Multicomponent Spiral Wound Membrane Separation Model for CO2 Removal from Natural Gas
Abstract
:1. Introduction
2. Model Development
2.1. Mathematical Modelling
- ○
- ○
- ○
- The pressure variation for flow through the permeate spacer channel is characterized by Hagen–Poiseuille equation [24];
- ○
- ○
- ○
- ○
- ○
- Channel spacer, and membrane, thickness;
- Module, , and collection tube, diameter;
- Number of leaves, ;
- Module length, ;
2.2. Simulation Method
3. Results and Discussion
3.1. Element Sensitivity Analysis
3.2. Model Validation
3.2.1. Effect of Feed Pressure
3.2.2. Effect of the Feed Flow Rate
3.2.3. Effect of Acid Gas Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Effective membrane area (m) | |
External and internal diameter | |
Wetted diameter | |
Thickness of envelopes | |
Permeation flux | |
Active layer thickness of the membrane | |
Module length | |
Height channel per element | |
Number of turn(s) | |
Permeability | |
High pressure on the feed side | |
Low pressure on the permeate side | |
Mix gas permeance of each component in the feed | |
Feed flow rate (m3/s) | |
Feed side flow rate cell (m3/s) | |
Permeate side flow rate cell | |
Membrane width | |
Width channel per element | |
Summation of all components composition in the permeate side | |
Retentate side composition cell | |
Permeate side composition cell |
References
- Hu, W.; Bao, J.; Hu, B. Trend and progress in global oil and gas exploration. Pet. Explor. Dev. 2013, 40, 439–443. [Google Scholar] [CrossRef]
- Liang, F.-Y.; Ryvak, M.; Sayeed, S.; Zhao, N. The role of natural gas as a primary fuel in the near future, including comparisons of acquisition, transmission and waste handling costs of as with competitive alternatives. Chem. Central J. 2012, 6, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mokhatab, S.; Poe, W.A. Chapter 3—Raw gas transmission. In Handbook of Natural Gas Transmission and Processing; Mokhatab, S., Poe, W.A., Speight, J.G., Eds.; Gulf Professional Publishing: Burlington, VT, USA, 2006; pp. 81–188. [Google Scholar]
- Kidnay, A.J.; Parrish, W.R. Fundamentals of Natural Gas Processing; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Bernardo, P.; Drioli, E.; Golemme, G. Membrane Gas Separation: A Review/State of the Art. Ind. Eng. Chem. Res. 2009, 48, 4638–4663. [Google Scholar] [CrossRef]
- Scholes, C.A.; Stevens, G.; Kentish, S. Membrane gas separation applications in natural gas processing. Fuel 2012, 96, 15–28. [Google Scholar] [CrossRef]
- Seader, J.D.; Henley, E.J.; Roper, D.K. Separation Process Principles, 3rd ed.; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Dortmundt, D.; Doshi, K. Recent Developments in CO2 Removal Membrane Technology; UOP LCC: Des Plaines, IL, USA, 2003; Volume 38. [Google Scholar]
- Baker, R.W. Future Directions of Membrane Gas Separation Technology. Ind. Eng. Chem. Res. 2002, 41, 1393–1411. [Google Scholar] [CrossRef]
- Davis, R.A. Simple Gas Permeation and Pervaporation Membrane Unit Operation Models for Process Simulators. Chem. Eng. Technol. 2002, 25, 717–722. [Google Scholar] [CrossRef]
- Rautenbach, R.; Knauf, R.; Struck, A.; Vier, J. Simulation and design of membrane plants with AspenPlus. Chem. Eng. Technol. 1996, 19, 391–397. [Google Scholar] [CrossRef]
- Rautenbach, R.; Albrecht, R. Membrane Processes; Wiley: Hoboken, NJ, USA, 1989. [Google Scholar]
- Pan, C.Y. Gas separation by permeators with high-flux asymmetric membranes. AIChE J. 1983, 29, 545–552. [Google Scholar] [CrossRef]
- Qi, R.; Henson, M.A. Approximate modeling of spiral-wound gas permeators. J. Membr. Sci. 1996, 121, 11–24. [Google Scholar] [CrossRef]
- Krovvidi, K.R.; Kovvali, A.S.; Vemury, S.; Khan, A.A. Approximate solutions for gas permeators separating binary mixtures. J. Membr. Sci. 1992, 66, 103–118. [Google Scholar] [CrossRef]
- Safari, M.; Ghanizadeh, A.; Montazer-Rahmati, M.M. Optimization of membrane-based CO2-removal from natural gas using simple models considering both pressure and temperature effects. Int. J. Greenh. Gas Control. 2009, 3, 3–10. [Google Scholar] [CrossRef]
- Lin, D.; Ding, Z.; Liu, L.; Ma, R. Modeling spiral-wound membrane modules with applications for gas/vapor permeation. Comput. Chem. Eng. 2012, 44, 20–33. [Google Scholar] [CrossRef]
- Gholami, G.; Soleimani, M.; Ravanchi, M.T. Mathematical Modeling of Gas Separation Process with Flat Carbon Membrane. J. Membr. Sci. Res. 2015, 1, 90–95. [Google Scholar]
- Qadir, S.; Hussain, A.; Ahsan, M. A Computational Fluid Dynamics Approach for the Modeling of Gas Separation in Membrane Modules. Processes 2019, 7, 420. [Google Scholar] [CrossRef] [Green Version]
- Dias, A.C.S.; Sá, M.C.C.D.; Fontoura, T.B.; Menezes, D.Q.; Anzai, T.K.; Diehl, F.C.; Thompson, P.H.; Pinto, J.C. Modeling of spiral wound membranes for gas separations. Part I: An iterative 2D permeation model. J. Membr. Sci. 2020, 612, 118278. [Google Scholar] [CrossRef]
- Thundyil, M.J.; Koros, W.J. Mathematical modeling of gas separation permeators—for radial crossflow, countercurrent, and cocurrent hollow fiber membrane modules. J. Membr. Sci. 1997, 125, 275–291. [Google Scholar] [CrossRef]
- Marriott, J.; Sørensen, E. A general approach to modelling membrane modules. Chem. Eng. Sci. 2003, 58, 4975–4990. [Google Scholar] [CrossRef]
- Qi, R.; Henson, M.A. Modeling of Spiral-Wound Permeators for Multicomponent Gas Separations. Ind. Eng. Chem. Res. 1997, 36, 2320–2331. [Google Scholar] [CrossRef]
- Pan, C.Y. Gas separation by high-flux, asymmetric hollow-fiber membrane. AIChE J. 1986, 32, 2020–2027. [Google Scholar] [CrossRef]
- Boudinar, M.; Hanbury, W.; Avlonitis, S. Numerical simulation and optimisation of spiral-wound modules. Desalination 1992, 86, 273–290. [Google Scholar] [CrossRef]
- van der Meer, W.; van Dijk, J. Theoretical optimization of spiral-wound and capillary nanofiltration modules. Desalination 1997, 113, 129–146. [Google Scholar] [CrossRef]
- Ahmad, F.; Lau, K.K.; Shariff, A.M. Modeling and Parametric Study for CO2/CH4 Separation using Membrane Processes. World Acad. Sci. Eng. Technol. 2010, 48, 994–999. [Google Scholar]
- Davidson, T.A. A Simple and Accurate Method for Calculating Viscosity of Gaseous Mixtures; Bureau of Mines: Pittsburgh, PA, USA, 1993. [Google Scholar]
- Pandey, J.; Mukherjee, S.; Yadav, M.K.; Dey, R. Viscosity of multicomponent gas mixtures. J. Indian Chem. Soc. 2005, 82, 39–41. [Google Scholar]
- Ghosh, T.; Prasad, D.; Dutt, N.; Rani, K.Y. Viscosity of Liquids: Theory, Estimation, Experiment, and Data; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Reid, R.C.; Prausnitz, J.M.; Poling, B.E. The Properties of Gases and Liquids; McGraw Hill Book Co.: New York, NY, USA, 1987; p. 741. [Google Scholar]
- Baker, R.W.; Bell, C.M.; Chow, P.; Louie, J.; Mohr, J.M.; Peinemann, K.V.; Pinnau, I.; Wijmans, J.G.; Gottschlich, D.E.; Roberts, D.L. Low Cost Hydrogen/Novel Membrane Technology for Hydrogen Separation from Synthesis Gas; Membrane Technology and Research, Inc./SRI International: Menlo Park, CA, USA, 1990. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.S.; Lau, K.K.; Bustam, M.A.; Shariff, A.M. Removal of high concentration CO2 from natural gas at elevated pressure via absorption process in packed column. J. Nat. Gas Chem. 2012, 21, 7–10. [Google Scholar] [CrossRef]
- Alqaheem, Y.; Alomair, A.; Vinoba, M.; Pérez, A. Polymeric Gas-Separation Membranes for Petroleum Refining. Int. J. Polym. Sci. 2017, 2017, 4250927. [Google Scholar] [CrossRef]
- Lee, A.; Feldkirchner, H.; Stern, S.; Houde, A.; Gamez, J.; Meyer, H. Field tests of membrane modules for the separation of carbon dioxide from low-quality natural gas. Gas Sep. Purif. 1995, 9, 35–43. [Google Scholar] [CrossRef]
- Qi, R.; Henson, M. Optimization-based design of spiral-wound membrane systems for CO2/CH4 separations. Sep. Purif. Technol. 1998, 13, 209–225. [Google Scholar] [CrossRef] [Green Version]
- Merkel, T.; Amo, K.; Baker, R.; Daniels, R.; Friat, B.; He, Z.; Lin, H.; Serbanescu, A. Membrane Process to Sequester CO2 from Power Plant Flue Gas; Membrane Technology & Research Inc.: Newark, NJ, USA, 2009. Available online: https://www.osti.gov/servlets/purl/1015458 (accessed on 9 August 2021).
- Karode, S.K.; Kumar, A. Flow visualization through spacer filled channels by computational fluid dynamics I.: Pressure drop and shear rate calculations for flat sheet geometry. J. Membr. Sci. 2001, 193, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Schock, G.; Miquel, A. Mass transfer and pressure loss in spiral wound modules. Desalination 1987, 64, 339–352. [Google Scholar] [CrossRef]
- Johnson, J.E. Design and Construction of Commercial Spiral Wound Modules. In Encyclopedia of Membrane Science and Technology; Wiley: Hoboken, NJ, USA, 2013; pp. 1–21. [Google Scholar]
- Hussain, A.; Hägg, M.-B. A feasibility study of CO2 capture from flue gas by a facilitated transport membrane. J. Membr. Sci. 2010, 359, 140–148. [Google Scholar] [CrossRef]
- White, L.S.; Wei, X.; Pande, S.; Wu, T.; Merkel, T.C. Extended flue gas trials with a membrane-based pilot plant at a one-ton-per-day carbon capture rate. J. Membr. Sci. 2015, 496, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Salim, W.; Vakharia, V.; Chen, Y.; Wu, D.; Han, Y.; Ho, W.W. Fabrication and field testing of spiral-wound membrane modules for CO2 capture from flue gas. J. Membr. Sci. 2018, 556, 126–137. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Salim, W.; Chen, K.K.; Wu, D.; Ho, W.W. Field trial of spiral-wound facilitated transport membrane module for CO2 capture from flue gas. J. Membr. Sci. 2019, 575, 242–251. [Google Scholar] [CrossRef]
Components | Specifications |
---|---|
Methane | 75% |
Ethane | 10% |
Propane | 5% |
Butanes | 2% |
Pentane and heavier | 0.50% |
Nitrogen and other inert | 3% |
Carbon dioxide | 2–3% |
Total diluent gas | 4–5% |
Hydrogen sulfide | 6–7 mg/m3 |
Total sulfur | 115–660 mg/m3 |
Water vapor | 60–110 mg/m3 |
Oxygen | 1% |
Gas Separation | Application | Membrane Material | Manufacturer |
---|---|---|---|
CO2/Hydrocarbon | Acid gas treatment, enhanced oil recovery, landfill gas upgrading | Cellulose acetate, polyimide | GMS (Kvaerner), Separex (UOP), Cynara (Natco) |
VOC/N2 | Vapor/gas separation, air dehydration, other | Silicone rubber | Aquilo, Parker-Hannifin, Ube, GKSS Licensees, MTR |
Numerical Work | Study Domain | Assumptions/Limitations |
---|---|---|
Pan [13] | Perpendicular 1D mass balance between the feed and permeate channels with the consideration of pressure variation in the permeate stream. |
|
Krovvidi et al. [15] | Simplified mass balance model assuming a relationship between the feed and permeate stream concentration. |
|
Qi and Henson [14] | 1D mass balance simplified by assuming the flow rate in the feed channel is constant in the spiral direction |
|
Safari et al. [16] | Derived simple models for permeability and selectivity variations in the CO2/CH4 system that include both temperature and pressure effects. |
|
Lin et al. [17] | Mathematical model for a polydimethylsiloxane spiral wound membrane by using an integral transform from Navier–Stokes and the mass transfer differential equation. |
|
Gholami et al. [18] | Modeling of the gas separation process with a flat carbon membrane. |
|
Qadir and Ahsan [19] | Computational fluid dynamics (CFD) model describes the flow profiles of gases in different membrane modules. |
|
Dias et al. [20] | A 2D mathematical model describes the operation of spiral wound membranes in industrial gas separation processes. |
|
Simulation Parameter | Value | |
---|---|---|
Membrane characteristic [34,35] | Permeance of CO2 (GPU) | 90 |
Permeance of CH4 (GPU) | 4.5 | |
Permeance of C2H6 (GPU) | 1.8 | |
Permeance of C3H8 (GPU) | 1.8 | |
Permeance of H2S (GPU) | 87.3 | |
Feed gas characteristic | Composition: binary case (mol fraction) | ZF; CO2 = 0.4 |
ZF; CH4 = 0.6 | ||
Composition: multicomponent Case 1 (mol fraction) | ZF; CO2 = 0.4 | |
ZF; CH4 = 0.5 | ||
ZF; C2H6 = 0.08 | ||
ZF; C3H8 = 0.02 | ||
Composition: multicomponent Case 2 (mol fraction) | ZF; CO2 = 0.3 | |
ZF; CH4 = 0.5 | ||
ZF; C2H6 = 0.08 | ||
ZF; C3H8 = 0.02 | ||
ZF; H2S = 0.1 | ||
Temperature (C) [36] | 40 | |
Pressure (bar) [36] | 35 | |
Output gas characteristic [36] | Permeate pressure (bar) | 1.05 |
Membrane module Characteristic [37,38,39,40] | Feed spacer channel thickness (cm) | 9.00 × 10−2 |
Permeate spacer channel thickness (cm) | 4.00 × 10−2 | |
Spacer channel porosity | 0.846 (feed channel) | |
0.616 (permeate channel) | ||
Number of envelopes | 30 | |
Module diameter (cm) | 20.32 | |
Module length (m) | 1 |
Operating Conditions | Retentate Composition | ||||||||
---|---|---|---|---|---|---|---|---|---|
Carbon Dioxide (CO2) | Hydrogen (H2) | ||||||||
Feed pressure (psig) | Feed flow rate (cm3/min) | Exp. | Model | Error (%) | MAPE (%) | Exp. | Model | Error (%) | MAPE (%) |
100 | 51,500 | 0.7380 | 0.7413 | 0.4472 | 1.2268 | 0.2620 | 0.2587 | 1.2595 | 2.9613 |
100 | 18,500 | 0.7050 | 0.7234 | 2.6099 | 0.2950 | 0.2766 | 6.2373 | ||
100 | 10,100 | 0.6900 | 0.6943 | 0.6232 | 0.3100 | 0.3057 | 1.3871 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdul Latif, A.A.; Lau, K.K.; Low, S.C.; Azeem, B. Multicomponent Spiral Wound Membrane Separation Model for CO2 Removal from Natural Gas. Membranes 2021, 11, 654. https://doi.org/10.3390/membranes11090654
Abdul Latif AA, Lau KK, Low SC, Azeem B. Multicomponent Spiral Wound Membrane Separation Model for CO2 Removal from Natural Gas. Membranes. 2021; 11(9):654. https://doi.org/10.3390/membranes11090654
Chicago/Turabian StyleAbdul Latif, Abdul Aiman, Kok Keong Lau, Siew Chun Low, and Babar Azeem. 2021. "Multicomponent Spiral Wound Membrane Separation Model for CO2 Removal from Natural Gas" Membranes 11, no. 9: 654. https://doi.org/10.3390/membranes11090654
APA StyleAbdul Latif, A. A., Lau, K. K., Low, S. C., & Azeem, B. (2021). Multicomponent Spiral Wound Membrane Separation Model for CO2 Removal from Natural Gas. Membranes, 11(9), 654. https://doi.org/10.3390/membranes11090654