Phosphate Adsorption from Aqueous Solution Using Electrospun Cellulose Acetate Nanofiber Membrane Modified with Graphene Oxide/Sodium Dodecyl Sulphate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Characterization
2.2. Polymeric Solution and Electrospinning
2.3. Sorption Studies
3. Results and Discussion
3.1. Characterization of CA/GO/SDS Membrane
3.2. Effect of pH
3.3. Kinetic Modelling
3.3.1. First Order Lagergren Model
3.3.2. Second-Order Lagergren Model
3.4. Adsorption Isotherm
3.5. Comparison of Phosphate Adsorbents
3.6. Method Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gizińska-Górna, M.; Jóźwiakowski, K.; Marzec, M.; Pytka, A.; Sosnowska, B.; Różańska-Boczula, M.; Listosz, A. Analysis of the influence of a hybrid constructed wetland wastewater treatment plant on the water quality of the receiver. Rocz. Ochr. Sr. 2017, 19, 370–393. [Google Scholar]
- Bannerman, R.T.; Owens, D.W.; Dodds, R.B.; Hornewer, N.J. Sources of Pollutants in Wisconsin Stormwater. Water Sci. Technol. 1993, 28, 241–259. [Google Scholar] [CrossRef]
- Wang, S.; Xu, Y.; Norbu, N.; Wang, Z. Remediation of biochar on heavy metal polluted soils. IOP Conf. Ser. Earth Environ. Sci. 2018, 108, 42113. [Google Scholar] [CrossRef]
- Rizzo, G.F. Use of Biochar Geostructures for Urban Stormwater Water Cleanup. 2015, p. 90. Available online: https://eprints.usq.edu.au/29161/1/Rizzo_G_Craig.pdf (accessed on 29 October 2015).
- Wang, X.; Wei, J.; Bai, N.; Cha, H.; Cao, C.; Zheng, K.; Liu, Y. The phosphorus fractions and adsorption-desorption characteristics in the Wuliangsuhai Lake, China. Environ. Sci. Pollut. Res. 2018, 25, 20648–20661. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lin, X.; He, Y.; Chen, Y.; Zhou, J.; Luo, X. Adsorption of phosphorus from slaughterhouse wastewater by carboxymethyl konjac glucomannan loaded with lanthanum. Int. J. Biol. Macromol. 2018, 119, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Schindler, D.W. Evolution of Phosphorus Limitation in Lakes. Science 1977, 195, 260–262. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Yu, Q.; Gauvin, F.; Brouwers, H.; Liu, C. Phosphorus removal from aqueous solutions by adsorptive concrete aggregates. J. Clean. Prod. 2021, 278, 123933. [Google Scholar] [CrossRef]
- Bulut, E.; Özacar, M.; Şengil, I.A. Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite. J. Hazard. Mater. 2008, 154, 613–622. [Google Scholar] [CrossRef]
- Kumar, P.S.; Korving, L.; Van Loosdrecht, M.C.; Witkamp, G.-J. Adsorption as a technology to achieve ultra-low concentrations of phosphate: Research gaps and economic analysis. Water Res. X 2019, 4, 100029. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, L.; Tang, W.; Zhong, Y.; Luo, K.; Duan, M.; Xing, W.; Liang, J. Removal and recovery of phosphorus from low-strength wastewaters by flow-electrode capacitive deionization. Sep. Purif. Technol. 2020, 237, 116322. [Google Scholar] [CrossRef]
- De Graaff, D.R.; Van Loosdrecht, M.C.; Pronk, M. Biological phosphorus removal in seawater-adapted aerobic granular sludge. Water Res. 2020, 172, 115531. [Google Scholar] [CrossRef]
- Sun, S.; Wang, S.; Ye, Y.; Pan, B. Highly efficient removal of phosphonates from water by a combined Fe(III)/UV/co-precipitation process. Water Res. 2019, 153, 21–28. [Google Scholar] [CrossRef]
- Hashim, K.S.; Alkhaddar, R.; Jasim, N.; Shaw, A.; Phipps, D.; Kot, P.; Pedrola, M.O.; Alattabi, A.W.; Abdulredha, M.; Alawsh, R. Electrocoagulation as a green technology for phosphate removal from river water. Sep. Purif. Technol. 2019, 210, 135–144. [Google Scholar] [CrossRef]
- Vunnava, V.S.G.; Singh, S. Entropy generation analysis of sequential Anaerobic Digester Ion-Exchange technology for Phosphorus extraction from waste. J. Clean. Prod. 2019, 221, 55–62. [Google Scholar] [CrossRef]
- Xu, W.; Zheng, W.; Wang, F.; Xiong, Q.; Shi, X.-L.; Kalkhajeh, Y.K.; Xu, G.; Gao, H. Using iron ion-loaded aminated polyacrylonitrile fiber to efficiently remove wastewater phosphate. Chem. Eng. J. 2021, 403, 126349. [Google Scholar] [CrossRef]
- Xia, W.-J.; Guo, L.-X.; Yu, L.-Q.; Zhang, Q.; Xiong, J.-R.; Zhu, X.-Y.; Wang, X.-C.; Huang, B.-C.; Jin, R.-C. Phosphorus removal from diluted wastewaters using a La/C nanocomposite-doped membrane with adsorption-filtration dual functions. Chem. Eng. J. 2021, 405, 126924. [Google Scholar] [CrossRef]
- Yang, Y.; Koh, K.Y.; Li, R.; Zhang, H.; Yan, Y.; Chen, J.P. An innovative lanthanum carbonate grafted microfibrous composite for phosphate adsorption in wastewater. J. Hazard. Mater. 2020, 392, 121952. [Google Scholar] [CrossRef]
- Huang, Y.; Lee, X.; Grattieri, M.; Yuan, M.; Cai, R.; Macazo, F.C.; Minteer, S. Modified biochar for phosphate adsorption in environmentally relevant conditions. Chem. Eng. J. 2020, 380, 122375. [Google Scholar] [CrossRef]
- Liang, Y.; Wu, D.; Fu, R. Carbon Microfibers with Hierarchical Porous Structure from Electrospun Fiber-Like Natural Biopolymer. Sci. Rep. 2013, 3, srep01119. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Ni, N.; Chen, J.; Yao, Q.; Shen, B.; Zhang, Y.; Zhu, M.; Wang, Z.; Ruan, J.; Wang, J.; et al. Electrospun SF/PLCL nanofibrous membrane: A potential scaffold for retinal progenitor cell proliferation and differentiation. Sci. Rep. 2015, 5, srep14326. [Google Scholar] [CrossRef]
- Mahapatra, A.; Mishra, B.; Hota, G. Electrospun Fe2O3–Al2O3 nanocomposite fibers as efficient adsorbent for removal of heavy metal ions from aqueous solution. J. Hazard. Mater. 2013, 258, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhong, L.-B.; Zhao, Q.-B.; Frear, C.; Zheng, Y.-M. Synthesis of Fe3O4/Polyacrylonitrile Composite Electrospun Nanofiber Mat for Effective Adsorption of Tetracycline. ACS Appl. Mater. Interfaces 2015, 7, 14573–14583. [Google Scholar] [CrossRef]
- Tian, Y.; Wu, M.; Liu, R.; Li, Y.; Wang, D.; Tan, J.; Wu, R.; Huang, Y. Electrospun membrane of cellulose acetate for heavy metal ion adsorption in water treatment. Carbohydr. Polym. 2011, 83, 743–748. [Google Scholar] [CrossRef]
- Mahmood, K.; Zia, K.M.; Zuber, M.; Salman, M.; Anjum, M.N. Recent developments in curcumin and curcumin based polymeric materials for biomedical applications: A review. Int. J. Biol. Macromol. 2015, 81, 877–890. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Fukushi, K.; Yamamoto, K. A submerged nanofiltration membrane bioreactor for domestic wastewater treatment: The performance of cellulose acetate nanofiltration membranes for long-term operation. Sep. Purif. Technol. 2007, 52, 470–477. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Todd, A.D.; Bielawski, C.W. Harnessing the chemistry of graphene oxide. Chem. Soc. Rev. 2014, 43, 5288–5301. [Google Scholar] [CrossRef] [PubMed]
- Hunt, A.; Dikin, D.A.; Kurmaev, E.Z.; Boyko, T.D.; Bazylewski, P.; Chang, G.S.; Moewes, A. Epoxide Speciation and Functional Group Distribution in Graphene Oxide Paper-Like Materials. Adv. Funct. Mater. 2012, 22, 3950–3957. [Google Scholar] [CrossRef]
- Narayan, R.; Kim, J.E.; Kim, J.Y.; Lee, K.E.; Kim, S.O. Graphene Oxide Liquid Crystals: Discovery, Evolution and Applications. Adv. Mater. 2016, 28, 3045–3068. [Google Scholar] [CrossRef]
- Baig, N.; Ihsanullah; Sajid, M.; Saleh, T.A. Graphene-based adsorbents for the removal of toxic organic pollutants: A review. J. Environ. Manag. 2019, 244, 370–382. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Shen, Y.; Yan, Z.; Wei, Q.; Jiao, T.; Shen, Y.; Han, Y.; Wang, Y.; Wang, S.; Xia, Y.; et al. Extraction-like removal of organic dyes from polluted water by the graphene oxide/PNIPAM composite system. Chem. Eng. J. 2021, 405, 126647. [Google Scholar] [CrossRef]
- Danial, W.H.; Chutia, A.; Majid, Z.A.; Sahnoun, R.; Aziz, M. Electrochemical synthesis and characterization of stable colloidal suspension of graphene using two-electrode cell system. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2015; Volume 1669. [Google Scholar] [CrossRef]
- Ma, Z.; Kotaki, M.; Ramakrishna, S. Electrospun cellulose nanofiber as affinity membrane. J. Membr. Sci. 2005, 265, 115–123. [Google Scholar] [CrossRef]
- Han, S.O.; Youk, J.H.; Min, K.D.; Kang, Y.O.; Park, W.H. Electrospinning of cellulose acetate nanofibers using a mixed solvent of acetic acid/water: Effects of solvent composition on the fiber diameter. Mater. Lett. 2008, 62, 759–762. [Google Scholar] [CrossRef]
- Kulkarni, A.; Bambole, V.A.; Mahanwar, P.A. Electrospinning of Polymers, Their Modeling and Applications. Polym. Technol. Eng. 2010, 49, 427–441. [Google Scholar] [CrossRef]
- Li, S.-M.; Jia, N.; Ma, M.-G.; Zhang, Z.; Liu, Q.-H.; Sun, R.-C. Cellulose–silver nanocomposites: Microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohydr. Polym. 2011, 86, 441–447. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, Y.; Liu, C. The Horizon of Materiobiology: A Perspective on Material-Guided Cell Behaviors and Tissue Engineering. Chem. Rev. 2017, 117, 4376–4421. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.C., Jr.; Rubio, F.; Meneghel, A.P.; Coelho, G.F.; Dragunski, D.C.; Strey, L. The use of Crambe abyssinica seeds as adsorbent in the removal of metals from waters. Revista Brasileira de Engenharia Agrícola e Ambiental 2013, 17, 306–311. [Google Scholar] [CrossRef] [Green Version]
- Junior, A.C.G.; Schwantes, D.; Junior, E.C.; Zimmermann, J.; Coelho, G.F. Adsorption of Cd (II), Pb (II) and Cr (III) on chemically modified Euterpe Oleracea biomass for the remediation of water pollution. Acta Sci. Technol. 2020, 43, e50263. [Google Scholar] [CrossRef]
- Rude, P.D.; Aller, R.C. The influence of Mg (super 2+) on the adsorption of fluoride by hydrous oxides in seawater. Am. J. Sci. 1993, 293, 1–24. [Google Scholar] [CrossRef]
- Bahena, J.L.R.; Cabrera, A.R.; Valdivieso, A.L.; Urbina, R.H. Fluoride adsorption onto α-Al2O3and its effect on the zeta potential at the alumina—Aqueous electrolyte interface. Sep. Sci. Technol. 2002, 37, 1973–1987. [Google Scholar] [CrossRef]
- McGrath, J.; Spargo, J.; Penn, C. Soil Fertility and Plant Nutrition. Encycl. Agric. Food Syst. 2014, 5, 166–184. [Google Scholar] [CrossRef]
- Vasudevan, S.; Lakshmi, J. The adsorption of phosphate by graphene from aqueous solution. RSC Adv. 2012, 2, 5234–5242. [Google Scholar] [CrossRef]
- Ho, Y. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 2000, 34, 735–742. [Google Scholar] [CrossRef]
- Aurich, A.; Hofmann, J.; Oltrogge, R.; Wecks, M.; Gläser, R.; Blömer, L.; Mauersberger, S.; Müller, R.A.; Sicker, D.; Giannis, A. Improved Isolation of Microbiologically Produced (2R,3S)-Isocitric Acid by Adsorption on Activated Carbon and Recovery with Methanol. Org. Process. Res. Dev. 2017, 21, 866–870. [Google Scholar] [CrossRef] [Green Version]
- Aurich, A.; Hofmann, J.; Oltrogge, R.; Wecks, M.; Gläser, R.; Blömer, L.; Mauersberger, S.; Müller, R.A.; Sicker, D.; Giannis, A. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 1100–1107. [Google Scholar]
- Rodríguez, K.; Renneckar, S.; Gatenholm, P. Biomimetic Calcium Phosphate Crystal Mineralization on Electrospun Cellulose-Based Scaffolds. ACS Appl. Mater. Interfaces 2011, 3, 681–689. [Google Scholar] [CrossRef]
- Dong, Q.; Shi, S.; Xie, Y.; Wang, Y.; Zhang, X.; Wang, X.; Guo, S.; Zhu, L.; Zhang, G.; Xu, D. Preparation of mesoporous zirconia ceramic fibers modified by dual surfactants and their phosphate adsorption characteristics. Ceram. Int. 2020, 46, 14019–14029. [Google Scholar] [CrossRef]
- Jiao, G.-J.; Ma, J.; Li, Y.; Jin, D.; Guo, Y.; Zhou, J.; Sun, R. Enhanced adsorption activity for phosphate removal by functional lignin-derived carbon-based adsorbent: Optimization, performance and evaluation. Sci. Total. Environ. 2021, 761, 143217. [Google Scholar] [CrossRef]
- Esmaeili, H.; Foroutan, R.; Jafari, D.; Rezaei, M.A. Effect of interfering ions on phosphate removal from aqueous media using magnesium oxide@ferric molybdate nanocomposite. Korean J. Chem. Eng. 2020, 37, 804–814. [Google Scholar] [CrossRef]
- Xu, Q.; Chen, Z.; Wu, Z.; Xu, F.; Yang, D.; He, Q.; Li, G.; Chen, Y. Novel lanthanum doped biochars derived from lignocellulosic wastes for efficient phosphate removal and regeneration. Bioresour. Technol. 2019, 289, 121600. [Google Scholar] [CrossRef] [PubMed]
First Order Adsorption | Second Order Adsorption | ||||||
---|---|---|---|---|---|---|---|
Membrane | qe (exp) | qe (cal) | k1 | R2 | qe (cal) | k2 × 10−3 | R2 |
CA | 10.1 | 9.3994 | −0.026 | 0.9224 | 10.3627 | 5.452 | 0.9896 |
CA/GO/SDS | 21.8 | 15.7253 | −0.0164 | 0.93 | 23.2558 | 2.559 | 0.992 |
Adsorbent | Method | Equilibrium Time | Removal Efficiency |
---|---|---|---|
Mesoporous zirconia [48] | electrospinning | 200 min | 92.5% |
MgO-functionalized lignin-based bio-charcoal (MFLC) [49] | hydrothermal carbonization and activation | 240 min | 99.76% |
MgO/Fe2(MoO4)3 [50] | blending | 80 min | 98.38% |
La-biochar [51] | pyrolysis and blending | 240 min | 85% |
CA/GO/SDS (present study) | electrospinning | 180 min | 87.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amin, N.A.A.M.; Mokhter, M.A.; Salamun, N.; Wan Mahmood, W.M.A. Phosphate Adsorption from Aqueous Solution Using Electrospun Cellulose Acetate Nanofiber Membrane Modified with Graphene Oxide/Sodium Dodecyl Sulphate. Membranes 2021, 11, 546. https://doi.org/10.3390/membranes11070546
Amin NAAM, Mokhter MA, Salamun N, Wan Mahmood WMA. Phosphate Adsorption from Aqueous Solution Using Electrospun Cellulose Acetate Nanofiber Membrane Modified with Graphene Oxide/Sodium Dodecyl Sulphate. Membranes. 2021; 11(7):546. https://doi.org/10.3390/membranes11070546
Chicago/Turabian StyleAmin, Nur Ain Atiqah Mohd, Mohd Akmali Mokhter, Nurrulhidayah Salamun, and Wan M. Asyraf Wan Mahmood. 2021. "Phosphate Adsorption from Aqueous Solution Using Electrospun Cellulose Acetate Nanofiber Membrane Modified with Graphene Oxide/Sodium Dodecyl Sulphate" Membranes 11, no. 7: 546. https://doi.org/10.3390/membranes11070546
APA StyleAmin, N. A. A. M., Mokhter, M. A., Salamun, N., & Wan Mahmood, W. M. A. (2021). Phosphate Adsorption from Aqueous Solution Using Electrospun Cellulose Acetate Nanofiber Membrane Modified with Graphene Oxide/Sodium Dodecyl Sulphate. Membranes, 11(7), 546. https://doi.org/10.3390/membranes11070546