture Liquor and Organics Removal. Procedia Environ. Sci. 2011, 8, 773–780. [Google Scholar] [CrossRef] [Green Version]
- Litaor, M.; Meir-Dinar, N.; Castro, B.; Azaizeh, H.; Rytwo, G.; Levi, N.; Levi, M.; MarChaim, U. Treatment of winery wastewater with aerated cells mobile system. Environ. Nanotechnol. Monit. Manag. 2015, 4, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Zhang, W.; Tang, B.; Ding, J.; Zhang, Z. Membrane fouling mechanism of biofilm-membrane bioreactor (BF-MBR): Pore blocking model and membrane cleaning. Bioresour. Technol. 2018, 250, 398–405. [Google Scholar] [CrossRef]
- Inc. Metcalf & Eddy; Tchobanoglous, G.; Stensel, H.; Tsuchihashi, R. Wastewater Engineering: Treatment and Resource Recovery, 5th ed.; McGraw-Hill: New York, NY, USA, 2013. [Google Scholar]
- Abushaban, A.; Salinas-Rodriguez, S.; Kapala, M.; Pastorelli, D.; Schippers, J.; Mondal, S.; Goueli, S.; Kennedy, M. Monitoring Biofouling Potential Using ATP-Based Bacterial Growth Potential in SWRO Pre-Treatment of a Full-Scale Plant. Membranes 2020, 10, 360. [Google Scholar] [CrossRef] [PubMed]
Source Wastewater | Membrane Type | Pore Size (µm) | Membrane Surface Area (m2) | Capacity (L) | Removal Efficiency (%) | Country | Reference |
---|---|---|---|---|---|---|---|
F&B processing plant | HF | 0.04 | 74 | 1500 | ≈99% COD | Europe | [26] |
Beverage processing | HF | 0.4 | 0.92 | 40 | ≈94% COD | Croatia | [27] |
F&B processing plant | HF | 0.036 | 0.046 | 50 | ≈91–98% COD | USA | [18] |
Soft drink processing | HF | 0.2–0.4 | 0.058 | 30 | ≈83.9% COD | South Africa | [28] |
Dairy and soy processing | HF | 0.5 | 0.044 | 10 | ≈93.1% TSS ≈99% COD | New Zealand | [3] |
No | Monitoring Parameter | Point of Sampling |
---|---|---|
1 | Flow | Influent EQ, Effluent DAF, Effluent MBR |
2 | pH | Influent EQ, Effluent DAF, Effluent MBR |
3 | COD | Influent EQ, Effluent DAF, Effluent MBR |
4 | TSS | Influent EQ, Effluent DAF, Effluent MBR |
5 | Turbidity | Effluent MBR |
6 | DO | Effluent DAF |
7 | Static Pressure | Effluent MBR |
8 | Operating Pressure | Effluent MBR |
9 | TMP | Effluent MBR |
10 | Flux | Effluent MBR |
No | Specification | Unit | HF | FS |
---|---|---|---|---|
1 | Brand | - | Sterapore | Membray |
2 | Make | - | Mitsubishi, Japan | Toray, Japan |
3 | Membrane Surface Area | m2 | 1000 | 45 |
4 | Material | - | PVDF | PVDF + PET non-woven fabric |
5 | Pore Size | µ | 0.4 | 0.08 |
6 | Recommended MLSS range | mg/L | 5000–12,000 | 7000–18,000 |
7 | Recommended operating TMP | bar | <0.3 | <0.2 |
8 | Recommended operating Flux | L/m2/h | <33.3 | <31.2 |
9 | Air flow rate | Nm3/min/module | 4.4 | 0.75 |
No | Parameter | Unit | Results | Standard A * | Standard B * |
---|---|---|---|---|---|
HF Membrane | |||||
1 | Flow | m3/h | 30 | - | - |
2 | pH | pH | 7.4 ± 1 | 6.0–9.0 | 5.5–9.0 |
3 | COD | mg/L | 1710 ± 312 | 80 | 200 |
4 | TSS | mg/L | 140 ± 65 | 50 | 100 |
FS Membrane | |||||
5 | Flow | m3/h | 25 | - | - |
6 | pH | pH | 6.9 ± 11 | 6.0–9.0 | 5.5–9.0 |
7 | COD | mg/L | 3000 ± 312 | 80 | 200 |
8 | TSS | mg/L | 250 ± 65 | 50 | 100 |
No | Parameter | Unit | Average Results | Total Reduction (%) (Influent from EQ Tank) |
---|---|---|---|---|
HF Membrane | ||||
1 | COD | mg/L | 229.6 | 86.5 |
2 | TSS | mg/L | 71.2 | 49.1 |
FS Membrane | ||||
3 | COD | mg/L | 1537.9 | 48.7 |
4 | TSS | mg/L | 93.5 | 62.6 |
No | Parameter | Unit | Average Results | Total Rejection Rate (%) (Effluent from DAF) |
---|---|---|---|---|
HF Membrane at MLSS 6000 mg/L | ||||
1 | COD | mg/L | 16.9 | 92.6 |
2 | TSS | mg/L | 3.8 | 94.7 |
HF Membrane at MLSS 12,000 mg/L | ||||
3 | COD | mg/L | 33.3 | 85.5 |
4 | TSS | mg/L | 4.2 | 94.1 |
FS Membrane at MLSS 6000 mg/L | ||||
5 | COD | mg/L | 128.0 | 91.7 |
6 | TSS | mg/L | 14.5 | 84.5 |
FS Membrane at MLSS 12,000 mg/L | ||||
7 | COD | mg/L | 128.7 | 91.6 |
8 | TSS | mg/L | 14.6 | 84.4 |
HF Membrane Water Sample 1 | |||||
Time | Unit | Test 1 | Test 2 | Test 3 | Average |
Time initial, ti | s | 330 | 312 | 321 | 321 |
Time final, tf | s | 212 | 206 | 210 | 209 |
SDI | (%/min) | 2.38 | 2.26 | 2.31 | 2.32 |
FS Membrane Water Sample 2 | |||||
Time | Unit | Test 1 | Test 2 | Test 3 | Average |
Time initial, ti | s | 411 | 423 | 398 | 410.7 |
Time final, tf | s | 298 | 302 | 311 | 304 |
SDI | (%/min) | 1.83 | 1.91 | 1.46 | 1.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhamad Ng, S.N.; Idrus, S.; Ahsan, A.; Tuan Mohd Marzuki, T.N.; Mahat, S.B. Treatment of Wastewater from a Food and Beverage Industry Using Conventional Wastewater Treatment Integrated with Membrane Bioreactor System: A Pilot-Scale Case Study. Membranes 2021, 11, 456. https://doi.org/10.3390/membranes11060456
Muhamad Ng SN, Idrus S, Ahsan A, Tuan Mohd Marzuki TN, Mahat SB. Treatment of Wastewater from a Food and Beverage Industry Using Conventional Wastewater Treatment Integrated with Membrane Bioreactor System: A Pilot-Scale Case Study. Membranes. 2021; 11(6):456. https://doi.org/10.3390/membranes11060456
Chicago/Turabian StyleMuhamad Ng, Sabrina Ng, Syazwani Idrus, Amimul Ahsan, Tuan Nurfarhana Tuan Mohd Marzuki, and Siti Baizura Mahat. 2021. "Treatment of Wastewater from a Food and Beverage Industry Using Conventional Wastewater Treatment Integrated with Membrane Bioreactor System: A Pilot-Scale Case Study" Membranes 11, no. 6: 456. https://doi.org/10.3390/membranes11060456
APA StyleMuhamad Ng, S. N., Idrus, S., Ahsan, A., Tuan Mohd Marzuki, T. N., & Mahat, S. B. (2021). Treatment of Wastewater from a Food and Beverage Industry Using Conventional Wastewater Treatment Integrated with Membrane Bioreactor System: A Pilot-Scale Case Study. Membranes, 11(6), 456. https://doi.org/10.3390/membranes11060456